

NSF OAC Awards: 1927880 and 2137603

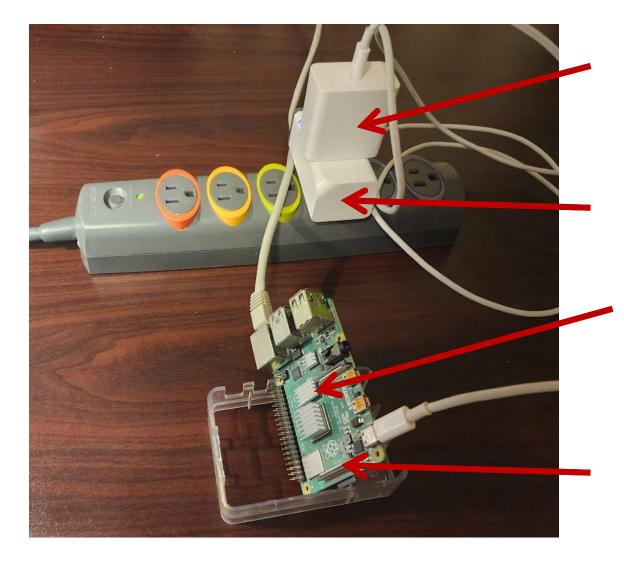
Benchmarking High-End ARM Systems with Scientific Applications. Performance and Energy Efficiency.

Nikolay Simakov*, Robert DeLeon*, Joseph White*, Matthew Jones*, Thomas Furlani*, Eva Siegmann ⁺ and Robert Harrison ⁺

> *Center for Computational Research, SUNY University at Buffalo *Institute for Advanced Computational Science, Stony Brook University

CUG 2023, Helsinki, Finland, May 7 - 11, 2023

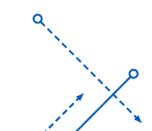
ARM Processors are going to HPC Market



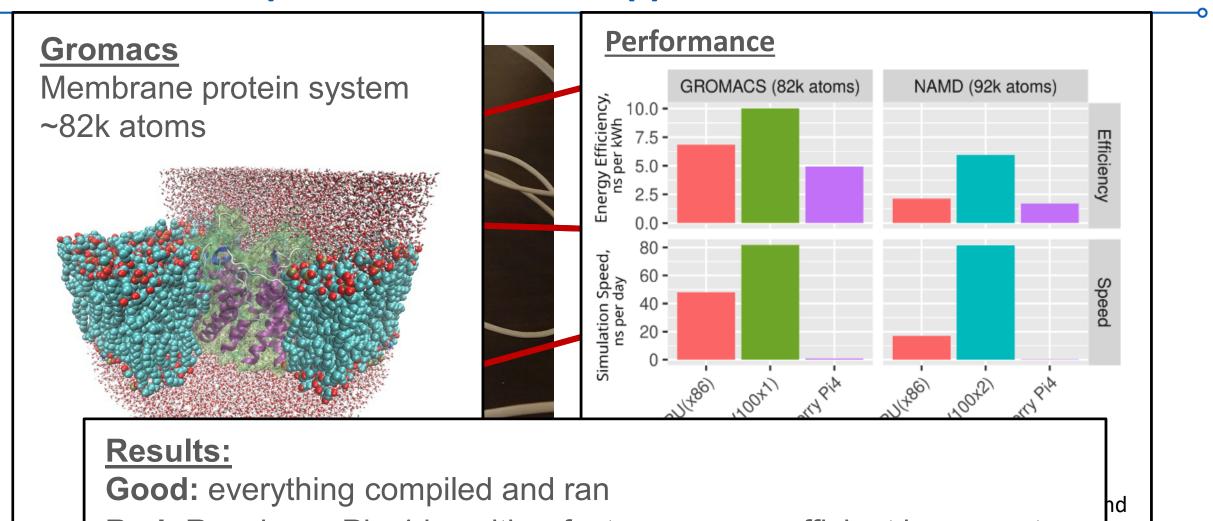
- Energy efficiency is crucial for our ever-increasing demand for compute power
 - Information-Communications-Technologies (ICT) ecosystem uses about 10% of world electricity generation. Projected to reach 20% by 2030*
 - Exascale computing is not sustainable without adequate energy efficiency. Frontier, 1.1 Eflop/s machine, consumes 21 MW (17,000 households).
- ARM CPUs are successfully used in many products, including energy consumption-sensitive products.
 - Embedded systems and mobile computing devices, like smartphones and tablets
 - Linux server products such as file and web servers
- More recently, ARM CPUs have been adapted to HPC workloads, and some are specifically designed for scientific calculations
- What is their performance for HPC workloads?
 - What is the performance state of modern high-end ARM CPUs?
 - How do they compare in performance to x86 systems
 - Are we ready for broader adoption of ARM in the HPC community?

*[https://www.nature.com/articles/d41586-018-06610-y]

First Personal Experience with HPC Application on ARM



USB-C interface provides enough power


Smart outlet provides Power measurements

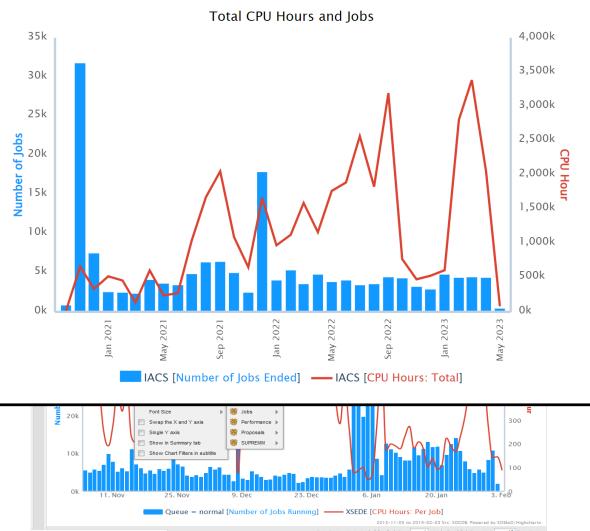
Raspberry Pi 4

Vertical placement for Efficient cooling

First Personal Experience with HPC Application on ARM

Bad: Raspberry Pie 4 is neither fast nor energy efficient in compute intensive application like molecular dynamics

tel


i4

What is the performance state of modern high end ARM CPUs?

