
Reducing File System Stress Caused
by Large Python Installations Using

Containers

Henrik Nortamo, CSC-IT Center for Science
CUG2023, 10.5.2023

Agenda
● Our issue with python

● Some pseudo benchmarks

● Our solution

● How it works

● Limitations

● Future work

Why Python causes issues

● Python environments for some user groups tend to grow
very large.

– Python accesses a lot of files, even with a few imports

● Higher expectations on interactivity

– REPL

– Iteration

– Web interfaces place the user in a different context

● Lustre generally does not deal well with a large number of
small files

– Both for individual users and global impact

– Hard limits imposed by quotas

“Accessing small files on the Lustre filesystem is very inefficient”

“The Lustre file system is the worst place to store a lot of small files”

“The performance with small files will not be optimal”

Quotes found in technical documentation from
Aalto University, INCD and ETH zürich

Python in a container

● Using containers is the obvious solution unless you want to redesign Python or
force your users to switch to another language
– The container image is a single file from the point of view of Lustre

● Installing and running Python environments from a container is nothing new

● However, some use cases become much harder or are blocked entirely
– MPI bindings, workflow managers, integration into existing pipelines, extending

the installation
– Containers need to be built off premise* → extra steps for end-users

 Target: Create an easy way for users to containerize their Python installation and
 enable as many use cases as possible

* Newer version of singularity/apptainer will allow you to build with fakeroot +
sandbox, but not from recipes

● Conda → package management system mainly used for python

● No usernamespaces on LUMI, or the Finnish national systems

– singularity CE and apptainer running in SUID mode.

● No squashfuse / fusermount commands on LUMI

● Everything presented here done on Lustre

Some additional background

Duration of imports

→ 8K fstat calls and 7K read system calls

Environment is based on a geocomputing installation
provided at CSC

Importing 7 python packages from a relatively sizable
conda installation

Puhti LUMI
0

20

40

60

80

100

120

140

/tmp
Container on Lustre
Directly on Lustre

Benchmarks done on live systems → very noisy

240 sec ~ 4 minutes

Duration of imports

sec

 Puhti:
8 OSS
4.8PB, 57% used
484.8M Inodes used

 LUMI (one filesystem):
17 OSS
20PB, 9% used
45.9M Inodes used

Puhti LUMI
0

20

40

60

80

100

120

140

160

/tmp
Container on Lustre
Directly on Lustre

2010 sec ~ 33 minutes

Duration of imports

sec

When Puhti was under extremely heavy load + some users were doing less than
nice things to the filesystem

What will this look like for LUMI
when the system is at full load
with much higher disk usage?

LUMI
0

50

100

150

200

250

/tmp
Container on Lustre
Directly on Lustre

Duration of imports

Stress test, instead of 7 import we have 72

sec

→ 22K fstat calls and 17K read system calls

Second invocation when all files
in the page cache

Our tool
● Tykky (https://github.com/CSCfi/hpc-container-wrapper) installs the user’s Python

environments into a container, and then generates a set of wrappers which try to hide
the container as much as possible

– Separate modes of operation for creating conda installations and installations
based on a virtual environment

● In production use, by end users and CSC staff

env.yml

Reduction from 400K files to 2K files for our example case

https://github.com/CSCfi/hpc-container-wrapper

What it looks like
bin/python

1) Launch a base container matching the host operating system
● Mount all top level paths from the host

● Mount some local disk or /tmp to /LUMI_<random_hash>

2) Install miniconda to /LUMI_<random_hash>

● Create environment based on user input
● Run any extra user commands

3) Create squashfs filesystem image from content of /LUMI_<random_hash>

4) Generate wrappers for all executables in the installation

Installation

Now outside the container!

By mounting the full host filesystem, we can utilize all installed software e.g. the whole
Cray module stack

1) User calls the wrapper the same way the use a normal installation: MyEnv/bin/python3

● In practice drop in replacement for a lot of scripts
● Wrapper handles propagating host environment and variables into the container
● Wrapper handles invocation if it is already inside a container

2) Launch a base container matching the host operating system
● Mount all top level paths from the host

● Mount some squashfs image to /LUMI_<random_hash>

3) Execute the actual program inside the container
● If installation is conda based, activate the conda environment
● Edit the zeroth argument on execution

Running

Running, some examples
● mpi4py

– pip-containerize new --prefix MyEnv/ req.txt

– srun -n 2 -N 2 MyEnv/bin/python3 osu_latency.py

● Dask

● The correct absolute path to the interpreter is inserted into the generated slurm script

● Snakemake requires one-time manual fix

● venv creation

● When you want to extend an existing, very large installation

● Venv then exists normally on disk

● slurm

$ export PATH=$PWD/P/bin:$PATH
$ python3 -c "import sys;print(sys.executable)"
/scratch/project_100000002/user/CUG/P/bin/python3
$ python3 -c "import sys;print(sys.prefix)"
/LUMI_TYKKY_oX27qRR/miniconda/envs/env1
$ python3 -c 'import subprocess;subprocess.run(["srun","-
A","project_100000002","-p","debug","python3","-c","import sys;
print(sys.executable);print(sys.prefix)"])'

srun: job 2 queued and waiting for resources
srun: job 2 has been allocated resources
/scratch/project_100000002/user/CUG/P/bin/python3
/LUMI_TYKKY_oX27qRR/miniconda/envs/env1

Running, some examples

● Installation is read only, updating it requires extracting the whole squashfs image

● Aggressive path resolving breaks some things (valid behavior if not in venv)

– pip installed binaries outside the container

– some workflow managers

● Launching other containers not possible

● Tools depending on some SUID step fail

– Host based authentication for ssh

● How safe is it to depend on the current behavior?

Limitations

Future work

● Rewrite codebase in something else than Bash and Python

● Investigate options to the squashfs for more flexible updates.

● Utilize fixed image mount ordering

– Would make filepaths appear identical on the inside and outside.

– Fixed in apptainer and fix in progress for singularity CE

● Trash the tool in case we do enable usernamepaces and use some other
tool?

– Or if the filesystem works perfectly

	Slide2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

