
Performance Portable Thread Cooperation on AMD and NVIDIA
GPUs
Sebastian Keller
May 10th, 2023

Performance tuning for the AMD CDNA-2 architecture

▪ Achieving the advertised performance on AMD Mi250X can be quite challenging

▪ Architectural differences between NVIDIA and AMD chips:
▪ Register file
▪ Shared memory

▪ Do these differences affect software implementation choices for optimal performance?

2

AMD CDNA-2 specifics vs. NVIDIA

▪ CDNA has a 512 KB (vector) register file
per compute unit (CU), for values that
differ between wave (warp) lanes

▪ Plus a 12 KB scalar register files for values
identical among threads in a wave

▪ Local data store (shared memory) on separate
area chip

▪ NVIDIA Ampere: 256 KB register file

▪ Shared memory resides on register file

References: AMD CDNA, AMD CDNA2, NVIDIA Ampere

3

https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Classic N-body problem on AMD and NVIDIA cards

▪ Part of the Fast Multipole Method (FMM) and treecodes
for electrostatics and gravity

▪ Compute N^2 interactions between N bodies
Each square is a particle-particle interaction pair

▪ Two options to cache loads from global memory:
shared memory or intra-warp exchanges

▪ Each (4x4) tile is a group of cooperating threads,
▪ thread block with shared mem
▪ warp/wave of 32 or 64 threads

▪ An NxN tile computes N^2 interaction pairs
with N instead of N^2 loads

5

Ref: GPU Gems 3

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda

Classic N-body and AMD and NVIDIA cards

▪ A single interaction between two particles

6

template<class T> __device__
Vec4<T> p2p(Vec4<T> acc, const Vec3<Tc>& pos_i,
 const Vec3<Tc>& pos_j, T m_j)
{
 Vec3<Tc> dX = pos_j - pos_i; // 3 flops
 Tc R2 = norm2(dX) + eps2; // 6 flops

 Tc invR = rsqrt(R2); // 2 flops (sqrt + div)
 Tc invR2 = invR * invR; // 1 flop
 Tc invR3m = m_j * invR * invR2; // 3 flops

 acc[0] -= invR3m * R2; // 2 flops
 acc[1] += dX[0] * invR3m; // 2 flops
 acc[2] += dX[1] * invR3m; // 2 flops
 acc[3] += dX[2] * invR3m; // 2 flops

 return acc; // 23 flops
}

First option: shared memory

7

template<class T>
__global__ void directShared(T* x, T* y, T* z, T* m,
 T* ax, T* ay, T* az)
{
 unsigned targetIdx = blockDim.x * blockIdx.x + threadIdx.x;

 Vec3<T> pos_i x[targetIdx], y[targetIdx], z[targetIdx]};
 Vec3<T> acc = 0;
 __shared__ util::array<T, 4> sm_body[blockDim.x];

 // loop over sources
 for (unsigned tile = 0; tile < gridDim.x; ++tile)
 {
 int s = tile * blockDim.x + threadIdx.x;
 sm_bodytile[threadIdx.x] = {x[s], y[s], z[s], m[s]};

 __syncthreads();

 // reuse values in shared mem
 for (int j = 0; j < blockDim.x; ++j)
 {
 Vec3<T> pos_j{sm_bodytile[j][0], sm_};
 T m_j = sm_bodytile[j][3];

 acc = p2p(acc, pos_i, pos_j, m_j);
 }
 __syncthreads();
 }

 // store target in ax, ay, az
}

Second option: intra-warp exchange with shuffles

8

template<class T>
__global__ void directShfl(T* x, T* y, T* z, T* m,

 T* ax, T* ay, T* az)
{
 unsigned targetIdx = blockDim.x * blockIdx.x + threadIdx.x;
 unsigned laneIdx = threadIdx.x & (warpSize - 1);

 Vec3<T> pos_i x[targetIdx], y[targetIdx], z[targetIdx]};
 Vec3<T> acc = 0;

 // loop over sources
 for (unsigned s = laneIdx; s < N; s += warpSize)
 {
 util::array<T, 4> sourceBody{x[s], y[s], z[s], m[s]};

 // reuse values in warp
 for (int l = 0; l < warpSize; ++l)
 {
 Vec3<T> pos_j{shfl(sourceBody[0], l),
 shfl(sourceBody[1], l),
 shfl(sourceBody[2], l)};
 T m_j = shfl(sourceBody[3], l);

 acc = p2p(acc, pos_i, pos_j, m_j);
 }
 }

 // store target in ax, ay, az
}

Comparison between shared-mem and warp-shuffle approach

9

Shared-mem
warp-shuffles

✅ Bigger tile size = higher flop/byte

❌ SM synchronization overhead

❌ Tile size limited by vector unit length
 = less flop/byte

✅ No synchronization for warp-shuffles

Comparison between shared-mem and warp-shuffle approach

10

▪ Faster shared memory and smaller warp
size (32) favors shared-memory version
on NVIDIA Ampere

▪ Slower shared memory and larger wave
size (64) translates to warp-shuffles
outperforming the shared memory
approach on AMD CDNA2

Combination of both approaches: shared-mem and register tiles

11

shared-mem tile

register tile▪ With tiling for both shared-mem and registers
both devices reach ~95% performance of the best
version

▪ Usual tricks such as __restrict__ -ed pointers
applied

▪ rsqrt instruction not a bottleneck

▪ All blocking strategies are highly compute bound on
both devices.

Summary

▪ Intra-warp data exchanges between threads preferable to shared-mem on AMD MI250X

▪ Combination of warp and shared-mem approaches is the best compromise that’s portable

▪ AMD GPUs are a little trickier to optimize for