XDMoD: A Comprehensive Tool for HPC System Management

Ookami HPE/Cray Apollo 80 system

ARM Fujitsu A64FX, 178 nodes

NSF ACCESS Measurement and Metrics Service (MMS),

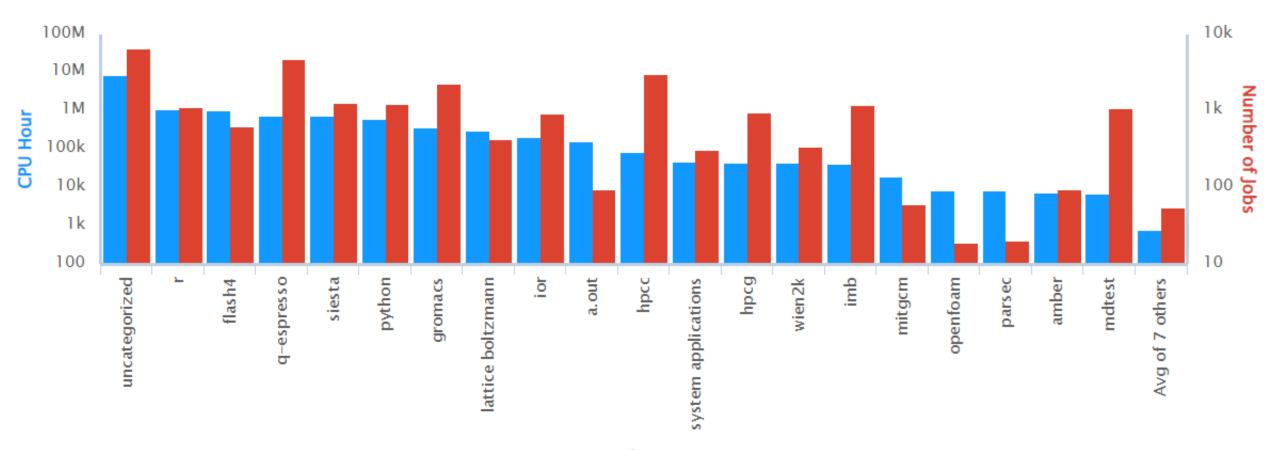
- Following XD Net Metrics Service (XMS) and prior 5 year TAS award
- Develop & deploy XDMoD (XD Metrics on Demand) Tool

Open XDMoD: Open Source version for Data Centers

- Used to measure and optimize performance of HPC centers
- 300+ academic & industrial installations worldwide

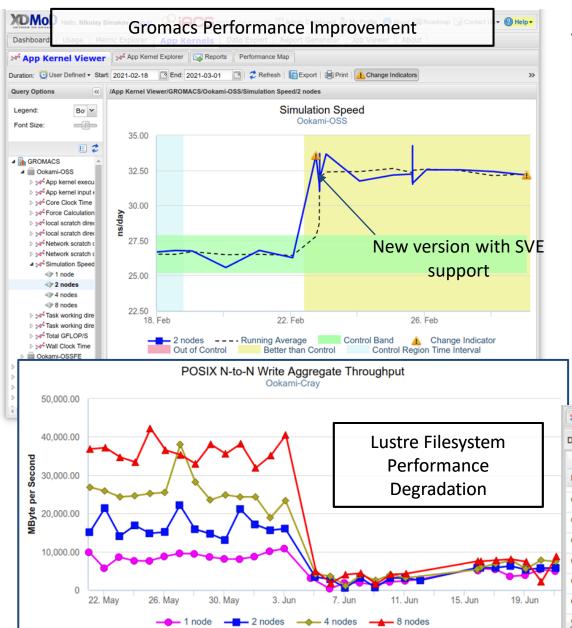
Goal: Optimize Resource Utilization and Performance

- Provide detailed information on utilization
- Measure Quality of Service
- Enable data driven upgrades and procurements
- Measure and improve job and system level performance



Center for Computational Resea

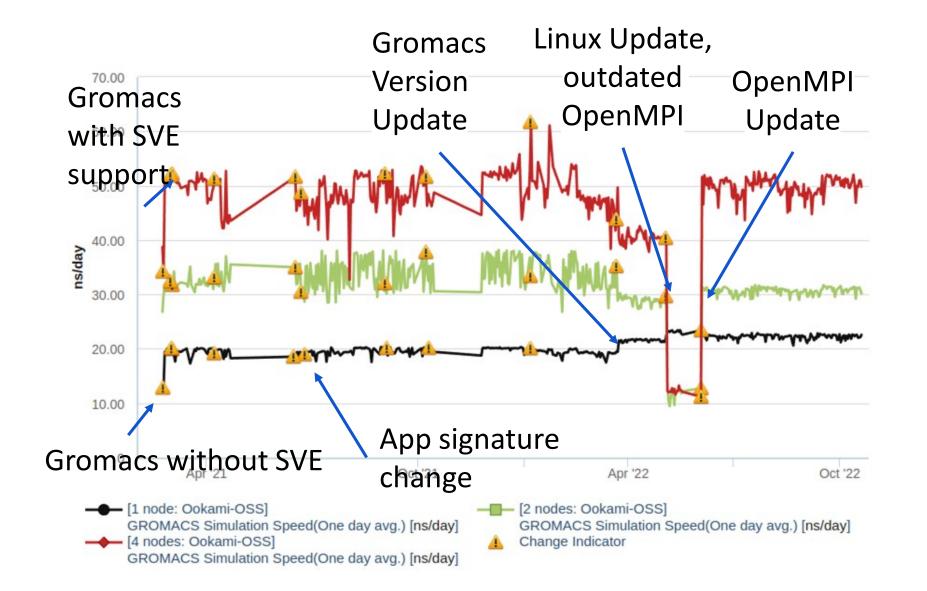
Application usage on Ookami (Fujitsu A64FX)

