
CUG 2023

Harold Longley

ADVANCED TOPICS FOR CRAY SYSTEM
MANAGEMENT FOR
HPE CRAY EX SYSTEMS

CUG 2023

AGENDA

TUNING COMPUTE NODES

SYSTEM MANAGEMENT HEALTH

MONITORING TOOLS

ANSIBLE BEST PRACTICES

HPE CRAY EX SYSTEM OVERVIEW

CUG 2023

SYSTEM ADMIN TOOLKIT

TROUBLESHOOTING BOOT FAILURES

COLLECTING DATA FOR HPE SERVICE

2

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 3

• CSM Architecture
• HPE Cray EX Hardware
• Networks

HPE CRAY EX SYSTEM OVERVIEW

CUG 2023 4

CSM ARCHITECTURE

CUG 2023 5

Resilient, elastic, scalable systems management solution designed using extensible microservices cloud stack

CUG 2023

Manage and extend Exascale supercomputer system management capabilities
HPE CRAY SYSTEM MANAGEMENT FOR EXASCALE SUPERCOMPUTERS

Powerful
Comprehensive set of
tools you need to
manage all aspects of
your Cray EX
Supercomputer

Productive
Designed to
maximize productivity
of your HPC system,
automate actions, and
optimize running
costs

Scalable
Manage Exascale
systems with
thousands of nodes

Flexible
Enable cloud-like
secure multitenant
operations with
extensible
microservices APIs

Secure
Support customizable
role-based access
control for systems
management
administration

Proven
Used by customers
globally with large
supercomputing
systems

CLI

Systems Administration & Automation

API

6

CUG 2023

HPE CRAY SYSTEM MANAGEMENT SOLUTION OVERVIEW

Infrastructure Services (Hardware)

Storage Telemetry Slingshot Compute

Managed Compute Nodes

HPE Cray
Operating

System

Management
Services

Node Bootstrap

Configuration
Management

Image
Management

Monitoring

Utility
Storage

Slingshot
Management

Hardware
Inventory

Administrative
Control

Management
APIs

Managed
Services

User Access

Content
Projection

Workload
Management

K
ubernetes

• Slurm Workload Manager
• Altair® PBS Professional®

• User Access Nodes (UAN) for
login, compilation and job
submission; runs HPE Cray
Programming Environment

• Containerized Option - User
Access Instances

• Projects read-only images
using Data Virtualization
Service transport

7

Manage Exascale Supercomputers to deliver optimal performance for HPC workloads

CUG 2023

HPE CRAY SYSTEMS MANAGEMENT COMPONENTS

8

User
User compiles (HPE Cray Programming
Environment) and submits & monitors
jobs using Workload Managers like
SLURM, Altair PBS Pro
User gets results, analyzes & stores

User Access

Visualization Nodes
Data Movers & Gateways

Workload Managers

HPC SlingShot Fabric
Compute Nodes

Pre/Post Data Processing

With CPU, GPU

System Management
Infrastructure

Human and
programmatic

system
administration

Provision HPC resources, monitor & diagnose
health of system, get system monitoring status,
and analyze status, apply updates and upgrades

Master
Nodes

Worker
Nodes

running

microservices

Utility
Storage
Nodes

Node Bootstrap

Configuration Management

Image Management

Monitoring

Backup & Restore

Slingshot Management

Hardware Inventory

Administrative Control

Kubernetes Cluster

Management MicroservicesManaged Infrastructure

Data
Virtualization

Service

8

System management software designed for Exascale HPC and beyond

CUG 2023

HPE CRAY SYSTEM MANAGEMENT UNIQUE ATTRIBUTES

HPE Cray EX Supercomputer &
HPE Cray Supercomputer with HPE Slingshot

Exascale and beyond scalable hardware architecture and infrastructure

Key Capabilities
• Comprehensive monitoring and management of all aspects of the system:

CPU/GPU, network (integrated Cray Slingshot Fabric Manager), power
management and monitoring combined with provisioning for operational
efficiency
• REST APIs & standard systems management protocols enable full

interoperability and extensibility of monitoring, management, and automation
capabilities
• Infrastructure-as-code: Login nodes as dynamic containers (User Access

Instances), workload managers as containerized services
• Built from open-source software components, is open-source software

Unique Attributes
• Kubernetes platform for running system management and sysadmin tooling

enabling infrastructure-as-code & CI/CD for jobs, tenants, and environments
• Declarative and dynamic inventory and state management represents single

source of truth (configurations and artifacts), continuous delivery
• aaS Security with auditable access to all APIs
• Supports scalable deployment with massive system extensibility

9

CUG 2023

HPE CRAY SYSTEM MANAGEMENT IS ELASTIC AND RESILIENT

• Flexible Deployment Options
• Management Kubernetes cluster scales with more

nodes, CPUs, memory, network, and storage
– Proven to scale from small number of nodes to more than 50

worker nodes for very large customer deployments

• Elasticity
• Services are continuously checked and updated to

match state
• When nodes are added or subtracted or the load

suddenly changes, configuration is automatically
modified
– Autoscale Horizontally and Vertically within constraints
– When the system is under-scaled, microservices fail

according to defined priorities

• Resiliency
• Microservices are active/active HA

– Separate gateways and individual load balancers
– Multiple Pods
– Rolling deployments and rollbacks

• Managed nodes running custom app services have HA

Co
Automatic

Redfish
Discovery

Blade and
Cabinet
Control

Power
Control

Logical Node
Grouping

Automatic DNS and
DHCP with Geolocation

Fast System Boot
with PXE and DVS

Boot Parameter
Management

On-system Compute
Image Customization

On-Demand
Interactive Access

Containers

Scalable Configuration
Management

LDAP integration for
User/Group Mapping

Cooperative
Multitenancy / workload

scheduling

Flexible Mapping of Boot
Configuration to Node Groups

SPIFFE for
Attestation

Compute Image
Registry

Interactive Services

Infrastructure Services

Hardware Platform Management

K8s Master
Nodes

K8s Worker
Nodes

Common footprint
• 3 Kubernetes Master nodes for active failover
• 4+ K8s Worker nodes
• 3+ Utility storage nodes for state abstraction

10

• In-band LDMS (Lightweight
Distributed Metric Service) and
out of band telemetry

• Access metrics and alerts via GUI,
CLI, REST APIs

• Customize system telemetry and
alerts to best suit your needs

• Set up automatic reactions to
events to prevent failures

WLM – PBS Pro & Slurm
Events and Telemetry

Fabric – Slingshot
Events and Telemetry

HPE Cray EX cabinets
Events and Telemetry

Syslog

Nodes
CPU, Memory, Disk

ClusterStor
Storage and Filesystems

CDU
Events and Telemetry

Power and Heartbeat
Monitoring

HPE Cray Systems management offers fine-grained centralized monitoring and management of your
Exascale HPC systems to keep it performing at its best

CUG 2023

SCALABLE MONITORING AND MANAGEMENT

Data
Pipeline

Persistent
Storage

K
a
f
k
a

Grafana

Kibana

11

CUG 2023

HPE CRAY SYSTEM MANAGEMENT DESIGNED FOR AS-A-SERVICE SECURITY

• CSM supports human and non-human IAM (Identity and Access
Management)

• Fully supported custom RBAC (Role Based Access Control)
• No limits to the group or role structure, infinite customization
• Control managed entities with a URL
• Programmatic interface for change control after upgrades, patches,

etc.
• Multiple identity providers
• Credentials management
• Certificate management
• Mesh network encryption (TLS) and access policies
• DNS and external zone transfers
• Non-root users
• User traffic isolation - necessary for multitenancy
• Node attestation

• SPIFFE (Secure Production Identity Framework For Everyone)
provides a secure identity with X.509 certificate to every workload

• SPIRE (SPIFFE Runtime Environment) manages platform and
workload attestation, has API, and handles certificate issuance and
rotation

12

CUG 2023

CRAY SYSTEM MANAGEMENT EXTENSIBILITY FOR SYSTEM OPERATIONS

• Nearly 100% of the systems management functionality is exposed via API
• Machine readable Swagger API definitions are available for all
• Cray CLI– a tool for discovering and implementing the APIs
• System Administration Toolkit (SAT) – a CLI tool covering more common

workflows spanning APIs

API-First Development

• Customers are developing their own APIs to extend functionality
• Customers can pick and choose which HPE provided aspects to use or replace
• Enables granular deployment elasticity

• Not limited because of a monolithic application design
• “[this] functionality should scale and failover in [these] ways”

• Can be updated continuously with high confidence

Loosely-coupled Microservices

HPE Cray System Management

Loosely-coupled Microservices

Extended
Microservices

API-First Development

CLI Access

13

CUG 2023

BOOTING IMMUTABLE IMAGES

Image
RecipeImage

RecipeImage
Recipe

IMS

BSS
network boot and cloud-init

Both images and recipes are delivered
as part of the installation media
• BSS: Boot Script Service
• BOS: Boot Orchestration Service
• BOA: Boot Orchestration Agent
• CFS: Configuration Management

Service
• CPS: Content Projection Service
• DVS: Data Virtualization Service
• IMS: Image Management Service

Object Store

Immutable
Squashfs

Image

Kernel &
Initrd

Diskless
HPC Node

CFSConfigure and Build

BOS/BOA HTTPS

CPS
HTTPS

DVS

14

Essential toolset for HPC organizations developing HPC code in-house.
HPE CRAY PROGRAMMING ENVIRONMENT

CUG 2023

Fully integrated software suite with compilers, tools,
and libraries designed to increase programmer
productivity, application scalability, and performance.

Complete
toolchain

Scalable

ProgrammableCross
platform

Holistic
support

From HPC experts
for HPC experts

Application
information

Queries for
application

optimization

Compiler
information

Performance
analysis

Export/import
program
analyses

Debug
information

15

HPE Cray Programming Environment
COMPREHENSIVE TOOLCHAIN

CUG 2023

Software

Application Development
• C/C++ and Fortran compilers
• I/O, scientific, and math libraries

• HPE Cray MPI
• Machine learning plug-ins

Performance analysis and
Optimization tools
• Whole program profiling

and visualization
• HPC optimization tool for

scale, parallelization, memory usage,
bandwidth

Debugging
• Stack tracing at scale
• Parallelized gdb for scale

• Compare two versions
of an application

• Manage core files at scale

• Memory debugging at scale

16

MANAGEMENT NODES

CUG 2023

• etcd

• Mirrored OS
• Kubernetes Master

• Scratch Space

• Mirrored OS
• Kubernetes Worker

• Ceph OSDs

• Mirrored OS
• Ceph-mon
• Ceph-mds
• Rados-gw (object)

Master Nodes Worker Nodes Utility Storage Nodes

High Speed Network (HSN) 2 per node

Node Management Network
1 per node (over bonded NICs)

Hardware Management Network 1 per node (over bonded NICs)

Storage Network
1 per node

17

CUG 2023

COMMON COMMANDS
Command Description

kubectl CLI for Kubernetes cluster's control plane, using the Kubernetes API
• jsonpath - kubectl uses JSONPath expressions to filter on specific fields in the JSON object and format

the output

ceph Control utility for manual deployment and maintenance of a Ceph cluster

cephadm cephadm - deploys and manages a Ceph cluster

cray CLI framework integrates system management REST APIs into easily usable commands
• Outputs data in JSON, YAML, TOML

sat CLI interacts with the REST APIs of many services to perform more complex system management tasks
• Outputs data in JSON, YAML, TOML

fmctl CLI for Slingshot fabric management

stt CLI for Slingshot Topology Tool

jq command works on JSON data to slice and filter and map and transform structured data like
sed, awk, grep and friends let you play with text

Linux tools systemctl, journalctl, pdsh/dshbak, curl

18

HPE CRAY EX HARDWARE

CUG 2023 19

CUG 2023

FLEXIBLE COMPUTE INFRASTRUCTURE

Scaling building blockHPE Cray EX liquid-cooled optimized cabinet (Olympus)

• Up to 64 compute blades, and 512 processors per rack
• Flexible bladed architecture supports multiple generations

of CPUs, GPUs, and interconnect
• Cableless interconnect between switches

and nodes inside chassis
• 100% direct liquid-cooling – no fans
• Up to 400KW capability per rack

• Designed to provide an optimal solution for tens to hundreds
of thousands of nodes, scales to hundreds of cabinets

• CEC (Cabinet Environment Controller)
• CMM (Chassis Management Module)
• CDU (Coolant Distribution Unit) supports up to 4 cabinets

