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Performance tuning for the AMD CDNA-2 architecture

▪ Achieving the advertised performance on AMD Mi250X can be quite challenging

▪ Architectural differences between NVIDIA and AMD chips:
▪ Register file
▪ Shared memory

▪ Do these differences affect software implementation choices for optimal performance?
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AMD CDNA-2 specifics vs. NVIDIA

▪ CDNA has a 512 KB (vector) register file
per compute unit (CU), for values that
differ between wave (warp) lanes

▪ Plus a 12 KB scalar register files for values
identical among threads in a wave

▪ Local data store (shared memory) on separate
area chip

▪ NVIDIA Ampere: 256 KB register file

▪ Shared memory resides on register file

References: AMD CDNA, AMD CDNA2, NVIDIA Ampere
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https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/


Classic N-body problem on AMD and NVIDIA cards

▪ Part of the Fast Multipole Method (FMM) and treecodes
for electrostatics and gravity

▪ Compute N^2 interactions between N bodies
Each square is a particle-particle interaction pair

▪ Two options to cache loads from global memory:
shared memory or intra-warp exchanges

▪ Each (4x4) tile is a group of cooperating threads,
▪ thread block with shared mem
▪ warp/wave of 32 or 64 threads

▪ An NxN tile computes N^2 interaction pairs
with N instead of N^2 loads
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Ref: GPU Gems 3

https://developer.nvidia.com/gpugems/gpugems3/part-v-physics-simulation/chapter-31-fast-n-body-simulation-cuda


Classic N-body and AMD and NVIDIA cards

▪ A single interaction between two particles
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template<class T> __device__
Vec4<T> p2p(Vec4<T> acc, const Vec3<Tc>& pos_i,
            const Vec3<Tc>& pos_j, T m_j)
{
    Vec3<Tc> dX = pos_j - pos_i;       // 3 flops
    Tc       R2 = norm2(dX) + eps2;    // 6 flops

    Tc invR   = rsqrt(R2);             // 2 flops (sqrt + div)
    Tc invR2  = invR * invR;           // 1 flop
    Tc invR3m = m_j * invR * invR2;    // 3 flops

    acc[0] -= invR3m * R2;             // 2 flops
    acc[1] += dX[0] * invR3m;          // 2 flops
    acc[2] += dX[1] * invR3m;          // 2 flops
    acc[3] += dX[2] * invR3m;          // 2 flops

    return acc;                        // 23 flops
}



First option: shared memory
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template<class T>
__global__ void directShared(T* x, T* y, T* z, T* m, 
                             T* ax, T* ay, T* az)
{
    unsigned targetIdx = blockDim.x * blockIdx.x + threadIdx.x;

    Vec3<T> pos_i x[targetIdx], y[targetIdx], z[targetIdx]};
    Vec3<T> acc = 0;
    __shared__ util::array<T, 4> sm_body[blockDim.x];

    // loop over sources
    for (unsigned tile = 0; tile < gridDim.x; ++tile)
    {
        int s = tile * blockDim.x + threadIdx.x;
        sm_bodytile[threadIdx.x] = {x[s], y[s], z[s], m[s]};

   __syncthreads();

        // reuse values in shared mem
        for (int j = 0; j < blockDim.x; ++j)
        {
            Vec3<T> pos_j{sm_bodytile[j][0], sm_};
            T m_j = sm_bodytile[j][3];

            acc = p2p(acc, pos_i, pos_j, m_j);
        }
        __syncthreads();
    }

   // store target in ax, ay, az
}



Second option: intra-warp exchange with shuffles
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template<class T>
__global__ void directShfl(T* x, T* y, T* z, T* m,

     T* ax, T* ay, T* az)
{
    unsigned targetIdx = blockDim.x * blockIdx.x + threadIdx.x;
    unsigned laneIdx   = threadIdx.x & (warpSize - 1);

    Vec3<T> pos_i x[targetIdx], y[targetIdx], z[targetIdx]};
    Vec3<T> acc = 0;

    // loop over sources
    for (unsigned s = laneIdx; s < N; s += warpSize)
    {
        util::array<T, 4> sourceBody{x[s], y[s], z[s], m[s]};

        // reuse values in warp
        for (int l = 0; l < warpSize; ++l)
        {
            Vec3<T> pos_j{shfl(sourceBody[0], l),
                          shfl(sourceBody[1], l),
                          shfl(sourceBody[2], l)};
            T m_j = shfl(sourceBody[3], l);

            acc = p2p(acc, pos_i, pos_j, m_j);
        }
    }

   // store target in ax, ay, az
}



Comparison between shared-mem and warp-shuffle approach
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Shared-mem
warp-shuffles

✅ Bigger tile size = higher flop/byte

❌ SM synchronization overhead

❌ Tile size limited by vector unit length
        = less flop/byte

✅ No synchronization for warp-shuffles 



Comparison between shared-mem and warp-shuffle approach
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▪ Faster shared memory and smaller warp
size (32) favors shared-memory version
on NVIDIA Ampere

▪ Slower shared memory and larger wave
size (64) translates to warp-shuffles 
outperforming the shared memory 
approach  on AMD CDNA2



Combination of both approaches: shared-mem and register tiles
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shared-mem tile

register tile▪ With tiling for both shared-mem and registers
both devices reach ~95% performance of the best 
version

▪ Usual tricks such as __restrict__ -ed pointers
applied

▪ rsqrt instruction not a bottleneck

▪ All blocking strategies are highly compute bound on 
both devices.



Summary

▪ Intra-warp data exchanges between threads preferable to shared-mem on AMD MI250X

▪ Combination of warp and shared-mem approaches is the best compromise that’s portable

▪ AMD GPUs are a little trickier to optimize for