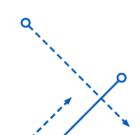

Ookami – an ARM Fujitsu A64FX machine with SVE support (512 bit wide)

Determine what are the mostly widely used applications (2021-01 application usage to 2022-09-30 shown)

A.

QoS and Performance Monitoring with Application Kernels




Application kernels module allows **continuous performance monitoring** by periodic execution of applications and benchmarks.

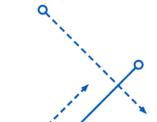
- Computationally lightweight benchmarks or applications
- Run periodically or on demand to actively measure performance
- Measure system performance from User's perspective
- Proactively identify underperforming hardware and software

		tart: 2021-05	5-27	C ^o End	2021-	06-15		🔁 Refr	esh 🚺	Export	t .								
				May, 2021			June, 2021												
Resource	App Kernel	No	27	28	29	30	31	01	02	03	04	05	06	07	08	09	10	11	
Ookami-Cray	IOR	1	N/1	N/1	N/1	N/1	N/1	N/1	N/1	N/1	U/1	F/1	U/1	U/1	U/1	U/1	U/1	U/1	
Ookami-Cray	IOR	2	N/1	N/1	N/1	N/1	N/1	N/1	N/1	N/1	F/1	U/1	U/1	U/1	U/1	U/1	N/1	U/1	
Ookami-Cray	IOR	4	N/1	N/1	N/1	N/1	N/1	N/1	N/1	N/1	F/1	N/1	U/1	N/1	U/1	U/1	U/1	N/1	
Ookami-Cray	IOR	8	N/1	N/1	N/1	N/1	N/1	N/1	N/1	N/1	F/1	U/1	U/1	U/1	U/1	U/1	U/1	U/1	
Ookami-Cray	MDTest	1	N/1	N/1	N/1	N/1	N/1	N/1	N/1	Code	Descri								
Ookami-Cray	MDTest	2	N/1	N/1	N/1	N/1	N/1	N/1	N/1	N			kernel kernel					l interv	al

Performance over Time: GROMACS on Ookami (ARM Fujitsu A64FX)

Tested Compute Resources

_		Arch/Core	Proc.,		Release		Freq, GHZ		eighteen	different
Resource	CPU	Name	nm	SIMD	Date	Node	base/turbo	hardware	configurat	ions were
ARM									0	ent resource
SBU-Ookami	Fujitsu A64FX	v8.2-A	7	SVE 512b	~2019	48	1.8			
SBU-Ookami	Cavium ThunderX2	v8.1	14	NEON 128b	2018	64	2.0-2.5	(accessed	through	CloudBank)
Amazon	Amazon Graviton 2	v8.2, Neov. N1	7	128b	Nov-19	48	2.6	and tradi	tional HP	C services
Amazon	Amazon Graviton 3	v8.5, Neov. V1	5	SVE 512b	Nov-21	. 48	2.5	(ACCESS all	ocations, U	B, SBU).
Amazon	Amazon Graviton 3	v8.5, Neov. V1	5	SVE 512b	Nov-21	. 64	2.5	All calculat	tions were	performed
Google	Ampere Altra	v8.2+, Neov. N1	7	128b	Mar-21	. 48	Up to 3.0			ingle virtual
Azure	Ampere Altra	v8.2+, Neov. N1	7	128b	Mar-21	. 48	Up to 3.0	machine in		
Azure	Ampere Altra	v8.2+, Neov. N1	7	128b	Mar-21	. 64	Up to 3.0	machine m	stance.	
x86 AMD										
PSC-Bridges 2	EPYC 7742	Zen2(Rome)	14	AVX2 256b	Mid-2019	128	2.25/3.4			
SDSC-Expanse	EPYC 7742	Zen2(Rome)	14	AVX2 256b	Mid-2019	128	2.25/3.4			
Purdue-Anvil	EPYC 7763	Zen3(Milan)	7+	AVX2 256b	Mar-21	. 128	2.45/3.5			
x86 Intel										
TACC-Stampede 2	Xeon Phi 7250	Knights Landing	14	AVX512	Q2 2016	68	1.4/1.6			
TACC-Stampede 2	Xeon Platinum 8160	Skylake-X	14	AVX512	Q3 2017	′ 48	2.1/3.7			
TACC-Stampede 2	Xeon Platinum 8380	Ice Lake	10	AVX512	Q2 2021	. 80	2.3/3.4			
UB-HPC	Xeon Gold 6130	Skylake-X	14	AVX512	Q3 2017	' 32	2.1/3.7			
UB-HPC	Xeon Gold 6330	lce Lake	10	AVX512	Q2 2021	. 56	2/3.7			٩
x86 Intel and NVI	DIA GPU									
UB-HPC V100x2	Xeon Gold 6130	Skylake-X	14	AVX512	Q3 2017	' 32	2.1/3.7			<u>``</u>
UB-HPC A100x2	Xeon Gold 6330	Ice Lake	10	AVX512	Q2 2021	. 56	2/3.7			