Choice of blade types for optimal density, efficiency, and cost per compute node

20

CUG 2023

AIR-COOLED CABINETS

• Standard 19” cabinet
• Air-cooled, but with optional liquid-cooled door
• One or more cabinets with Management infrastructure nodes
• One or more cabinets with high-performance and capacity Storage

• One or more cabinets with commodity compute nodes (CPU and GPU)

• PDU
• Management network switches
• Slingshot network switches

HPE Cray standard air-cooled cabinet (River)

Management infrastructure, high-performance parallel filesystem, commodity compute nodes

21

CUG 2023

HPE CRAY COMPONENT NAMES (XNAMES)
Component Xname Scheme Examples Note

Cabinet x# x1000 , x3000 Cabinets don’t have an X-Y grid

CDU d# d0 Up to 4 liquid-cooled cabinets per CDU

Chassis x#c# x1000c3,
x3000c0

Air-cooled cabinets don’t have chassis but for consistency
always use c0 for chassis 0

Compute Blade Slot x#c#s# x1000c3s4,
x3000c0s22

In air-cooled cabinets the slot is the lowest rack U height
occupied by a server

Node card controller x#c#s#b# x1000c3s4b1,
x3000c0s22b2

1st example - Node card 1 of blade 4 in chassis 3
2nd example - BMC in air-cooled 4 node server

Node x#c#s#b#n# x1000c3s4b1n1,
x3000c0s22b2n0

Nodes are dependent on their BMCs

Processor x#c#s#b#n#p# x1000c3s4b1n1p0,
x3000c0s22b2n0p1

Processor sockets are zero-based in xnames

Slingshot Switch x#c#r# x1000c3r7,
x3000c0r42

Air-cooled Slingshot switches use rack “U” height just like
air-cooled servers

Ethernet Switch x#c#w# d0w1, x3000c0w38 CDU, LeafBMC, and Leaf switches extend SMNet

22

• Management
• Customer Access
• Slingshot

NETWORKS

CUG 2023 23

SYSTEM MANAGEMENT NETWORK (SMNET) OVERVIEW

CUG 2023

• Standard Ethernet fabric directly connected to every node and controller in the system
• Leaf/Spine topology implemented with commodity switches
• Divided into multiple “Virtual Networks” implemented with VLANs and Access Control Lists

Virtual Network Connections

Node Management Network (NMN) • All Non-Compute Nodes (NCNs)
• Air-cooled Compute Nodes
• Liquid-cooled Compute Nodes

Hardware Management Network (HMN) • Air-cooled Nodes (Compute and NCN) BMCs
• All Slingshot Switch Controllers (sC)
• Liquid-cooled Node Controllers (nC)
• Liquid-cooled Chassis Controllers (cC)
• Air-cooled Hardware Controllers (smart PDUs, CMCs, etc)
• SMNet switch management ports

Customer Access Network (CAN) • Upon upgrade to CSM 1.2, the old CAN will be split to create CMN and
(either CAN or CHN) – Allows only user traffic and CAN API gateway

Customer Management Network (CMN) • Allows administrative access to nodes and CMN API gateway

Customer High Speed Network (CHN) • Allows user access to application nodes, UAI, compute nodes, and CHN
API gateway from customer site via the HSN

24

CUG 2023

CUSTOMER ACCESS OVER CMN, CAN, CHN

CMN

CHN

CHN

CHN

CAN

CHN

CAN

NMN

NMN

25

CUG 2023

CSM BIFURCATED CAN HOSTNAMES
Old Name (CSM 1.0) New Name (CSM 1.2 and 1.3)

auth.shasta.dev.cray.com auth.cmn.shasta.dev.cray.com

nexus.shasta.dev.cray.com nexus.cmn.shasta.dev.cray.com

grafana.shasta.dev.cray.com grafana.cmn.shasta.dev.cray.com

prometheus.shasta.dev.cray.com prometheus.cmn.shasta.dev.cray.com

alertmanager.shasta.dev.cray.com alertmanager.cmn.shasta.dev.cray.com

vcs.shasta.dev.cray.com vcs.cmn.shasta.dev.cray.com

kiali-istio.shasta.dev.cray.com kiali-istio.cmn.shasta.dev.cray.com

s3.shasta.dev.cray.com s3.cmn.shasta.dev.cray.com

sma-grafana.shasta.dev.cray.com sma-grafana.cmn.shasta.dev.cray.com

sma-kibana.shasta.dev.cray.com sma-kibana.cmn.shasta.dev.cray.com

api.shasta.dev.cray.com
api.cmn.shasta.dev.cray.com
api.chn.shasta.dev.cray.com
api.can.shasta.dev.cray.com

• User and administrative traffic segregation so
URLs for certain services now include the
network path in the fully qualified domain name

• Access to administrative services is restricted to
the Customer Management Network (CMN)

• API access is available via the Customer
Management Network (CMN), Customer Access
Network (CAN), or Customer Highspeed
Network (CHN)

26

CUG 2023

Dragonfly Topology
• Provides All-to-All connectivity across the fabric
• Reduces costs of network hardware
• Efficient and consistent connectivity

Link Types
• Edge

– Nodes are connected directly to Switches
–These are called “Edge” or “L0” Links

• Local
– Groups of Switches connected all-to-all
–All switches within a group have links between them
–These are called “Local” , “Group” or “L1” Links

• Global
– Links connect different groups together
– These are called “Global” or ”L2” Links

SLINGSHOT DRAGONFLY TOPOLOGY

Edge
“L0”

Local
“L1”

Global
“L2”

27

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 28

• Version Control Service (VCS)
• Configuration Framework Service (CFS)
• Ansible best practices
• Ansible profiling

ANSIBLE BEST PRACTICES

CUG 2023 29

CUG 2023

• Version Control Service (VCS)
• Manages configuration data and content

– Compute image configuration YAML files

• Gitea server holds configuration content

• Configuration Framework Service (CFS)
• Manages the launch of configuration actions
• Does git-clone of configuration data and content from VCS
• Launches Ansible Execution Environment (AEE) which runs Ansible playbook for target inventory

– Either hostnames of nodes for node personalization or reconfiguration
– Or IMS build environment for image customization

• Aggregates status to show how many targets passed/failed the Ansible run

CONFIGURATION WITH CFS AND VCS

30

• Stores Ansible to apply to nodes at lifecycle events
• All Ansible in git repositories with branches to allow site customization
• Ordered configuration management across multiple repositories
• CFS sessions as part of pre-boot Image Customization as well as post-boot Node Personalization

USING GIT FOR MANAGING CFS CONFIGURATION

Layer1 CSM

Layer2 SMA

Layer3 COS

CUG 2023 31

CUG 2023

ncn# git clone https://api-gw-service-nmn.local/vcs/cray/uan-config-management.git
Username for 'https://api-gw-service-nmn.local': crayvcs
Password for 'https://crayvcs@api-gw-service-nmn.local’:

ncn# cd uan-config-management
ncn# git checkout cray/uan/2.4.3
ncn# git pull
ncn# git checkout -b integration && git merge cray/uan/2.4.3

ncn# vi <file(s) to be edited>
ncn# git mv <file(s) to be renamed>
ncn# git rm <file(s) to be removed>

ncn# git status
ncn# git diff
ncn# git add <file(s) in repo that were added or edited>
ncn# git status

ncn# git commit -m "<some message about the change>"

ncn# git push --set-upstream origin integration

ncn# git rev-parse --verify HEAD
ecece54b1eb65d484444c4a5ca0b244b329f4667

SAMPLE GIT SEQUENCE

Git commit ID to be used on CFS layer

Checkout from VCS

Make local branch

Change something

Compare and Update

Describe change

Push changes to git

32

CUG 2023

• Provides a configuration framework for HPE and customers which integrates industry-standard
configuration management tooling (Ansible) with Cray services

• Flexible workflow
• Pre-boot image customization
• Post-boot node personalization

• Provides dynamic inventory plugins to target Cray nodes for configuration
• CFS is integrated with other Cray Management Services:

• Image Management Service (IMS)
• Nexus Repository Manager
• Version Control Service (VCS)
• Boot Orchestration Service (BOS)
• Artifact Repository / S3

• Configurations are applied in layers
• Configurations are processed in batches

CONFIGURATION FRAMEWORK SERVICE

33

CUG 2023

ncn# cray cfs configurations describe compute-slurm-cpe-21.6.5 --format json
{

"lastUpdated": "2021-06-24T18:58:25Z",
"layers": [

{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cos-config-management.git",
"commit": "97209cb3e6c128e0b8c1eaae0e683227c57910ee",
"name": "cos-integration-2.1.70",
"playbook": "site.yml"

},
{

"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/slurm-config-management.git",
"commit": "b302e1b672e27f74c36ceacfd2ed6bd50ed14c0a",
"name": "slurm-integration-0.1.3",
"playbook": "site.yml"

},
{

"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cpe-config-management.git",
"commit": "43f3a36bca35d693a583d1643fe1cebb0ccaf7fe",
"name": "cpe-integration-21.6.5",
"playbook": "pe_deploy.yml"

}
],
"name": " compute-slurm-cpe-21.6.5 "

}

CFS CONFIGURATIONS

34

CUG 2023

ncn# cray cfs components describe x1000c0s5b0n1 --format json
{
"configurationStatus": "configured",
"desiredConfig": " compute-slurm-cpe-21.6.5 ",
"enabled": true,
"errorCount": 0,
"id": "x1000c0s5b0n1",
"retryPolicy": 3,
"state": [
{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cos-config-management.git",
"commit": " 97209cb3e6c128e0b8c1eaae0e683227c57910ee",
"lastUpdated": "2021-11-17T18:44:41Z",
"playbook": "site.yml",
"sessionName": "batcher-f80ebbdb-c4ec-4025-8156-68205b22ccdf"

},
{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/slurm-config-management.git",
"commit": " b302e1b672e27f74c36ceacfd2ed6bd50ed14c0a",
"lastUpdated": "2021-11-17T19:47:29Z",
"playbook": "site.yml",
"sessionName": "batcher-b57c437f-33e9-46d7-9416-8c955f773504"

},
<< snip >>

{
"cloneUrl": "https://api-gw-service-nmn.local/vcs/cray/cpe-config-management.git",
"commit": " 43f3a36bca35d693a583d1643fe1cebb0ccaf7fe",
"lastUpdated": "2021-12-06T20:42:02Z",
"playbook": "pe_deploy.yml",
"sessionName": "batcher-bdea16db-dae5-4f7a-bffe-40f0a179d328"

}
],
"tags": {
"bos_session": "d5f69110-dca6-4ecb-890f-3622957589fe"

CFS COMPONENTS

The configuration for a component and whether it is enabled are set by BOS
according to the sessiontemplate
If configuration fails it will be automatically retried up to the number specified in
the retryPolicy

To see configuration (ansible) output
check the cfs sessions to find
configuration jobs and then check the
logs of the ansible-N pods within those
jobs.

35

CUG 2023

ncn# cray cfs sessions describe batcher-080ba574-0a99-409b-a639-a45c73c25e63 --format json
{
"ansible": {
"config": "cfs-default-ansible-cfg",
"limit": "x3000c0s26b0n0",
"verbosity": 0

},
"configuration": {
"limit": "",
"name": "uan-config-2.0.0"

},
"name": "batcher-080ba574-0a99-409b-a639-a45c73c25e63",
"status": {
"artifacts": [],
"session": {
"completionTime": "2021-10-18T20:34:18",
"job": "cfs-e78738d3-99a9-4b73-bce1-a720b34a714d",
"startTime": "2021-10-18T20:31:15",
"status": "complete",
"succeeded": "true"

}
},
"tags": {
"bos_session": "bf88ad75-6a02-470c-85ca-4708a7f9fe0d"

},
"target": {
"definition": "dynamic",
"groups": null

}
}
ncn# kubectl logs -n services cfs-e78738d3-99a9-4b73-bce1-a720b34a714d-ps4ls
error: a container name must be specified for pod cfs-e78738d3-99a9-4b73-bce1-a720b34a714d-ps4ls, choose one of: [inventory ansible-0 ansible-1
ansible-2 istio-proxy] or one of the init containers: [git-clone-0 git-clone-1 git-clone-2 istio-init]

CFS SESSIONS

The limit shows which node(s) are
configured by each session

Kubernetes jobs control one or
more pods and the job name is
typically the start of the pod
name

Each layer will be executed by
a different container within the
cfs job or possibly a different
job

The containers names will have
the format ansible-N (e.g.,
ansible-0)

36

ncn# cray cfs options list --format json
{
"additionalInventoryUrl": "",
"batchSize": 25,
"batchWindow": 60,
"batcherCheckInterval": 10,
"defaultAnsibleConfig": "cfs-default-ansible-

cfg",
"defaultBatcherRetryPolicy": 1,
"defaultPlaybook": "site.yml",
"hardwareSyncInterval": 10,
"sessionTTL": "7d"

}

• Every 10 seconds the batcher checks for
components that need configuration

• Components (nodes) are assigned to a batch if:
• They need configuration
• They are not disabled
• They are currently not assigned to a batch

• Components are grouped according to their
desired state information.