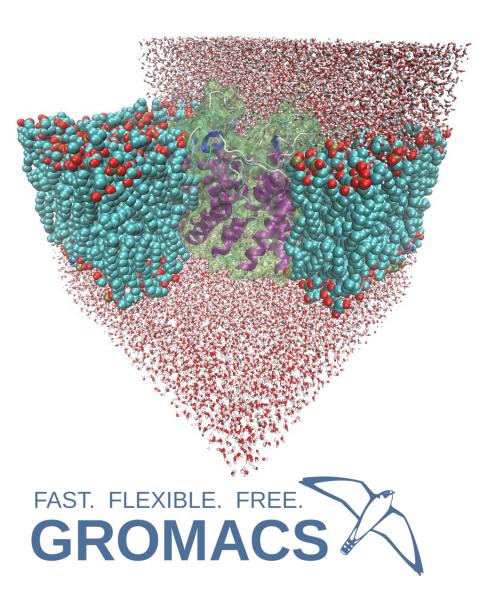

Tested Applications and Benchmarks

- The application kernels used for this study span a variety of computational domains and paradigms:
 - HPCC multiple benchmarks, including LINPACK and FFT
 - NWChem ab initio chemistry
 - Open Foam partial differential equation solver
 - GROMACS biomolecular simulation
 - Al Benchmark Alpha Al benchmark
 - Enzo adaptive mesh refinement

HPCC: HPC challenge benchmark

HPC Challenge Benchmark combine multiple benchmarks together

- High Performance LINPACK, which solves a linear system of equations and measures the floating-point performance
- Matrix-matrix multiplication
- Fast Fourier Transform
- Stream: memory bandwidth
- Parallel Matrix Transpose
- MPI Random Access

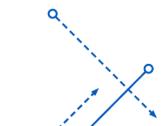

HPCC: HPC challenge benchmark

CDI / Sustan	res	Matrics	Multiplication	LINPAC	CK	FFT		Power,	Energy Eff.,	
CPU/System	Cor	GFLOPS	GFLOPS/Core	GFLOPS	GFLOPS/C ore	GFLOPS	GFLOPS/ Core	W	Jobs per kWh	N
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC)	48	1363	2 8.4 ± 0.1	828 ± 27	17.3	6.2 ± 0.7	0.13	110**	560	60
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, FJ)	48	1978	41.2 ± 0.2	1 177 ± 19	24.5	24.4 ±0.9	0.51	110**	185	60
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, ARM)	48	1651	34.4 ± 1.8	📃 884 ± 72	18.4	0.3 ± 0.0	0.01	110**	335	60
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, Cray)	48	917	🦲 19.1 ± 3.7	758 ± 149	15.8	6.8 ± 0.6	0.14	110**	204	60
ARM Cavium ThunderX2 (SBU-Ookami)	64	1 742	📒 11.6 ± 2.1	522 ± 106	8.2	33.5 ± 3.7	0.52			14
ARM Amazon Graviton 2, Neoverse N1 (AWS)	48	816	17 ± 0.0	682 ± 1	14.2	27.1 ±0.6	0.56			20
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	48	907	E 18.9 ± 0.3	776 ± 10	16.2	55.4 ± 0.5	1. 15			20
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	64	1158	[18.1 ± 0.0	965 ± 1	15.1	71 ± 0.7	1.11			20
ARM Ampere Altra, Neoverse N1 (Azure)	48	816	17 ± 0.0	675 ± 17	14.1	26.5 ±0.4	0.55			11
ARM Ampere Altra, Neoverse N1 (Azure)	48	826	<u> </u>	🦲 691 ± 18	14.4	26.8 ±0.7	0.56			11
ARM Ampere Altra, Neoverse N1 (Azure)	64	1037	16.2 ± 0.0	850 ± 4	13.3	33.1 ± 1.1	0.52	270*	314	20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC-Bridges-2)	128	2624	20.5 ± 0.7	189 <mark>5 ± 42</mark>	14.8	50.3 ± 0.3	0.39			20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse)	128	3200	25 ± 1.4	1721 ± 47	13.4	71.8 ± 2.0	0.56			20
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil)	128	3046	23.8 ± 1.6	2176 ± 100	17.0	54.7 ± 4.8	0.43			20
x86 Intel Xeon Phi 7250, KNL, AVX512 (TACC-Stampede 2)	68	340	5 ± 0.3	986 ± 8	14.5	46.5 ± 0.7	0.68			20
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2	48	2122	44.2 ± 1.7	1 158 ± 34	24.1	35.8 ± 1.9	0.75			20
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2)	80	3824	47.8 ± 0.6	1713 ± 5	2 <mark>1.4</mark>	76.4 ± 2.0	0.96			12
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC)	32	1536	48 ± 2.0	997 ± 54	31.2	50.9 ± 1.9	1.59	345±31	1 74	53
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC)	56	2761	49.3 ± 1.1	13 96 ± 37	24.9	47.9 ± 0.7	0.86	588±64	109	12
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC, ICC)	56	2845	50.8 ± 1.0	1399 ± 13	25 <mark>.0</mark>	28.2 ± 0.3	0.50	501±107	299	12

HPCC: HPC challenge benchmark

		es	Matrics	Multiplication	LINPACK		FFT		Power,	Energy Eff.,	•
	CPU/System	Lo L			G	FLOPS/C	G	FLOPS/	W	Jobs per	N
	Matrix-Matrix Multip	licatio	n							kWh	
	• Dual modality: 512 b			est perfor	mance				*	560	60
	ARM Fujitsu A								*	185 335	
	ARM Fujitsu A Fujitsu A64FX has highest performance in ARM camp										
	ARM Fujitsu A Overall ARM performance is comparable to x86 counterparts 										60
ARM Cavium											14
ARM Amazon • LINPACK											20
	ARM Amazon Similar to DGEMM there is dual mode behaiviour										20
	• Fujitsu A64FX is fastest in ARM camp										20
ARM Ampere ARM Ampere • Per core performance is competitive with x86 counterpart with similar SIMD											11
	widthe		ipeuuv	e with xoo	counterpar			D			11
	ARM Ampere widths									314	20
											20
	x86 AMD EPY					e i er le re v	- 4	-			20
	• Graviton 3 is faste		RIVI Ca	amp. It is	also has r	nignes	st per core	е			20
	x86 Intel Xeor performance over	all.									20
	• Overall performan	nce is c	omne	titivo with	x86 coun	Iterna	rt with sin	nilar			20
	x86 Intel Xeor X86 Intel Xeor SIMD widths		ompe			пстра		mai			12
	x86 Intel Xeor SIIVID WIGUIS								31	1 74	53
	x86 Intel Xeor		1	1010 - 111		<u> </u>			64	109	12
	x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC, IC	C) 50	5 2845	50.8 ± 1.0	1399 ± 13	25.0	28.2 ± 0.3	0.50	501±107	299	12

GROMACS: Molecular Dynamics of Biomolecular Systems


GROMACS is molecular dynamics simulation of biomolecular systems

Application computational characteristics:

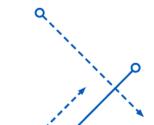
- Solve ODE (second Newton law)
- Particle interactions
 - Short range/long range
- FFT

Test case:

- Membrane protein
- 82k atoms system

GROMACS: Molecular Dynamics of Biomolecular Systems

CPU/System	Cores	Simulation Speed, ns/day	Simula pe	tion Speed r Core, lay/core	Power, W	Energy Efficiency, ns/kWh	N	
ARM Fujitsu A64FX, SVE 512bit (SBU-Ookami, GCC)	48	22.3 ± 0.2		0.46	111 ± 8	8.43 ± 0.6	32	
ARM Fujitsu A64FX, SVE 512bit (SBU-Ookami, Fujitsu)	48	22.8 ± 0.3		0.48	105 ± 5	9.06 ± 0.4	12	
ARM Cavium ThunderX2 (SBU-Ookami)	64	28.8 ± 4.2		0.45			14	
ARM Amazon Graviton 2, Neoverse N1 (AWS)	48	37.8 ± 0.1		0.79			20	
ARM Amazon Graviton 3, Neoverse V1, SVE 256bit (AWS)	48	57.0 ± 0.4		1.19			20	
ARM Amazon Graviton 3, Neoverse V1, SVE 256bit (AWS)	64	71.4 ± 1.0		1.12			20	
ARM Ampere Altra, Neoverse N1 (Google)	48	39.0 ± 1.8		0.81			11	
ARM Ampere Altra, Neoverse N1 (Azure)	48	41.0 ± 2.2		0.85			11	
ARM Ampere Altra, Neoverse N1 (Azure)	64	56.5 ± 0.6		0.88	270 *	8.71	20	
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC Bridges-2)	128	109.6 ± 4.8		0.86			20	
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse)	128	99.8 ± 8.6		0.78			20	
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil)	128	169.9 ± 4.4		1.33			20	
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2)	48	70.4 ± 0.8		1 .47			11	
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2)	80	133.3 ± 6.0		1.67			20	
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UBHPC)	32	37.6 ± 0.9		1.18	379 ± 33	4.17 ± 0.4	21	
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UBHPC ICC)	32	39.3 ± 0.9		1.23	367 ± 35	4.5 ± 0.5	11	
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UBHPC)	56	81.7 ± 6.9		1.46	633 ± 28	5.38 ± 0.4	12	
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UBHPC ICC)	56	103.0 ± 2.0		1.84	619 ± 17	6.94 ± 0.2	17	
x86 Intel Xeon Gold 6130, NVIDIA V100x2 (UBHPC)	32	145.1 ± 2.8			435 ± 7	13.91 ± 0.3	12	
x86 Intel Xeon Gold 6330, NVIDIA A100x2 (UBHPC)	56	236.5 ± 10.8			707 ± 9	13.94 ± 0.8	2 11	


- Graviton 3 is the fastest in ARM camp
- Per core performance of Graviton 2 and Ampere Alta is similar to Zen 2 (Rome) and Graviton 3 is approaching zen3 (Millan) and Skylake-X

NWChem: Quantum Chemistry

- NWChem is an ab initio computational chemistry software package developed by Pacific Northwest National Laboratory.
- The input to the benchmark runs is the Hartree-Fock energy calculation of Au+ with MP2 and Coupled Cluster corrections

NWChem: Quantum Chemistry

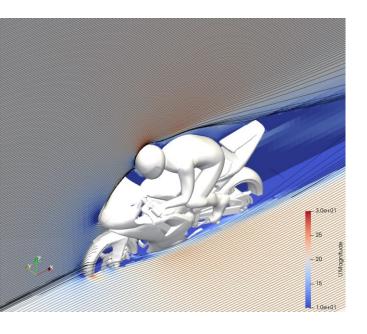
				Energy	
		Wall Clock Time,	Power,	Efficiency, Jobs	
CPU/System	Cores	Seconds	W	per kWh	Ν
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC)	48	62.7 ± 0.7	110 ± 0	522 ± 6	60
ARM Amazon Graviton 2, Neoverse N1 (AWS)	48	61.1 ± 0.9			12
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	48	36.6 ± 0.7			11
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	64	29.8 ± 0.4			20
ARM Ampere Altra, Neoverse N1 (Azure)	48	56.5 ± 2.7			11
ARM Ampere Altra, Neoverse N1 (Azure)	64	42.8 ± 0.5	270*	312	20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC-Bridges-2)	128	32.4 ± 4.4			20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse)	128	28.6 ± 7.8			20
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil)	128	26.7 ± 0.3			20
x86 Intel Xeon Phi 7250, KNL, AVX512 (TACC-Stampede 2)**	68	262.1 ± 22.1			20
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2)**	48	50.3 ± 0.3			12
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2)	48	31.2 ± 0.2			8
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2)	80	19.2 ± 1.2			11
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC)	32	90 ± 1.6	332 ± 50	124 ± 25	27
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC)	56	46.9 ± 0.6	376 ± 2	204 ± 3	11