• A new batch is created if
• no partial batches match the desired state
• all similar batches are full

• Batches are scheduled as CFS sessions when
either
• The batch is full
• The batch window time has been exceeded

CFS-BATCHER SCHEDULING RULES

CUG 2023 37

CUG 2023

ncn-m001:~ # kubectl logs -n services cray-cfs-batcher-5d58b8964c-tdsm2 -c cray-cfs-batcher
2021-09-16 09:19:54,225 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:20:54,910 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:21:15,163 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:21:25,250 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:22:15,759 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:23:26,546 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:23:26,547 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 60 seconds
2021-09-16 09:24:27,136 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:24:27,136 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 120 seconds
2021-09-16 09:26:28,170 - INFO - batcher.batch - Successfully submited 2 batches for configuration
2021-09-16 09:27:49,098 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:28:49,865 - INFO - batcher.batch - 2 batches/sessions have completed
2021-09-16 09:28:49,866 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 240 seconds
2021-09-16 09:29:50,468 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:32:52,036 - INFO - batcher.batch - Successfully submited 2 batches for configuration
2021-09-16 09:34:53,393 - INFO - batcher.batch - 2 batches/sessions have completed
2021-09-16 09:34:53,393 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 480 seconds
2021-09-16 09:42:57,206 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 09:44:28,008 - INFO - batcher.batch - 1 batches/sessions have completed
2021-09-16 09:44:28,008 - WARNING - batcher.batch - The 20 most recent configuration sessions have failed. Halting session creation for 960 seconds
2021-09-16 10:00:35,565 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 10:00:45,689 - INFO - batcher.batch - Successfully submited 1 batches for configuration
2021-09-16 10:02:26,775 - INFO - batcher.batch - 2 batches/sessions have completed
2021-09-16 10:02:26,775 - INFO - batcher.batch - A session has succeeded. Resuming normal operations

WHY ISN’T CFS RUNNING?

CFS has implemented a crash loop back off style behavior to avoid creating an infinite number of failed configuration sessions

If the last 20 CFS session have failed, then it will pause increasing intervals to allow the problems to be corrected

38

CUG 2023

• CFS uses Ansible for configuration management
• Create a configuration with one or more layers within a specific VCS git repository, and commit it to be executed

by Ansible
• Target a node, boot image, or group of nodes to apply the configuration
• Create a configuration session to apply and track the status of Ansible, applying each configuration layer to the

targets specified in the session metadata

• VCS is populated during software installation with Ansible code to configure each product
• Customers can write their own Ansible plays and roles to augment CFS configuration or implement new

features
• Ansible playbook best practices

– https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html

• Ansible Examples
– https://github.com/ansible/ansible-examples

WRITE ANSIBLE CODE FOR CFS

39

https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://github.com/ansible/ansible-examples

CUG 2023

• Playbook
• One or more plays

• Play
• Maps groups of hosts to tasks

• Task
• Sequence of actions performed against group of hosts

that match a pattern in the play

• Modules
• Large Ansible library of common code

– Manage basic system resources
– Send notifications

• Roles
• Abstraction for naming a group of things that perform

same function

• Separate code from data
• Jinja2 templates (code)
• Variables (data)

• Jinja2
• Python-based template engine
• Templates have placeholders for parameter values

which can be replaced with variables
• Data

• Facts
– Automatically available
– Discovered at run time

• Variables
– User-defined

ANSIBLE – TERMS

40

group_vars/
group1.yml # here we assign variables to particular groups
group2.yml

host_vars/
hostname1.yml # here we assign variables to particular nodes
hostname2.yml

site.yml # master playbook
roles/
common/ # this hierarchy represents a "role"
tasks/ #
main.yml # <-- tasks file can include smaller files if warranted

handlers/ #
main.yml # <-- handlers file

templates/ # <-- files for use with the template resource
ntp.conf.j2 # <------- templates end in .j2

files/ #
bar.txt # <-- files for use with the copy resource
foo.sh # <-- script files for use with the script resource

vars/ #
main.yml # <-- variables associated with this role

defaults/ #
main.yml # <-- default lower priority variables for this role

meta/ #
main.yml # <-- role dependencies

library/ # roles can also include custom modules
module_utils/ # roles can also include custom module_utils
lookup_plugins/ # or other types of plugins, like lookup in this case

fooapp/ # "" same kind of structure as "common" was above but for fooapp

• Each repository directory matches Ansible
documentation
• https://docs.ansible.com/ansible/2.9/user_guide/pla

ybooks_best_practices.html#content-organization
• The default playbook site.yml is found at the top

level, if it exists
• Ansible roles and variables are in their appropriately

named directories
• Inventory directories like `group_vars` and

`host_vars` may exist, but they are empty and left
for variable overrides and customizations as needed
by the customer

ANSIBLE CODE STRUCTURE

CUG 2023 41

https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/2.9/user_guide/playbooks_best_practices.html

CUG 2023

• Ansible expects that all tasks are idempotent
• (action performed only once, even if play is run more than once)
• Care should be taken to ensure that tasks prescribe the desired state of the running system, making changes

only when necessary
• See “Resource Model” at https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

• When modifying files on a running system
• Keep in mind that other services may access the file
• Take the appropriate measures to ensure the modifications do not interfere with other operations
• Leave a breadcrumb that the file is updated by an automated process

– The “insertbefore” or “insertafter” options in the Ansible “lineinfile” module are well-suited to help with this

• If you find that you are trying to do something that is difficult to achieve in a few simple steps
• It is likely that Ansible already has a module that provides the functionality
• Use existing Ansible modules rather than calling shell commands or scripts

ANSIBLE – BEST PRACTICES FOR PLAYBOOKS/ROLES

42

https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html

CUG 2023

• Ansible playbook can designate which node groups the various tasks and roles will run against
• This is designated using the `hosts` parameter
• Users can create additional sections that target other node types, or adjust the hosts that the included roles will

run against
• Can target multiple groups within a section of a playbook or specify complex targets, such as nodes that are in

one group and not in another group
– https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html#common-patterns

• Hosts can be in more than one group at a time if there are user-defined groups
– Ansible will run all sections that match the node type against the node

WRITE PLAYBOOKS FOR MULTIPLE NODE TYPES

43

https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html

CUG 2023

• Dynamic inventory generates Ansible hosts file with data from HSM
• Can target an HSM group
ncn# cray hsm groups list --format json | jq .[].label
”blue"
”green"

• Can target HSM-reported hardware roles and sub-roles
– “Compute”, “Management”, “Application”
– “Application_UAN”, “Management_Worker”, other Application subroles for the system
– Consult the cray-hms-base-config Kubernetes ConfigMap in the services namespace for a listing of the available roles and

sub-roles on the system
• During a CFS session, the dynamic inventory is generated and placed in the hosts/01-cfs-generated.yaml file

DYNAMIC CFS INVENTORY

44

CUG 2023

• Static inventory can target specific groups of nodes
• Good for testing configuration changes on a small scale in a configuration repository
ncn# mkdir -p hosts; cd hosts; cat > static <<EOF
[test_nodes]
x3000c0s25b0n0
EOF
ncn# cd ..; git add hosts/static
ncn# git commit -m "Added a single node to static inventory for test_nodes"
ncn# git push

• The process can be used to include any nodes in the system reachable over the Node Management
Network (NMN), which contains the public SSH key pair provisioned by the install process

• This inventory information will only be located in the repository to which it is added
–If the desired configuration contains multiple layers, use the additionalInventoryUrl option in CFS to provide

inventory information on a per-session level instead of a per-repository level

STATIC CFS INVENTORY

45

CUG 2023

• Use image customization to limit how many times a task is run and improve boot times
• Use image customization for configuration that is the same for all nodes of a type

• Before CSM 1.3 (or for small playbooks or one-off testing with CSM 1.3)
– Target a task to be run only when customizing image
when: "{{ cray_cfs_image | default(false) }}"

– Target a task to be run only on booted node during node personalization
when: "{{ not cray_cfs_image | default(false) }}”

• CSM 1.3 and later (better performance)
• Use the cfs_image host group to distinguish between image customization and node personalization
• Allows image customization to be identified in the hosts parameter
• Removes the need to evaluate conditionals
• Ensures that tasks are not accidentally running in both modes needlessly

• IMS image IDs are used as hosts and grouped according to input to the session creation
ncn# cray cfs sessions create --name example --configuration-name configurations-example
--target-definition image --target-group Compute IMS_IMAGE_ID

IMAGE CUSTOMIZATION

46

CUG 2023

• Import roles rather than playbooks
• Each time a new playbook starts, Ansible automatically gathers facts for all the systems it is running against
• This is not necessary more than once and can slow down Ansible execution

• Turn off facts that are not needed in a playbook by setting `gather_facts: false`
• If only a few facts are required, it is also possible to limit fact gathering by setting `gather_subset`

– For more information on `gather_subset`, see https://docs.ansible.com/ansible/latest/modules/setup_module.html

• Reducing fact gathering time is especially important when importing multiple playbooks from a top level
playbook
– Fact gathering will trigger for each imported playbook, potentially collecting the same information multiple times

• Use loops rather than individual tasks where modules are called multiple times
• Some Ansible modules will optimize the command, such as grouping package installations into a single

transaction https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

CFS PERFORMANCE AND SCALING TIPS

47

https://docs.ansible.com/ansible/latest/modules/setup_module.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

CUG 2023 48

• The group_by and add_host modules can both be used to dynamically generate new hosts groups for the Ansible
inventory
• These modules prove useful when hosts can be grouped according to a common property
• Then plays can be designed to only target that particular group.

– Grouping by operating system, hardware type, or a hardware property such as the presence of a GPU
• Ansible can then use these to skip roles and tasks more efficiently than if the when conditional is applied.

• group_by should be used when there are multiple named groups by which hosts can be grouped
-name: group by OS

hosts: all
tasks:

- name: Classify hosts by OS
group_by:

key: os_{{ ansible_facts['distribution'] }}

- name: centOS playbook
hosts: os_CentOS
tasks:
...

AVOID REPEATED CONDITIONALS WITH GROUP_BY

CUG 2023 49

• add_host is useful for cases where the property is true or false. It allows users to create a new group consisting of only
the hosts where the property is true
- name: group by a sample variable

hosts: all
tasks:
- name: Add all hosts where sample_var is true to the new Sample group
add_host:
name: '{{ inventory_hostname }}’
groups: sample_group

when: sample_var
- name: Sample playbook

hosts: sample_group
tasks:
...