- We need bigger input
- Graviton 3 is fastest in ARM Camp, 18% slower than Stampede 2 (Skylake-X)

Al-Benchmark-Alpha (Tensorflow)

 AI-Benchmark-Alpha includes multiple machine learning tasks utilizing deep neuron networks. Tests includes classification, image to image mapping, image segmentation, image inpainting, sentence sentiment analysis and text translation.

- It is relatively light-weight
- Utilize Tensorflow for computation



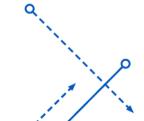
Al-Benchmark-Alpha (Tensorflow)

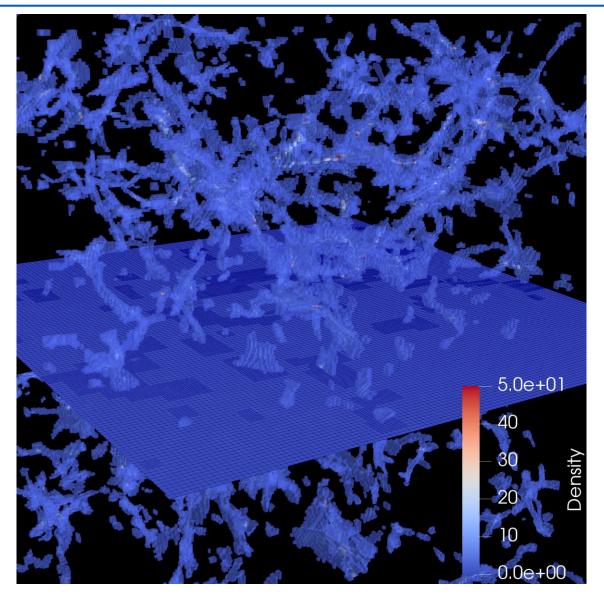
	<u> </u>		\	\		0	
		Larger Better	Larger Better	Larger Better	Power,		
CPU/System	Cores	Al Score	Inference Score			Al Score per W	Ν
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami)	48	1034 ± 3	535 ± 2	499 ± 2	111 ± 7	9.4 ± 0.6	20
ARM Amazon Graviton 2, Neoverse N1 (AWS)	48	3030 ± 12	1676 ± 7	1355 ± 6			12
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	48	4581 ± 12	2407 ± 10	2174 ± 8			11
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	64	4850 ± 31	2708 ± 21	2143 ± 13			20
ARM Ampere Altra, Neoverse N1 (Azure)	48	3177 ± 15	1803 ± 10	1375 ± 6			11
ARM Ampere Altra, Neoverse N1 (Azure)	64	3214 ± 20	1977 ± 15	[1238 ± 6	270*	11.9	20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse)	128	2696 ± 17	1761 ± 14	936 ± 9			11
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil)	128	3079 ± 26	1992 ± 16	1087 ± 13			11
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2)	48	3606 ± 20	2292 ± 18	[1314 ± 4			11
x86 Intel Xeon Plat. 8380, Ice Lake, AVX512 (TACC-Stampede 2)	80	8805 ± 27	3725 ± 20	📕 5081 ± 14			11
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC)	32	3233 ± 253	1941 ± 165	[1292 ± 88	403 ± 14	8 ± 0.5	11
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC)	56	10197 ± 53	a 4398 ± 31	📕 5799 ± 29	543 ± 33	18.9 ± 1.2	12
x86 Intel Xeon Gold 6130, NVIDIA V100x2 (UB-HPC)	32	32628 ± 433	1 5656 ± 278	16 972 ± 163	379 ± 34	86.8 ± 8.3	11
x86 Intel Xeon Gold 6330, NVIDIA A100x2 (UB-HPC)	56	59323 ± 378	29691 ± 290	29631 ± 152	561 ± 69	107.2 ± 13.6	11

- NVIDIA GPU A100x2 is the fastest
- Intel Ice Lake show fastest performance among CPUs and 4.2 times slower than V100 GPU
- ARM Graviton 3 is second fastest CPU outperformed only by Intel Icelake X
- ARM Graviton 2 and Ampre Alta show results comparable to older x86

OpenFOAM: Toolbox for numerical solvers (CFD)

- OpenFOAM is a library and collection of applications for the numerical solution of PDE. Used often in computation fluid dynamics.
- Test case incompressible airflow around motorcycle
- Application computational characteristics:
 - Unstructured grid