• To target only a subset of a set of nodes, plays should use the following syntax
• This play is targeting only nodes in the sample group that are also in the Compute nodes group

– & takes the intersection of the Compute and sample_group groups
hosts: Compute:&sample_group

• To target a set of nodes except the ones in the new group, plays should use the following syntax
• This play is targeting Compute nodes that are not a part of the sample group

– ! negates the sample_group group, so that only Compute nodes that are not an image are targeted
hosts: Compute:!sample_group

AVOID REPEATED CONDITIONALS WITH ADD_HOST

CUG 2023 50

• Use include_* (dynamic re-use) to skip multiple tasks at once when using conditionals
• Ansible evaluates conditionals for every node in every task
• This includes when the conditional is applied to a block, or a role imported with roles: or the import_role task

– This is because these are static imports that are compiled at the beginning of the playbook, and the conditional is inherited
by every task in the role or block

– Evaluating these conditionals for each task may only take a second or two, but across the hundreds of tasks that might be
part of a playbook, this can add up to significant wasted time

• Instead use dynamic imports with the include_* tasks
– Because these are evaluated at runtime, a conditional can skip the import of the role or tasks entirely, and is only evaluated

once

• See the Ansible documentation on Conditionals with re-use and Re-using files and roles for more
information
• Dynamic re-use is not possible when importing playbooks, so instead consider using group_by rather than a

conditional static import

AVOID REPEATED CONDITIONALS WITH INCLUDE_*

https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html

CUG 2023 51

• BAD example: the role is imported statically and the when statement will be propagated down and
evaluated for each task in the role
• This wastes time by running the same check many times.
- name: Sample playbook
hosts: all
roles:
- {role: sample_role, when: cray_cfs_image}

• GOOD example: the role should be imported dynamically so that the when conditional is only evaluated
once
- name: Sample playbook
hosts: all
tasks:
- include_role:

role: sample_role
when: cray_cfs_image

AVOID REPEATED CONDITIONALS WITH INCLUDE_* EXAMPLES

CUG 2023 52

• Use the included Ansible modules rather than making shell calls or running scripts
• Ansible optimizes these and makes them flexible so the same module can be used for different systems
• This will also improve the log output for debugging

• Use loops rather than individual tasks where modules are called multiple times
• Some Ansible modules will optimize the command, such as grouping package installations into a single transaction

• Use Ansible retries for small, recoverable failures
• CFS supports retries on a large scale, but it takes far more time for CFS to detect a failed component and spin up a new session than it does

for Ansible to retry a task
• Do not use Ansible retries for failures that take a long time to recover from

• Retrying for a significant amount of time on one node can hold up all the other successful nodes in a batch
• If you cannot recover from a failure quickly, then let the node fail and CFS will separate it out from the successful nodes when new sessions

are started
• Avoid any_errors_fatal

• In addition to not working with all Ansible strategies, this can cause an Ansible run to exit early, and the nodes that did not have the error will
have to start from the beginning of the playbook in the next session

• Design playbooks to be run with the free Ansible strategy
• This means avoiding situations where all nodes in a batch need to complete a task before moving onto the next, and can save time by

allowing nodes to proceed through a playbook at their own pace
• Avoid using the same CFS configuration/playbook for diverse node types

• Ansible will skip sections of the playbook that have a hosts target that does not match any nodes in the current inventory/limit, but when
multiple types of nodes are configured at the same time with the same configuration, they may end up in the same batch and Ansible run

• This would mean that Ansible has to run through the sections for both types of nodes, taking more time than if the nodes were in separate
batches and could skip past the unneeded code

OTHER TIPS

CUG 2023 53

• Because CFS splits components into multiple batches, and components may also configure at different
times when they are rebooted, some keywords meant for coordinating the runs of multiple nodes may
not work as expected.

ANSIBLE LIMITATIONS WITH CFS

Keyword Notes

any_errors_fatal This keyword is intended to stop execution as soon as any node reports a failure. However, this will
only stop execution for the current CFS batch.

run_once This keyword is intended to limit a task to running on a single node. However this will only cause the
task to be run once per CFS batch.

serial
This keyword is intended to limit runs to a small number of nodes at a time, such as during a rolling
upgrade. However, this will only function within the batch, so more nodes may be running the task
than intended when multiple batches are running.

CUG 2023 54

• CFS supports two Ansible strategies
• cfs_linear runs all task in a playbook serially, with all nodes completing a task before Ansible moves on to

the next task
• cfs_free decouples the nodes allowing each node to proceed through the playbook at its own pace
• Switching to cfs_free from the default strategy of cfs_linear may result in better configuration time

– Not all included playbooks currently support the cfs_free strategy, so this should only be done for playbooks that are
confirmed to work correctly with the cfs_free strategy

– In addition, the cfs_free strategy is limited by the fact that configuration in CFS is applied over multiple layers and
multiple playbooks
– This means that even when using the cfs_free strategy, all nodes must complete a playbook together before moving onto the next

playbook

• The CFS Ansible strategies extend Ansible strategy
• adding reporting callbacks that are used to track components' state
• cfs_linear and cfs_free should always be used in place of linear and free to ensure that CFS

functions correctly

SELECTING AN ANSIBLE STRATEGY

CUG 2023

• Name tasks uniquely and use debug
tasks:
- name: find nid match in external hosts file, capture IP address
shell: “grep {{nid}} /etc/mysitelocal/hosts-external | head -1 | awk '{ print $4 }’”
register: external_ipaddr

- name: add ListenAddress/external options to file
lineinfile:

dest: /etc/sshd/sshd_config
regexp="^SSHD_OPTS="
line="SSHD_OPTS=‘-u0 -f /etc/ssh/sshd_config.external -o ListenAddress={{external_ipaddr}}’"
backup: yes

when:
external_ipaddr is defined

- debug: “Did not find external interface to start SSHD on...”
when: external_ipaddr is not defined

ANSIBLE DEBUGGING

55

CUG 2023

• Find the CFS pod that is in an error state
ncn# kubectl get pods -n services | grep Error

NAME READY STATUS RESTARTS AGE
cfs-e8e48c2a-448f-4e6b-86fa-dae534b1702e-pnxmn 0/3 Error 0 25h

• Check to see what containers are in the pod
ncn# kubectl logs -n services $CFS_POD_NAME

Error from server (BadRequest): a container name must be specified for pod cfs-e8e48c2a-448f-4e6b-86fa-dae534b1702e-pnxmn,
choose one of: [inventory ansible-0 istio-proxy] or one of the init containers: [git-clone-0 istio-init]

• Check the git-clone, inventory, ansible containers in that order
ncn# kubectl logs -n services CFS_POD_NAME git-clone
ncn# kubectl logs -n services CFS_POD_NAME inventory

Sidecar available
2019-12-05 15:00:12,160 - INFO - cray.cfs.inventory - Starting CFS Inventory version=0.4.3, namespace=services
2019-12-05 15:00:12,171 - INFO - cray.cfs.inventory - Inventory target=dynamic for cfsession=boa-2878e4c0-39c2-4df0-989e-

053bb1edee0c
2019-12-05 15:00:12,227 - INFO - cray.cfs.inventory.dynamic - Dynamic inventory found a total of 2 groups
2019-12-05 15:00:12,227 - INFO - cray.cfs.inventory - Writing out the inventory to /inventory/hosts

ncn# kubectl logs -n services CFS_POD_NAME ansible
Waiting for Inventory
TASK [ncmp_hsn_cns : SLES Compute Nodes (HSN): Create/Update ifcfg-hsnx File(s)] ***
fatal: [x3000c0s19b1n0]: FAILED! => {"msg": "'interfaces' is undefined"}
fatal: [x3000c0s19b2n0]: FAILED! => {"msg": "'interfaces' is undefined"}
NO MORE HOSTS LEFT ***
PLAY RECAP ***
x3000c0s19b1n0 : ok=28 changed=20 unreachable=0 failed=1 skipped=77 rescued=0 ignored=1
x3000c0s19b2n0 : ok=27 changed=19 unreachable=0 failed=1 skipped=63 rescued=0 ignored=1

TROUBLESHOOT ANSIBLE PLAY FAILURES IN CFS SESSIONS

56

CUG 2023 57

• Ansible tasks and playbooks can be profiled to determine execution times and identify poor runtime performance
• Edit the default CFS Ansible.cfg
ncn# kubectl edit cm cfs-default-ansible-cfg -n services

• Uncomment this line
#callback_whitelist = cfs_aggregator, timer, profile_tasks, profile_roles

• Comment this line by adding a # character to the beginning of the line
callback_whitelist = cfs_aggregator

• New sessions will be created with profiling information available in the Ansible logs of the CFS session pods
• View end of CFS log to see PLAY RECAP
ncn# kubectl -n services --sort-by=.metadata.creationTimestamp get pods | grep cfs
ncn# kubectl logs -f -n services POD ansible

• Find end of ansible log
2022-08-26T16:38:23 PLAY RECAP ***
2022-08-26T16:38:23 x1203c2s6b1n1 : ok=23 changed=18 unreachable=0 failed=0 skipped=3 rescued=0 ignored=0
2022-08-26T16:38:23 x1203c3s0b0n1 : ok=8 changed=7 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0
2022-08-26T16:38:23 x1203c3s2b0n1 : ok=8 changed=7 unreachable=0 failed=0 skipped=0 rescued=0 ignored=0

ANSIBLE PROFILING

CUG 2023 58

• After PLAY RECAP, ansible log shows profiling information by area

2022-08-26T16:38 ===
2022-08-26T16:38 sma-ldms-compute -- 756.74s
2022-08-26T16:38 gather_facts -- 2.35s
2022-08-26T16:38 ~~~
2022-08-26T16:38 total --- 759.09s
2022-08-26T16:38 Friday 26 August 2022 22:38:23 +0000 (0:00:01.783) 0:12:39.142 *********
2022-08-26T16:38 ===
2022-08-26T16:38 sma-ldms-compute : Install cray-ldms package -------------------------- 260.11s
2022-08-26T16:38 sma-ldms-compute : Restart LDMS on Computes --------------------------- 238.85s
2022-08-26T16:38 sma-ldms-compute : Copy LDMS config files from ansible environment to compute
nodes - 113.49s
2022-08-26T16:38 sma-ldms-compute : Add SMA zypper repositories ------------------------- 68.21s
2022-08-26T16:38 sma-ldms-compute : Delete SMA LDMS PVC pod ----------------------------- 38.93s
2022-08-26T16:38 sma-ldms-compute : Fetch files from worker node ------------------------ 11.14s

• Example is from the 22.07 software recipe release with SMA 1.6 and helped to focus attention to tasks and roles which
were running slower than expected
–Don’t install rpms in post-boot CFS

PROFILED ANSIBLE LOG

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 59

CUG 2023 60

• Monitoring
• System Monitoring Framework
• LDMS
• Telemetry API
• SMA-Grafana
• Dashboards

– Drilling into dashboards

• LDMS extension
• LDMS plugins

• Monasca alarms and notifications

MONITORING TOOLS

• System Monitoring Framework
• LDMS
• Telemetry API
• SMA-Grafana
• Dashboards

MONITORING

CUG 2023 61

CUG 2023

• Tightly-integrated monitoring system
• Provides detailed telemetry information from multiple subsystems:

• Fabric
• Environmental
• Network
• Storage
• Operating systems (vmstat and iostat metrics)

• Incorporates the context necessary to understand telemetry data
• Feeds into a common message bus (Kafka), persistence, and minimal UI infrastructure
• SMA alarms and notifications subsystem monitors metric data

• Provides a way to notify administrators when select metric data is outside of normal operating values
• SMA includes several pre-defined alarms
• Can be extended with site defined alarms

SYSTEM MONITORING FRAMEWORK

62

CUG 2023

SYSTEM MONITORING FRAMEWORK

63

• Developed by Sandia National Lab for Blue
Waters Cray XE/XK

• Distributed data collection, transport, and storage
tool

• Samplers run one or more sampling plugins that
periodically sample data on monitored nodes
• Defines a metric set (a collection of metrics)
• HA configuration supported

• Aggregators periodically collect data in a pull
fashion from samplers or other aggregators

• Storage plugins periodically write in MySQL or
flat file (file per metric name or CSV file per
metric set)
• Incomplete or not updated metric set data is not

written to storage

LIGHTWEIGHT DISTRIBUTED METRIC SERVICE (LDMS)

CUG 2023

Sampler

Sampler

Level 1
Aggregator

Level 2
Aggregator

Storage

Metric Set

64

CUG 2023

LDMS

Compute Node
(LDMS Sampler)

Compute Node
(LDMS Sampler)

Service Node
(L1 LDMS

Aggregator)

Service Node
(L1 LDMS

Aggregator)

Kafka Bus

Postgres

Visualization
L2 LDMS Aggregator

Containers

SMS

Kafka

Postgres Persister

Grafana, etc.

LDMS Samplers

VM
Stat

IO Stat Etc.