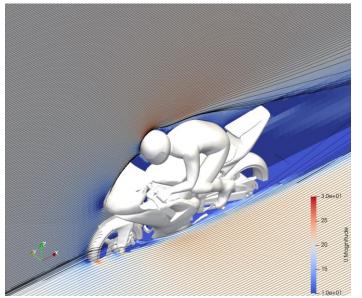


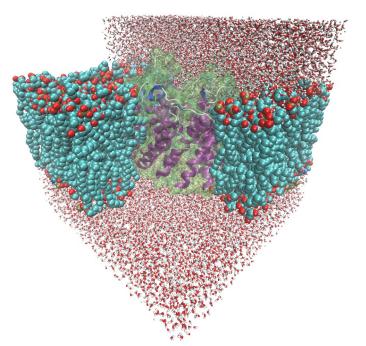

OpenFOAM

						0
					Energy	
	Wall Clock Time,	Meshing Time,	Solver Time,		Efficiency, Jobs	
Cores	Minutes	Minutes	Minutes	Power, W	per kWh	Ν
48	28.4 ± 0.9	14.6 ± 0.9	12.4 ± 0.1	110 ± 7	<u>19</u> .3 ± 1.6	21
48	22.4 ± 0.3	8.5 ± 0.1	10.9 ± 0.2	111 ± 7	24.1 ± 1.6	21
48	11.9 ± 0.3	3.5 ± 0.2	8 ± 0.1			10
48	7.1 ± 0.2	2.2 ± 0.2	4.7 ± 0.0			5
64	6.8 ± 0.1	2.2 ± 0.1	4.4 ± 0.1			20
48	11.1 ± 0.2	3.2 ± 0.2	7.6 ± 0.1			10
64	10.9 ± 0.4	3.2 ± 0.2	7.2 ± 0.2	270*	20.4	20
128	9.5 ± 1.9	5.6 ± 1.4	3.2 ± 1.1			20
128	6.6 ± 0.2	3.1 ± 0.5	2.9 ± 0.5			19
48	10.7 ± 0.4	3.7 ± 0.3	6.4 ± 0.1			10
80	6.8 ± 0.3	2.6 ± 0.2	3.7 ± 0.3			20
32	13.2 ± 0.8	4.1 ± 0.4	7.7 ± 0.1	375 ± 35	12.3 ± 1.0	23
56	8.9 ± 0.5	2.8 ± 0.3	4.7 ± 0.2	505 ± 34	13.4 ± 0.9	20
	48 48 48 64 48 64 128 128 48 80 32	CoresMinutes48 28.4 ± 0.9 48 22.4 ± 0.3 48 11.9 ± 0.3 48 7.1 ± 0.2 64 6.8 ± 0.1 48 11.1 ± 0.2 64 10.9 ± 0.4 128 9.5 ± 1.9 128 6.6 ± 0.2 48 10.7 ± 0.4 80 6.8 ± 0.3 32 13.2 ± 0.8	CoresMinutesMinutes48 28.4 ± 0.9 14.6 ± 0.9 48 22.4 ± 0.3 8.5 ± 0.1 48 11.9 ± 0.3 3.5 ± 0.2 48 7.1 ± 0.2 2.2 ± 0.2 64 6.8 ± 0.1 2.2 ± 0.1 48 11.1 ± 0.2 3.2 ± 0.2 64 10.9 ± 0.4 3.2 ± 0.2 64 10.9 ± 0.4 3.2 ± 0.2 128 9.5 ± 1.9 5.6 ± 1.4 128 6.6 ± 0.2 3.1 ± 0.5 48 10.7 ± 0.4 3.7 ± 0.3 80 6.8 ± 0.3 2.6 ± 0.2 32 13.2 ± 0.8 4.1 ± 0.4	CoresMinutesMinutesMinutes48 28.4 ± 0.9 14.6 ± 0.9 12.4 ± 0.1 48 22.4 ± 0.3 8.5 ± 0.1 10.9 ± 0.2 48 11.9 ± 0.3 3.5 ± 0.2 8 ± 0.1 48 7.1 ± 0.2 2.2 ± 0.2 4.7 ± 0.0 64 6.8 ± 0.1 2.2 ± 0.1 4.4 ± 0.1 48 11.1 ± 0.2 3.2 ± 0.2 7.6 ± 0.1 64 10.9 ± 0.4 3.2 ± 0.2 7.2 ± 0.2 128 9.5 ± 1.9 5.6 ± 1.4 3.2 ± 1.1 128 6.6 ± 0.2 3.1 ± 0.5 2.9 ± 0.5 48 10.7 ± 0.4 3.7 ± 0.3 6.4 ± 0.1 80 6.8 ± 0.3 2.6 ± 0.2 3.7 ± 0.3 32 13.2 ± 0.8 4.1 ± 0.4 7.7 ± 0.1	CoresMinutesMinutesMinutesPower, W 48 28.4 ± 0.9 14.6 ± 0.9 12.4 ± 0.1 110 ± 7 48 22.4 ± 0.3 8.5 ± 0.1 10.9 ± 0.2 111 ± 7 48 22.4 ± 0.3 8.5 ± 0.1 10.9 ± 0.2 111 ± 7 48 11.9 ± 0.3 3.5 ± 0.2 8 ± 0.1 110 ± 7 48 7.1 ± 0.2 2.2 ± 0.2 4.7 ± 0.0 111 ± 7 48 7.1 ± 0.2 2.2 ± 0.2 4.7 ± 0.0 111 ± 7 48 11.1 ± 0.2 3.2 ± 0.2 7.6 ± 0.1 111 ± 0.2 64 10.9 ± 0.4 3.2 ± 0.2 7.6 ± 0.1 111 ± 0.2 128 9.5 ± 1.9 5.6 ± 1.4 3.2 ± 1.1 1128 128 6.6 ± 0.2 3.1 ± 0.5 2.9 ± 0.5 111 ± 0.2 48 10.7 ± 0.4 3.7 ± 0.3 6.4 ± 0.1 110 ± 1.2 80 6.8 ± 0.3 2.6 ± 0.2 3.7 ± 0.3 375 ± 35 32 13.2 ± 0.8 4.1 ± 0.4 7.7 ± 0.1 375 ± 35	Wall Clock Time, MinutesMeshing Time, MinutesSolver Time, MinutesEfficiency, Jobs per kWh48 28.4 ± 0.9 14.6 ± 0.9 12.4 ± 0.1 110 ± 7 19.3 ± 1.6 48 22.4 ± 0.3 8.5 ± 0.1 10.9 ± 0.2 111 ± 7 24.1 ± 1.6 48 11.9 ± 0.3 3.5 ± 0.2 8 ± 0.1 1 24.1 ± 1.6 48 7.1 ± 0.2 2.2 ± 0.2 4.7 ± 0.0 1 1 64 6.8 ± 0.1 2.2 ± 0.2 4.7 ± 0.0 1 1 48 11.1 ± 0.2 3.2 ± 0.2 7.6 ± 0.1 1 1 64 10.9 ± 0.4 3.2 ± 0.2 7.2 ± 0.2 270^* 20.4 128 9.5 ± 1.9 5.6 ± 1.4 3.2 ± 1.1 1 1 128 6.6 ± 0.2 3.1 ± 0.5 2.9 ± 0.5 1 1 48 10.7 ± 0.4 3.7 ± 0.3 6.4 ± 0.1 1 1 80 6.8 ± 0.3 2.6 ± 0.2 3.7 ± 0.3 375 ± 35 12.3 ± 1.0