• LDMS on nodes is configured by a CFS layer for SMA

65

CUG 2023

• The HPE Cray EX system uses a Grafana web UI to provide system metric monitoring of:
• LDMS statistics
• Job and Lustre performance metrics for any attached and monitored ClusterStor storage systems
• HSN fabric performance, errors, congestion, and other statistics
• Power, temperature and other sensor data from node, cabinet, and switch controllers

• Access sma-grafana
1. Determine the external domain name by running the following command on any NCN:

ncn-m001# kubectl get secret site-init -n loftsman \
-o jsonpath='{.data.customizations\.yaml}' | base64 -d | grep "external:"
external: SYSTEM_DOMAIN_NAME

2. Navigate to the following URL in a web browser:
https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/

3. Login by entering a valid username and password
4. Select a dashboard from the Overview Details drop-down menu

SMA-GRAFANA

66

CUG 2023

SMA-GRAFANA OVERVIEW DETAILS

67

CUG 2023

SMA-GRAFANA DASHBOARDS
• About 20 included dashboards
• System CPU, I/O, Kernel, Memory,

Processes, Swap
• Cabinet Controller Sensors
• CDU Monitoring
• Fabric Telemetry
• Fabric Performance Telemetry
• Fabric Critical Telemetry
• Fabric Switch Hardware Telemetry
• Node Controller Sensors
• Overview Details
• Overview Device I/O Stats
• PDU Monitoring
• Redfish Events
• River Sensors
• Switch Controller Sensors
• System Monitoring Dashboard
• Cluster Health Check (Alerta alerts)

https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

Power used by River nodes

Click on xname to drill into that node

Select peak to see xname

68

CUG 2023

SMA-GRAFANA SYSTEM MONITORING DASHBOARD

69

CUG 2023

SMA-GRAFANA SLINGSHOT CONGESTION RECEIVE/TRANSMIT BANDWIDTH

70

CUG 2023

SMA-GRAFANA SLINGSHOT ROUTING ERRORS

71

CUG 2023

SMA-GRAFANA SWITCH CONTROLLER SENSORS

72

CUG 2023

SMA-GRAFANA CABINET CONTROLLER SENSORS

73

CUG 2023

SMA-GRAFANA NODE CONTROLLER SENSORS

74

CUG 2023

CLUSTER HEALTH CHECK

75

• LDMS plugins

LDMS EXTENSION

CUG 2023 76

CUG 2023 77

• OVIS is a modular system for HPC data collection, transport,
storage, log message exploration, and visualization as well as
analysis

• LDMS is a low-overhead, low-latency framework for collecting,
transfering, and storing metric data on a large distributed computer
system

• The framework includes:
• a public API with a reference implementation
• tools for collecting, aggregating, transporting, and storing metric values
• collectors for several common types of metrics
• Data transport over socket, RDMA (IB/iWarp/RoCE), and Cray Gemini as

well as Aries
• The API provides a way for vendors to expose system information

in a uniform manner without being required to provide source code
for accessing the information (although we advise it be included)
which might reveal proprietary methods or information

• Metric information can be updated by a kernel module which runs
only when applications yield the processor and transported using
RDMA-like operations, resulting in minimal jitter during collection

LIGHTWEIGHT DISTRIBUTED METRIC SERVICE (LDMS)

CUG 2023 78

• SMA Administration guide
• Add Customer Provided Samplers to LDMS v4 Configuration

– Download the ovis-4 repo
git clone https://github.com/ovis-hpc/ovis.git -b OVIS-4

– Add dependencies
– Make a directory for the new sampler
– Create a Makefile
– Change Configure script to include new makefile
– Run autogen to build new sampler library files
– Update sma-ldms-map-pvc pod with new sampler library files
– Modify LDMS configuration to use new sampler libraries on NCNs and Compute nodes
– Edit Compute and NCN LDMS files to include new samplers and add them to the PVCs
– Restart sma-ldms-map-pvc pod
– Customize compute images and reboot compute nodes
– Restart LDMS aggregator pods
–sma-ldms-aggr-compute-0 and sma-ldms-aggr-ncn-0

• If there are problems, the new sampler can be removed using documented procedure

LDMS PLUGINS

• Email notifications
• Local alarms
• CLI for alarms
• Monasca tuning
• mon-alert

MONASCA ALARMS AND NOTIFCATIONS

CUG 2023 79

CUG 2023 80

• SMA monitors metric data that is transmitted on the main telemetry bus
• Provides a way to notify users when select metric data is outside of normal operating values
• Includes several pre-defined alarms

• SMA configmap sma-monasca-alarms-configdata-cm
• email_destination
• sendmail_server
• email_source
ncn# kubectl -n sma edit cm sma-monasca-alarms-configdata-cm
ncn# kubectl -n sma describe cm sma-monasca-alarms-configdata-cm

• Changes require deleting pods and job and creating new job
ncn# kubectl -n sma delete pod -l component=notification
ncn# kubectl -n sma delete job -l component=alarms-init-job
ncn# kubectl -n sma delete pod -l component=alarms-init-job
ncn# vi alarms-init-job.yaml
ncn# kubectl -n sma apply -f alarms-init-job.yaml

EMAIL NOTIFICATIONS

CUG 2023 81

• Local alarms can be created that send email notifications
• Create local alarm definitions
ncn# vi customer-alarms-configmap.yaml

• Deploy configmap
ncn-# kubectl -n sma apply -f customer-alarms-configmap.yaml

• Create job definition
ncn# vi customer-alarms-init-job.yaml

• Execute the SMA alarm initialization job
ncn# kubectl -n sma apply -f customer-alarms-init-job.yaml

• Verify job succeeds
ncn# kubectl -n sma get po -l component=customer-alarms-init-job
NAME READY STATUS RESTARTS AGE
customer-alarms-init-job-dtrw5 0/1 Completed 0 5m

LOCAL ALARMS

CUG 2023 82

• List the state of all defined alarms
ncn# kubectl -n sma exec -it sma-monasca-agent-p9vcb -c collector -- sh -c 'monasca alarm-list'
+--------------------------------------+--------------------------------------+------------------+
| id | alarm_definition_id | alarm_definition_name |
+--------------------------------------+--------------------------------------+------------------+
0881af14-5659-4468-813a-d99ac7f415c5	cd72e681-995c-4f0a-9d29-c6a0a0e0dde8	validation1Alarm
64bbb62d-3cb1-466c-bed3-e7012f742683	cd72e681-995c-4f0a-9d29-c6a0a0e0dde8	validation1Alarm
b571cb91-2e1f-486e-9dc7-8b1e112cb530	cd72e681-995c-4f0a-9d29-c6a0a0e0dde8	validation1Alarm
+--------------------------------------+--------------------------------------+------------------+

• List all defined alarms
ncn# kubectl -n sma exec -it sma-monasca-agent-p9vcb -c collector -- sh -c 'monasca alarm-definition-list'
+--------------------+--------------------------------------+--------------------------------+
| name | id | expression |
+--------------------+--------------------------------------+--------------------------------+
metricsTestAlarm	7c101b85-0da9-48d8-a930-5f751645ca16	avg(cray_test.other_test) < 20
validation1Alarm	cd72e681-995c-4f0a-9d29-c6a0a0e0dde8	last(kubelet.health_status) < 0
vmstatTestAlarm	f0c54a42-ba99-4d1b-a048-96400b55fbee	avg(cray_test.vmstat_test) < 20
SMA OST Free Files	f6b03e39-4529-4ae2-9e22-358b40aeea52	avg(cray_storage.free_files_perc, 900) < 5.0
lustreTestAlarm	fa7bdbe3-b53e-4bdc-bc5c-1bf1d780d4f3	avg(cray_test.lustre_test) < 20
+--------------------+--------------------------------------+--------------------------------+

• List all defined notifications
ncn# kubectl -n sma exec -it sma-monasca-agent-p9vcb -c collector -- sh -c 'monasca notification-list'
+----------------+--------------------------------------+---------+
| name | id | type |
+----------------+--------------------------------------+---------+
| defaultWebhook | 7ad0fb59-3178-4947-9c1b-e340b1348176 | WEBHOOK |
| defaultEmail | a3f71b75-0e3c-4dbc-8651-ef02ea3616e9 | EMAIL |
+----------------+--------------------------------------+---------+

CLI FOR ALARMS

CUG 2023 83

• Monasca service
• Default memory 1216MB
• Java heap size 870MB

• Under heavy load, OOM may happen
ncn# kubectl describe –n sma-monasca-thresh-dmtf
o.a.s.d.worker [ERROR] Error when processing event java.lang.OutOfMemoryError: Java heap space

• Change the configuration values in the sma-monasca section of customizations.yaml for permanent change
sma-monasca:
thresh:
maxHeapMB: ”990"
resources:
limits:
memory: ”1600"Mi

• Change on running system
ncn# kubectl -n sma edit deployment sma-monasca-thresh-dmtf
- env:
- name: MAX_HEAP_MB
value: ”990"

...
resources:
limits:
memory: ”1600"Mi

MONASCA TUNING

CUG 2023 84

• Mon-alert manages the life cycle of each alert
• Looks for events in the data
• Analyzes each event
• Alerts the user
• Stores the event in the alert dashboard
• Retrieve alerts, process alerts, and close alerts
• Disable alert mechanism during maintenance

• Display a summary of all alerts
ncn# mon-alert -s
Alert Status Count
------------ -----
Critical 0
Warnings 6288
Information 1
Open 6288
Acknowledged 0
Closed 2
Expired 0

MON-ALERT

CUG 2023 85

• Display a status summary of all alerts
ncn# mon-alert status
METRIC. TYPE. NAME VALUE AVERAGE
--------------------------- ------ ------------------------- ------- ---------
Total alerts gauge alerts.total 33
Alert status change. timer alerts.status 4 26
Received alerts timer alerts.received 6594 25.7413
Count alerts timer alerts.counts 229 19.9607
Alert queries timer alerts.queries 1301. 21.6257
Deleted alerts. timer alerts.deleted 6303 26.3121
Alerta console auto-refresh text switch.auto-refresh-allow ON
API alert submission text switch.sender-api-allow ON

• Display the most serious alerts
ncn# mon-alert top
http://localhost:8080 alerta 8.6.0 14:16:16 16/12/21
Sev Time Dupl. Customer Env. Service Resource Group Event Value Text
Warn 14:08:35 0 - x3000c0s12b1n1 disk rsyslog compu SpaceHal ERROR Disk space is half
Warn 14:07:12 0 - x3000c0s13b1n0 disk rsyslog compu SpaceFul ERROR Disk space is half
Warn 14:07:10 0 - x3000c0s14b1n0 disk rsyslog compu SpaceOk OK Disk space is on
• This command produces many lines of output

– To return to the system prompt, press CTRL-c

MON-ALERT STATUS

CUG 2023 86

• Query all alerts
ncn# mon-alert query [-f text=~criteria]
ncn# mon-alert query
ID STATUS SEVERITY GROUP ENV SERVICE RESOURCE EVENT VALUE DESCRIPTION DUPL LAST RECEIVED
-------- ------- --------- ------ -- ------
1d0d93c1 open warning fabric http://10.33.0.170:8000/fabric/agents/x3000c0r21b0 slingshot

• More data with wide display
• Manage specific alert

• Display single alert
ncn# mon-alert query -i 1d0d93c1

• Acknowledge alert
ncn# mon-alert ack -i 1d0d93c1

• Remedy the problem
• Close alert
ncn# mon-alert close -i 1d0d93c1

• Delete alert
ncn# mon-alert delete -i 1d0d93c1

MON-ALERT MANAGEMENT

CUG 2023 87

• Clean up the alerts manually
• This command looks for expired alerts and deletes the expired alerts
ncn# mon-alert housekeeping

• Add user comments to an alert
ncn# mon-alert tag -h

• Delete user comments from an alert
ncn# mon-alert untag -h

• Suspend alerting for a maintenance period
• If you need to perform maintenance, you can suppress the alerting mechanism during that time

• Create blackout period
ncn# mon-alert blackout -h

• Display blackout periods
ncn# mon-alert blackouts -h

MON-ALERT MAINTENANCE

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 88

CUG 2023 89

• System health
• Prometheus
• Alertmanager
• Grafana
• Dashboards

• Slingshot network (HSN)
• System testing

• CSM health checks
• CSM diags

SYSTEM MANAGEMENT HEALTH

• Prometheus
• Alertmanager
• Grafana
• Dashboards

SYSTEM HEALTH

CUG 2023 90

CUG 2023

SYSTEM MANAGEMENT HEALTH SERVICE

Kubernetes
Prometheus-operator chart features Prometheus with
support for
• K8s nodes
• Etcd
• K8s internals
• K8s workloads

Istio
Istio chart includes
• Prometheus which collects Istio metrics
• Kiali and Jaeger

Ceph
Prometheus module exposes metrics from ceph-mgr

System Mgmt Health Service
Helm chart includes
• Prometheus to federate metrics
• Alertmanager for custom notifications
• Grafana with dashboards for Kubernetes, Istio, Ceph

10d

4h

4h

4h

SMF

Export Prometheus
metrics

30d

Is the system healthy?
• Independent from the System Monitoring Framework (SMA)
• Does not monitor computes!

91

CUG 2023

• Prometheus alerts provide coverage across infrastructure and platform
• Coarse-grained and comprehensive, as opposed to fine-grained and exhaustive
• Supports preventive and diagnostic use cases

HEALTH CHECKS

NON-COMPUTE
NODES UTILITY STORAGE

CONTAINER
ORCHESTRATION SERVICE MESH WORKLOADS

• CPU and memory
utilization
• Local storage utilization
• Network I/O errors and

latency
• Clock skew

• Ceph status
• Storage utilization
• Disk I/O errors and

latency

• Kubernetes status
• API errors
• CPU and memory

overcommitments

• Istio status
• Service availability
• Service request rates
• Service response

statuses and latency

• Status of pods,
deployments, stateful
sets, daemon sets, jobs
• CPU, memory, network,

and storage utilization
and errors

92

CUG 2023

ncn# kubectl -n sysmgmt-health get svc cray-sysmgmt-health-promet-prometheus
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cray-sysmgmt-health-promet-prometheus ClusterIP 10.21.141.187 <none> 9090/TCP 34d
ncn# curl -s http://10.21.141.187:9090/api/v1/alerts |jq -j '.data' | grep alertname | sort | uniq -c

12 "alertname": "CPUThrottlingHigh",
108 "alertname": "IstioHighRequestLatency",
103 "alertname": "IstioLatency99Percentile",
1 "alertname": "IstioLowTotalRequestRate",
1 "alertname": "KubeAPIErrorBudgetBurn",
1 "alertname": "KubeDeploymentReplicasMismatch",

131 "alertname": "KubeJobCompletion",
130 "alertname": "KubeJobFailed",
2 "alertname": "KubePersistentVolumeFillingUp",
1 "alertname": "KubePodCrashLooping",
1 "alertname": "NodeClockNotSynchronising",
1 "alertname": "PodReadinessProbeFailure",
1 "alertname": "PostgresqlFollowerReplicationLagSMA",
2 "alertname": "PostgresqlHighRollbackRate",
1 "alertname": "PostgresqlInactiveReplicationSlot",
3 "alertname": "PostgresqlNotEnoughConnections",
3 "alertname": "TargetDown",
1 "alertname": "Watchdog",

RETRIEVING ALERTS FROM PROMETHEUS

93

CUG 2023

ncn# curl -s http://10.21.141.187:9090/api/v1/alerts |jq -j '.data.alerts \
| map(select(.labels.alertname == "CPUThrottlingHigh")) | max_by(.activeAt)'
{

"labels": {
"alertname": "CPUThrottlingHigh",
"container": "manager",
"namespace": "gatekeeper-system",
"pod": "gatekeeper-controller-manager-588d6476db-d5g8v",
"severity": "info"

},
"annotations": {

"message": "28.03% throttling of CPU in namespace gatekeeper-system for container manager
in pod gatekeeper-controller-manager-588d6476db-d5g8v.",

"runbook_url": "https://github.com/kubernetes-monitoring/kubernetes-
mixin/tree/master/runbook.md#alert-name-cputhrottlinghigh"

},
"state": "pending",
"activeAt": "2022-04-27T16:11:07.129355508Z",
"value": "2.8030608135320173e-01"

}

RETRIEVING THE LATEST ALERT FROM PROMETHEUS

94

CUG 2023

PROMETHEUS - GRAPH

Graph of container receive packets total

Point on graph shows details for ncn-m003

https://prometheus.cmn.SYSTEM_DOMAIN_NAME 95

CUG 2023

PROMETHEUS - ALERTS

https://prometheus.cmn.SYSTEM_DOMAIN_NAME
96

CUG 2023

ALERTMANAGER

https://alertmanager.cmn.SYSTEM_DOMAIN_NAME 97

CUG 2023

GRAFANA

98

• Uses Keycloak authentication/authorization
• Secured with TLS sharing cluster certificate bundle
• About 40 included dashboards
• Ceph
• CoreDNS
• Etcd
• ETCD Clusters
• Istio
• Kea-dhcp
• Kubernetes
• Node Exporter
• Nodes
• PostgreSQL
• Prometheus

https://grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

GRAFANA DASHBOARDS CATALOG

CUG 2023 99

• Nodes up (quorum)
• RPC Rate
• Active Streams
• DB Size
• Disk Sync Duration
• Memory
• Client Traffic in
• Client Traffic Out
• Peer Traffic In
• Peer Traffic Out
• Raft proposals
• Total Leader Elections Per day

GRAFANA DASHBOARDS: ETCD

CUG 2023 100

GRAFANA DASHBOARDS: KUBERNETES CLUSTER

CUG 2023 101

CUG 2023

GRAFANA DASHBOARDS: KUBERNETES POD REQUESTS AND LIMITS

CPU usage

Memory Usage

102

SLINGSHOT NETWORK (HSN)

103CUG 2023

CUG 2023 104

• HPE Slingshot Troubleshooting Guide
• Slingshot-Topology-Tool (STT)
• River cable validator
• linkdbg to debug downed links
• DNS troubleshooting
• Fabric manager
• Slingshot NIC
• Slingshot Switch
• Network diagnostics

SLINGSHOT TROUBLESHOOTING

CUG 2023 105

• HPE Slingshot Troubleshooting Guide
• dgnettest

– Loopback bandwidth test, latency test, fabric bisection
bandwidth test, fabric all-to-all

• cxibwcheck.ch
– Bi-directional loopback bandwidth for each Slingshot NIC

on each node in a group of nodes
• bwcheck.sh

– Uni-directional loopback bandwidth for each Mellanox NIC
on each node in a group of nodes

• cxiberstat.sh
– Measures NID link corrected and uncorrect bit error rates

(BERs)
• cxi_healthcheck

– PCIe speed and width
– Presence of PCIe errors
– Algorithmic MAC assignment (optional)
– Link state and speed

– Link-layer retry setting is enabled
– Internal loopback mode is disabled
– Priority Flow Control (PFC) is enabled
– Acceptable number of link flaps in the past hour (< 5) and

the past 10 hours (< 10)
– Presence of common error messages related to HPE

Slingshot 200GB NIC in the kernel log
– Services (retry handler, etc.) are in a running state

(optional)
– Resource and retry handler leak detection
– Successful ping from HPE Slingshot 200 GB NIC interface

to an external host / interface (optional)
– Good, corrected, and uncorrected codeword rate check
– Firmware revision check (optional)

SLINGSHOT DIAGNOSTICS

CUG 2023 106

• Check the current fabric status
ncn# kubectl exec -it -n services $(kubectl
get pods -A |grep fabric |awk '{print $2}')
-c slingshot-fabric-manager -- /bin/bash
slingshot-fabric-manager# fmn-show-status
Topology Status
Active: template-policy
Health

Runtime:HEALTHY
Configuration:WARNING
Traffic:HEALTHY
Security:HEALTHY
For more detailed Health - run 'fmctl get
health-engines/template-policy'

Port Policies (online / total ports for
each port-policy)
--

edge-policy: 0 / 0
fabric-policy: 10330 / 10340
cassini-policy: 4651 / 4664
qos-ll_be_bd_et-cassini-policy: 4651 /
4664
qos-hpc-cassini-policy: 0 / 0
qos-ll_be_bd_et-ethernet-policy: 0 / 0
qos-ll_be_bd_et-fabric-policy: 10330 /
10340
qos-hpc-fabric-policy: 0 / 0
lacp-policy: 0 / 0
offline-policy: 0 / 0

Edge: 4651 / 4664
Fabric: 10330 / 10340
Ports Reported: 15004 / 15004
Ports in Error State: 6 / 15004
Fully Synchronized Switches: 296 / 296

FMN-SHOW-STATUS

CUG 2023 107

• Check the current fabric status with details
ncn# kubectl exec -it -n services $(kubectl get pods -A
|grep fabric |awk '{print $2}') -c slingshot-fabric-
manager -- /bin/bash
slingshot-fabric-manager# fmn-show-status -d
Topology Status
… (Same as last slide for early part of output)

Edge: 4651 / 4664
Fabric: 10330 / 10340
Ports Reported: 15004 / 15004
Ports in Error State: 6 / 15004
Fully Synchronized Switches: 296 / 296

23 Downed links:
Fabric: x1000c5r5j5p0
Fabric: x1002c4r1j17p0
Fabric: x1003c4r1j17p0
Fabric: x1004c1r1j5p0
Fabric: x1006c0r7j13p1
Fabric: x1006c1r5j13p1
Fabric: x1006c6r1j13p1
Fabric: x1006c6r3j11p1
Fabric: x3000c0r33j3p0
Fabric: x3002c0r33j32p0
Edge: x1000c0r1j104p1

Edge: x1000c0r5j102p0
Edge: x1000c0r5j102p1
Edge: x1000c0r7j101p0
Edge: x1000c0r7j101p1
Edge: x1000c0r7j102p0
Edge: x1000c0r7j102p1
Edge: x1000c0r7j103p0
Edge: x1001c1r7j107p0
Edge: x1001c1r7j107p1
Edge: x1004c2r7j105p1
Edge: x1007c0r5j107p0
Edge: x1007c0r7j107p0

Port errors:
x1000c5r5j5p0 : Port capability degraded to prevent
excessive flapping
x1000c0r7j101p0 : Port disabled due to excessive
flapping
x3002c0r33j32p0 : Port disabled due to excessive
flapping
x1003c4r1j17p0 : Port capability degraded to prevent
excessive flapping
x3000c0r33j3p0 : Port disabled due to excessive
flapping
x1002c4r1j17p0 : Port capability degraded to prevent
excessive flapping

FMN-SHOW-STATUS DETAILS

CUG 2023 108

• Check fabric link errors
slingshot-fabric-manager# linkdbg -L fabric
Querying downed links' link partners...

+--------+---+------------+----------+----------------
+--------------+-------------+------------------+-------------+----------------+
| type | rosprt xname (pport) <-> rosprt xname (pport) | rosswinfo | sC firmW | sw_medtype-pw |
lp rosswinfo | lp sC firmW | lp sw_medtype-pw | action_code | lp action_code |
+--------+---+------------+----------+----------------
+--------------+-------------+------------------+-------------+----------------+
| Fabric | x1000c5r5j5p0 (25) <-> x1004c1r1j5p0 (25) | tpml d S L | 2.0.2 | Optical-
07 | tpml d s L | 2.0.2 | Optical-07 | otherport | ros6 |
| Fabric | x1002c4r1j17p0 (58) <-> x1003c4r1j17p0 (58) | tpml d S L | 2.0.2 | Optical-
06 | tpml d S L | 2.0.2 | Optical-07 | otherport | ros5 |
| Fabric | x1006c0r7j13p1 (62) <-> x1006c6r1j13p1 (62) | tpml d s L | 2.0.2 | Electrical-N/A
| tpml d S L | 2.0.2 | Electrical-N/A | ros6 | ros5 |
| Fabric | x1006c1r5j13p1 (62) <-> x1006c6r3j11p1 (14) | tpml d s L | 2.0.2 | Electrical-N/A
| tpml d S L | 2.0.2 | Electrical-N/A | ros6 | ros5 |
| Fabric | x3000c0r33j3p0 (18) <-> x3002c0r33j32p0 (33) | tpml D S L | 2.0.2 | Optical-
06 | tpml D S L | 2.0.2 | Optical-06 | ros4 | ros4 |
+--------+---+------------+----------+----------------
+--------------+-------------+------------------+-------------+----------------+

LINKDBG FABRIC ERRORS

CUG 2023 109

• Check fabric link errors
slingshot-fabric-manager# linkdbg -L edge
Querying downed links' link partners...

+------+---+------------+----------+----------------+-------------+
| type | rosprt xname (pport) <-> link_partner | rosswinfo | sC firmW | sw_medtype-pw | action_code |
+------+---+------------+----------+----------------+-------------+
Edge	x1000c0r1j104p1 (16) <-> x1000c0s4b0n1h1	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1000c0r5j102p0 (49) <-> x1000c0s2b1n1h1	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1000c0r5j102p1 (48) <-> x1000c0s2b1n0h1	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1000c0r7j101p0 (34) <-> x1000c0s1b1n0h0	tpml D S L	2.0.2	Electrical-N/A	ros4
Edge	x1000c0r7j101p1 (35) <-> x1000c0s1b1n1h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1000c0r7j102p0 (49) <-> x1000c0s2b1n1h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1000c0r7j102p1 (48) <-> x1000c0s2b1n0h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1000c0r7j103p0 (33) <-> x1000c0s3b1n1h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1001c1r7j107p0 (2) <-> x1001c1s7b1n1h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1001c1r7j107p1 (3) <-> x1001c1s7b1n0h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1004c2r7j105p1 (0) <-> x1004c2s5b1n1h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1007c0r5j107p0 (2) <-> x1007c0s7b1n1h1	tpml d S L	2.0.2	Electrical-N/A	unkn_port
Edge	x1007c0r7j107p0 (2) <-> x1007c0s7b1n1h0	tpml d S L	2.0.2	Electrical-N/A	unkn_port
+------+---+------------+----------+----------------+-------------+

LINKDBG EDGE ERRORS

CUG 2023 110

• Get explanation of action codes
slingshot-fabric-manager# linkdbg -a ros4
PROBLEM SYNOPSIS: The link has been directed down.