- Graviton 3 is fastest in ARM Camp, comparable to modern x86 and faster than older generations
- Mashing is fastest in Graviton 3
- OpenFOAM doesn't scale well within node. Possibly saturated memory bandwidth earlier.

Enzo: Astrophysics and Cosmology


- Enzo is an Adaptive Mesh Refinement Code for Astrophysics
- Application computational characteristics:
 - Unstructured grid
 - Adaptive Mesh Refinement
- Test case: cosmology simulation that simulates reionization using the ray tracing radiation transfer method with radiating star particles and a Haardt & Madau background.


Enzo: Astrophysics and Cosmology

				Energy Efficiency,	
CPU/System	Cores	Wall Clock Time, Minutes	Power, W	Jobs per kWh	Ν
ARM Fujitsu A64FX, SVE 512b (SBU-Ookami, GCC)	48	115.7 ± 17.7	112 ± 7	4.7 ± 0.5	10
ARM Amazon Graviton 2, Neoverse N1 (AWS)	48	23.6 ± 1.1			12
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	48	17 ± 1.2			11
ARM Amazon Graviton 3, Neoverse V1, SVE 256b (AWS)	64	13.2 ± 0.7			20
ARM Ampere Altra, Neoverse N1 (Azure)	48	21 ± 1.0			11
ARM Ampere Altra, Neoverse N1 (Azure)	64	15.9 ± 0.8	270*	14	20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (PSC-Bridges-2)	128	7.1 ± 0.4			20
x86 AMD EPYC 7742 Zen2(Rome), AVX2 (SDSC Expanse)	128	6.6 ± 0.4			20
x86 AMD EPYC 7763 Zen3(Milan), AVX2 (Purdue Anvil)	128	6.9 ± 0.3			20
x86 Intel Xeon Phi 7250, KNL, AVX512 (TACC-Stampede 2)	68	14.7 ± 0.3			20
x86 Intel Xeon Plat. 8160, Skylake-X, AVX512 (TACC-Stampede 2	48	4.2 ± 0.1			20
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC)	32	4.8 ± 0.3	338 ± 31	37.1 ± 3.9	50
x86 Intel Xeon Gold 6130, Skylake-X, AVX512 (UB-HPC)	32	25.8 ± 0.9	379 ± 26	6.2 ± 0.4	11
x86 Intel Xeon Gold 6330, Ice Lake, AVX512 (UB-HPC)	56	15.5 ± 0.6	559 ± 34	6.9 ± 0.4	11

- Failed to compile enzo on intel Ice Lake, Skylake binary also failed.
- Graviton 3 is fastest in ARM Camp, still significantly slower than x86 counterparts (2.5 to 4.0 times)

Conclusions

- The building and compiling experience on ARM platforms is very similar to that of traditional HPC systems
- As tested by HPCC benchmark, numerical libraries implementing linear algebra and FFT routines support ARM CPUs well and the latter exhibit a solid performance.
- ARM machines shows good performance in Gromacs, OpenFOAM, Tensorflow and NWChem applications.
- The ARM performance is comparable to x86 counterparts, and they often outperform previous generations of x86 CPUs (largely Amazon Graviton3).
- In ENZO, Amazon Graviton3 and Ampere Altra are within the x86 systems performance
- Fujitsu A64FX and Ampere Altra are more energy efficient in GROMACS, NWChem and OpenFOAM than x86 CPUs.
- In cases where GPU performance was tested, the GPU systems showed the fastest speed and the highest energy efficiency.
- Compiler and libraries can greatly affect the simulation speed and energy efficiency.
- Intel Skylake-X is a very robust architecture for scientific calculations, more than five years later since the initial release, it still competes well with modern CPUs.
- From the performance, energy efficiency and software building point of view as of now for all tested applications, modern ARM CPUs provide a viable alternative to their x86 counterparts and not only as a cheaper option for the GPU gateway (look at one with SVE support for future support).

Acknowledgements

NSF OAC Awards: 1927880 and 2137603

- This work is supported by the National Science Foundation under awards OAC 1927880 and 2137603.
- This work used compute resources at Stony Brook University, SUNY UB CCR, the XSEDE/ACCESS (CCR120014) and CloudBank.

tony Brook University

UB Slurm Simulator

Center for Computational Research