WHY YOU GOT THIS ACTION CODE:
The link monitor (lmon) state letter in the rosswinfo column, "D/d",

is
capitalized.

HOW TO DIAGNOSE:
Validate each issue, in order.

POSSIBLE ISSUES:
1) The link direction could be in a transient state. Rerun
"linkdbg -t <portxname>" twice over a 10 second interval.
2) Link auto retry has been exhausted. This will be reported in fmn_status on
the FMN. The link was flapping too much, and needs hardware attention:

(After each step, re-run linkdbg to see if the action resolved the issue.)

Steps to debug Mountain Cabinet downed links between NIC and switch:
1) Validate both switch and NIC are properly configured and attempting
to bring up the HSN link.
2) Perform group hug:

Apply pressure to both the compute and switch blades simultaneously
to seat the ExaMax connectors more firmly.

3) Reseat the switch blade (this will act as an asic reset and reboot
as well).

4) Reseat the compute blade.
5) Swap NIC mezzanine cards between nodes. # look to see if follows NIC

or stays with cable.
If failure follows NIC, replace the NIC.
If failure stays with L0 cable, replace the L0 cable.

6) Replace node card with known node card that has good link on the
reporting errored HSN link.
7) Replace switch.

Steps to debug River Cabinet downed links between NIC and switch:
1) Validate both switch and NIC are properly configured and attempting
to bring up the HSN link.
2) Reseat cable between NIC card and switch.
3) Reboot compute node.
4) Reset asic and reboot switch.
5) Reseat cable between NIC card and switch a second time.
6) Replace cable between NIC card and switch.
7) Replace NIC card.
8) Replace switch.

Steps to debug downed links between switches:
1) Validate both switches are properly configured and attempting to
bring up the HSN link.
2) Reseat cable between switches.
3) Reset ASIC
4) Slot power cycle
5) Reseat cable between switches a second time.
6) Replace cable between switches.
7) Replace local switch.
8) Replace remote switch.

3) The link hasn't been commanded up. Run the following from the switch, where
"portnumber" is the number reported by linkdbg in parenthesis next to its xname:
swtest -c "link $((1<<portnumber)) up"

LINKDBG ACTION CODES

• CSM Health Checks
• CSM Diags

SYSTEM TESTING

CUG 2023 111

CUG 2023

• CSM documentation describes system health validation
• Run before rebooting or rebuilding a management node
• Run before complete system graceful shutdown
• Run during complete system graceful startup
• Run during complete system non-graceful startup
• Run as part of troubleshooting toolbox
• See procedures in CSM documentation

https://github.com/Cray-HPE/docs-csm/tree/release/1.3/operations/validate_csm_health.md
• Platform Health Checks

• Automated NCN checks using goss servers on each NCN
/opt/cray/tests/install/ncn/automated/ncn-healthcheck

• Automated Kubernetes check using goss servers on each NCN
/opt/cray/tests/install/ncn/automated/ncn-kubernetes-check

• Manual ncnHealthChecks
/opt/cray/platform-utils/ncnHealthChecks.sh

-s ncn_uptimes
-s node_resource_consumption
-s pods_not_running

• Manual ncnPostgresHealthChecks
/opt/cray/platform-utils/ncnPostgresHealthChecks.sh

• System management monitoring tools
– Prometheus, Alertmanager, Grafana, Kiali

• BGP Peering Status and Reset

CSM HEALTH CHECKS

112

https://github.com/Cray-HPE/docs-csm/tree/release/1.3/operations/validate_csm_health.md

CUG 2023

• See procedures in CSM documentation
https://github.com/Cray-HPE/docs-csm/tree/release/1.3/operations/validate_csm_health.md

• Hardware Management Services
• HMS Test execution

/opt/cray/csm/scripts/hms_verification/run_hms_ct_tests.sh
• HSM Discovery Validation

/opt/cray/csm/scripts/hms_verification/verify_hsm_discovery.py

• Software Management Services
• BOS, TFTP, cray-console, IMS, CFS, VCS, CRUS

– /usr/local/bin/cmsdev test -q all

• Gateway health and SSH access checks
• Gateway health tests from NCN
/usr/share/doc/csm/scripts/operations/gateway-test/ncn-gateway-test.sh

• Gateway health tests from outside the system
• Internal SSH access
/usr/share/doc/csm/scripts/operations/pyscripts/start.py test_bican_internal

• External SSH access
• Booting CSM Barebones image

• Tests whether the booting services infrastructure is functional to boot a compute node

• UAS/UAI tests
• Validate basic UAS installation
• Validate UAI creation
• Troubleshooting UAS/UAI

MORE CSM HEALTH CHECKS

113

https://github.com/Cray-HPE/docs-csm/tree/release/1.3/operations/validate_csm_health.md

CUG 2023

KUBERNETES LIMITS AND EXCEPTIONS

https://sysdig.com/blog/kubernetes-limits-requests/

114

CUG 2023

ncn# kubectl get LimitRange --all-namespaces
NAMESPACE NAME CREATED AT
backups cpu-mem-limit-range 2022-01-19T18:49:07Z
ceph-cephfs cpu-mem-limit-range 2022-01-19T18:49:06Z
ceph-rbd cpu-mem-limit-range 2022-01-19T18:49:07Z
default cpu-mem-limit-range-requests 2022-01-19T18:49:08Z
ims cpu-mem-limit-range 2022-01-19T18:49:07Z
istio-system cpu-mem-limit-range 2022-01-19T18:49:07Z
loftsman cpu-mem-limit-range 2022-01-19T18:49:07Z
metallb-system cpu-mem-limit-range 2022-01-19T18:49:07Z
operators cpu-mem-limit-range 2022-01-19T19:29:37Z
pki-operator cpu-mem-limit-range 2022-01-19T19:29:37Z
services cpu-mem-limit-range 2022-01-19T19:29:37Z
sma cpu-mem-limit-range 2022-01-19T18:49:07Z
sysmgmt-health cpu-mem-limit-range 2022-01-19T18:49:08Z
uas cpu-mem-limit-range 2022-01-19T19:45:25Z
user cpu-mem-limit-range 2022-01-19T19:45:25Z
vault cpu-mem-limit-range 2022-01-19T19:29:37Z
velero cpu-mem-limit-range 2022-01-19T18:49:08Z

CPU AND MEMORY LIMITS

115

CUG 2023

ncn# kubectl top pod --all-namespaces --sort-by=memory
NAMESPACE NAME CPU(cores) MEMORY(bytes)
sma elasticsearch-master-1 56m 33242Mi
sma elasticsearch-master-0 172m 33163Mi
sma elasticsearch-master-2 166m 33160Mi
sma cluster-kafka-0 258m 7873Mi
sma cluster-kafka-1 177m 6813Mi
sma cluster-kafka-2 173m 6047Mi
sysmgmt-health prometheus-cray-sysmgmt-health-promet-prometheus-0 383m 5760Mi
istio-system prometheus-c6f686f44-287qm 201m 4217Mi
istio-system prometheus-c6f686f44-jz7xg 182m 3585Mi
istio-system prometheus-c6f686f44-8p7p5 221m 3421Mi
nexus nexus-7b948976d7-rgzbf 11m 2408Mi
sma sma-monasca-thresh-node-7594fcd77-wrz4d 849m 1633Mi
kube-system kube-apiserver-ncn-m001 300m 1563Mi
kube-system kube-apiserver-ncn-m002 102m 1408Mi
services cray-shared-kafka-kafka-2 52m 1380Mi
services slingshot-fabric-manager-6d7fbb785f-d7scw 50m 1348Mi
services cray-shared-kafka-kafka-0 41m 1283Mi
services cray-shared-kafka-kafka-1 40m 1257Mi
sma sma-postgres-cluster-1 14m 1172Mi
sma sma-monasca-thresh-dmtf-6c4fcc7c84-2vlzc 845m 1152Mi
sma sma-monasca-thresh-metrics-69cf45c768-2kmq9 835m 1144Mi
sma cluster-zookeeper-1 17m 1031Mi

POD MEMORY USAGE

116

CUG 2023

ncn# kubectl top pod --all-namespaces --sort-by=cpu
NAMESPACE NAME CPU(cores) MEMORY(bytes)
sysmgmt-health prometheus-cray-sysmgmt-health-promet-prometheus-0 1562m 5762Mi
sma sma-monasca-thresh-node-7594fcd77-wrz4d 874m 1634Mi

sma sma-monasca-thresh-dmtf-6c4fcc7c84-2vlzc 839m 1152Mi
sma sma-monasca-thresh-metrics-69cf45c768-2kmq9 832m 1144Mi
kube-system kube-apiserver-ncn-m001 312m 1563Mi
sma cluster-kafka-0 220m 7883Mi
istio-system prometheus-c6f686f44-8p7p5 212m 3423Mi
istio-system prometheus-c6f686f44-jz7xg 189m 3586Mi
istio-system prometheus-c6f686f44-287qm 182m 4217Mi
sma elasticsearch-master-2 167m 33160Mi
sma cluster-kafka-2 161m 6050Mi
gatekeeper-system gatekeeper-controller-manager-588d6476db-hrmns 158m 119Mi
sma cluster-kafka-1 153m 6819Mi
sma elasticsearch-master-0 146m 33164Mi
kube-system kube-apiserver-ncn-m003 113m 960Mi
sysmgmt-health cray-sysmgmt-health-prometheus-node-exporter-5jjgw 110m 212Mi
sysmgmt-health cray-sysmgmt-health-prometheus-node-exporter-gpb8w 109m 232Mi
kube-system kube-apiserver-ncn-m002 102m 1408Mi

POD CPU USAGE

117

CUG 2023

• Ceph status shows health, expected and running services, storage information
ncn-s# ceph -s
cluster:
id: b1781806-9370-43af-96aa-61447a4d9411
health: HEALTH_OK

services:
mon: 3 daemons, quorum ncn-s003,ncn-s002,ncn-s001 (age 6w)
mgr: ncn-s001(active, since 6w), standbys: ncn-s003, ncn-s002
mds: cephfs:1 {0=ncn-s001=up:active} 2 up:standby
osd: 24 osds: 24 up (since 6w), 24 in (since 6w)
rgw: 3 daemons active (ncn-s001.rgw0, ncn-s002.rgw0, ncn-s003.rgw0)

data:
pools: 11 pools, 816 pgs
objects: 357.05k objects, 786 GiB
usage: 1.2 TiB used, 41 TiB / 42 TiB avail
pgs: 816 active+clean

io:
client: 75 KiB/s rd, 10 MiB/s wr, 24 op/s rd, 1.07k op/s wr

CEPH STATUS

118

CUG 2023

ncn-s# ceph df
--- RAW STORAGE ---
CLASS SIZE AVAIL USED RAW USED %RAW USED
ssd 63 TiB 60 TiB 2.8 TiB 2.9 TiB 4.55
TOTAL 63 TiB 60 TiB 2.8 TiB 2.9 TiB 4.55

--- POOLS ---
POOL ID PGS STORED OBJECTS USED %USED MAX AVAIL
cephfs_data 1 256 385 GiB 311.95k 1.1 TiB 1.96 19 TiB
cephfs_metadata 2 256 405 MiB 19.83k 1.2 GiB 0 19 TiB
default.rgw.buckets.data 3 256 103 GiB 27.96k 309 GiB 0.53 19 TiB
default.rgw.buckets.index 4 32 3.1 MiB 704 9.2 MiB 0 19 TiB
.rgw.root 5 16 5.2 KiB 18 204 KiB 0 19 TiB
default.rgw.control 6 16 0 B 8 0 B 0 19 TiB
default.rgw.meta 7 16 788 KiB 171 3.9 MiB 0 19 TiB
default.rgw.log 8 16 30 KiB 210 624 KiB 0 19 TiB
kube 9 256 36 GiB 18.30k 76 GiB 0.13 19 TiB
smf 10 512 1.1 TiB 488.25k 1.3 TiB 2.28 28 TiB
default.rgw.buckets.non-ec 11 16 0 B 0 0 B 0 19 TiB
device_health_metrics 12 1 48 MiB 39 145 MiB 0 19 TiB

STORAGE UTILIZATION

119

A set of diagnostic tools to perform various node level and system wide tests on compute nodes

• Functional test suites and performance test suites with both MPI and non MPI test suites
• Tests initiated using cray-hms-badger service to submit WLM jobs on compute nodes

• Consistency checks
cpuchk, memchk, fabricchk, netchk, fschk, mpichk

• System Level Diagnostics
linpack, cwlinpack, nodeperf, stream, olcmt, oldisk, olconf, cwolconf, rank, pandora, cwhpcc

• Nvidia GPU Diagnostics
gpu-burn, xkbandwidth, xkcheck, xkdgemm, xkmemtest, xbandwidthtest, xkstress, dgnettest

• AMD GPU diagnostics
amdgpubandwidth, amdgpuproperties, amdgpuedpp, amdgpufilechk, adgpukernelchk, amdgpulinkchk, amdgpumonitor,
amdgpup2pchk, amdgpupciechk, amdgpupciemonitor, amdgpupkgchk, amdgpubioschk, amdgpustresstest, amdgpuuserchk

• Fabric diagnostics
dgnettest, check_excessive_pause

• OSU Benchmark
osu_startup, osu_bw_bibw, osu_single_multi_latency, osu_multiplebw_message_rate, osu_multithread_multiprocess_latency,
osu_bw_latency_ops, osu_put_bibw, osu_get_acc_latency, osu_collective_blocking_barrier, osu_collective_MPI_blocking_ops,
osu_collective_MPI_non_blocking_ibarrier, osu_collective_MPI_non_blocking_ops,

• sdiag_run.py using cray-hms-badger
• Execute multiple diagnostics (MPI, NON_MPI, GPU, Slingshot) in one shot on multiple compute nodes

CUG 2023

CSM DIAGS

120

CUG 2023

• A CLI (which uses Badger framework) has been provided on the worker nodes to execute multiple
diagnostics (MPI, NON_MPI, Slingshot) in a single instance on multiple compute nodes
• Admin needs to modify the configuration files, with the list of diagnostics that need to be executed

– sdiag-list.json (List of diagnostics which Admin needs to run)
– sdiag-arguments.json (Argument Values for each Diagnostic Test)
– sdiag-gumball.json (Badger Information, Session directory)
– nodes (file with the list of node xnames or nids)
– nodes_gpu (file with the list of GPU node xnames or nids)

• Can be run by:
ncn-w# /opt/cray/csm-diags/sdiag_run.py
out_02:12:02.txt output file has been created in /var/log/cray/shasta-diag
–Execution completed

gpu-burn: cray badger sessions describe e5d5b58a-f63e-45a5-b3cd-3b383ecdd1df'

CSM DIAGS - CLI

CSM-DIAGS CLI

Badger

Slurm/PBS Pro

121

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 122

CUG 2023 123

• Performance
• Low Noise Mode (LNM)
• Cgroups
• DVS
• CPS tuning
• Overlay preload for DVS

• Workload Managers
• Slurm config for HPE 200GB (Cassini) NICs

– VNI allocation, network resource reservation, and traffic class configuration

• Application Task Orchestration and Management (ATOM)

TUNING COMPUTE NODES

PERFORMANCE

CUG 2023 124

• Configures Linux kernel so OS tasks are migrated to one or more CPUs (on each node) which are
excluded from application use
• Full LNM

– Kernel parameters at boot will reduce noise by moving system activities to CPU 0 (and potentially additional CPUs as well)
and user space is configured to move any overhead processes to CPU 0

• Lightweight mode
– The kernel parameters are not used, but the user space configuration is still done

• Must coordinate COS kernel parameters and WLM settings for LNM

• IRQs can be listed by name instead of by number, and there are new options for selecting to what CPUs
the IRQs are directed

MARCH 2023

LOW NOISE MODE (LNM)

• In full LNM mode, the Linux kernel must be booted with parameters to direct noise overhead to CPU 0
• The CPU range has to be specified for the number of CPUs on the node
nohz_full=1-255
rcu_nocbs=1-255
rcu_nocb_poll

• In addition, two parameters are specified on the kernel command line to guide the behavior of the user
space configuration
• The lnm parameter must be set to either full or lightweight.
lnm={ full, lightweight }
• The lnm.cpu parameter is optional and is set to what CPU(s) to use to handle system overhead
[lnm.cpu=0]

• These boot parameters are set in a BOS session template

MARCH 2023 126

LNM KERNEL PARAMETERS

• At boot, systemd runs lnmctl to configure the user space
environment for low noise

• lnmctl reads default configuration from /etc/lnm-
default.json and optional site configuration from
/etc/lnm.json
• Tunables – settings for sysctl and files in /sys
• Processes – process names that should not be migrated to the

system CPU(s)
• IRQs – which hardware interrupt requests (IRQs) should be

directed to the CPUs handling system overhead
– cpu_0 for the first CPU on the node
– cpu_last for the highest numbered CPU on the node.
– cpu_all to use all of the CPUs listed in lnm.cpu or the CPU section
– cpu_all:<list> to use all the listed CPUs
– cpu_closest to use the CPU from lnm.cpu or the CPU section which is

on the same NUMA node as the IRQ
– cpu_closest:<list> use the CPU from the list which is on the same

NUMA node as the IRQ. When using cpu_closest, there must be a
system CPU specified for each NUMA node. The list is a comma-
separated list of CPU numbers.

• CPU - Which processors are used for system overhead
– Single CPU, range of CPUs, comma separated list of CPUs, or MAX to

use highest numbered CPU

MARCH 2023 127

LNM CONFIGURATION FILE

{
"Tunables": {

"sysctl": {
"vm.stat_interval": 120

},
"files": {

"/sys/bus/workqueue/devices/writeback/cpumask": 1,
"/sys/kernel/mm/transparent_hugepage/enabled": "never"

}
},
"Processes": [".*watchdog.* ", " DVS-IPC_msg "],
"IRQs": {

"0": "cpu_0",
"1": "cpu_last",
"2": "cpu_all:1,2,4,8",
".*gpu": "cpu_closest:1,2,4,8"

}
"CPU": "0,128”

}

CUG 2023 128

• Avoid placing applications on CPU 0 if some or all system compute nodes are configured with the Low
Noise Mode feature

• Slurm.conf
• SchedulerParameters=spec_cores_first

– Use core 0 instead of last core

• AllowSpecResourcesUsage=YES
– (Optional) allows users to override the specialized cores with srun -S

• NodeName=nid000010 Sockets=2 CoresPerSocket=16 ThreadsPerCore=2 RealMemory=55296
Feature=Intel_Xeon_Gold_6130 CoreSpecCount=1
– On each node configured with LNM, avoid one core by default

LOW NOISE MODE SLURM

• cgroups is a mechanism to organize processes hierarchically and distribute system resources along the
hierarchy in a controlled and configurable manner
• cgroup core is primarily responsible for hierarchically organizing processes
• cgroup controller is usually responsible for distributing a specific type of system resource along the hierarchy

although there are utility controllers which serve purposes other than resource distribution
• cgroups form a tree structure and every process in the system belongs to one and only one cgroup

• All threads of a process belong to the same cgroup
• On creation, all processes are put in the cgroup that the parent process belongs to at the time
• A process can be migrated to another cgroup
• Migration of a process doesn't affect already existing descendant processes

• Following certain structural constraints, controllers may be enabled or disabled selectively on a cgroup
• All controller behaviors are hierarchical - if a controller is enabled on a cgroup, it affects all processes which

belong to the cgroups consisting the inclusive sub-hierarchy of the cgroup
• When a controller is enabled on a nested cgroup, it always restricts the resource distribution further
• The restrictions set closer to the root in the hierarchy can not be overridden from further away

MARCH 2023

CGROUPS (CONTROL GROUPS)

• cgroups v2 offers several improvements over cgroup v1
• Single unified hierarchy design in API
• Safer sub-tree delegation to containers
• Newer features like Pressure Stall Information
• Enhanced resource allocation management and isolation across multiple resources
• Unified accounting for different types of memory allocations (network memory, kernel memory, etc)
• Accounting for non-immediate resource changes such as page cache write backs

• cgroups v2 uses a different API than cgroup v1, so if there are any applications that directly access the cgroup file
system, they need to be updated to newer versions that support cgroups v2
• Identify the cgroup version on Linux Nodes

– The cgroup version depends on the Linux distribution being used and the default cgroup version configured on the OS.
Compute# stat -fc %T /sys/fs/cgroup/
– For cgroup v2, the output is cgroup2fs
– For cgroup v1, the output is tmpfs

• COS 2.4 supports cgroups v2 in addition to cgroups v1
• The system boots with only cgroups v2 by default
• Set kernel parameters systemd.unified_cgroup_hierarchy, to boot with choose version of cgroups

– In default mode, this parameter is set in the boot_parameter file with the value of 1, for cgroups version 2:
–systemd.unified_cgroup_hierarchy=1
– To override this kernel boot parameter to activate cgroups version 1, set the value to 0 in the BOS boot session template:
–systemd.unified_cgroup_hierarchy=0

• Nvidia open-source driver enables cgroups v2 support for CUDA managed memory

MARCH 2023

CGROUPS V2

CUG 2023

• Data Virtualization Service (DVS)
• Distributed network service projects file systems mounted on NCNs to other nodes within the system
• Projecting makes a file system available on nodes where it does not physically reside
• DVS-specific configuration settings enable clients to access a file system projected by DVS servers
• Represents a software layer that provides scalable transport for file system services
• Uses Lustre Networking (LNet) to communicate over the network

– LNet configuration is done by the code that configures DVS
• Works with CPS to project internal file systems to nodes
• Projecting external file systems from gateway nodes

• DVS provides I/O performance and scalability to many nodes
– Far beyond the number of clients supported by a single NFS server

• HPE DVS configuration minimizes
– Operating system noise
– Impact on compute node memory resources

• DVS
– Uses Linux virtual file system (VFS) interface to process file system operations
– Can project Any POSIX-compliant file system

– such as Spectrum Scale (GPFS), NFS, and Lustre
• Gateway nodes need custom OS images built to support Spectrum Scale

DVS

131

CUG 2023

• All files in the compute node root file system (rootfs) are provided from a squashFS image stored in S3
(Ceph)

• Compute node rootfs images are projected by CPS pods and mounted via DVS
• Rootfs images are mounted on compute nodes with /opt/cray/cps-utils/bin/cpsmount.sh

and are mounted read-only
• A compute node local overlay file system is configured to enable writes "on top of" the rootfs to an ephemeral

in-memory file system
• DVS mount content is accessed over the network on demand

• When a block is first referenced, DVS caches the content in the node-local Linux page cache so future references
to that data will not involve the network
– If available memory gets too low, Linux can evict these pages, and thus the data will be accessed over the network again

(and cached again) if/when they are referenced again
– Overlay Preload can permanently "pin" files in memory on the compute node at boot time so they can never be evicted

• DVS can also project other filesystems unrelated to CPS
• Projections of user file systems using DVS can be configured as read-write or read-only

COMPUTE NODE ROOT FILE SYSTEM MOUNTS

132

CUG 2023

• The Content Projection Service (CPS) is a container-based microservice managed by Kubernetes
• The main components of CPS are

– CPS Brokers
– Content Managers
– Projection Managers

• At node boot Boot Script Service (BSS) provides
• The Linux kernel
• initrd
• Boot parameter data

• CPS provides
• Node’s root file system image (operating system image)
• HPE Cray Programming Environment (CPE) images
• Analytics images

WHAT IS THE CONTENT PROJECTION SERVICE (CPS)

cray cps contents provides
a list of images being managed by
the content manager

cray cps deployment
provides a list of CPS pods and their
statuses

cray cps transports
provides a list of images currently
being exported (served) to nodes

133

CUG 2023

• PodAntiAffinity ensures that there will be no more than one instance of cray-cps pods per worker node
• Scaling the number of cray-cps pods is helpful for maintaining resiliency and load-balancing

• Default: 2 pods
ncn# kubectl -n services scale --current-replicas=2 --replicas=3 deployment/cray-cps

• Scaling the number of cm-pm pods and controller where they run is also useful for resiliency and load-
balancing when using CPS
• Default: 3 pods
• Guidance: 1 pod supports about 512 nodes, but should have not less than 3 total
• Can assign to specific worker nodes (in different cabinets) or let CPS choose from available worker nodes when

scaling up
ncn# cray cps deployment update --nodes "ncn-w015,ncn-w016"
ncn# cray cps deployment update --numpods 2

CPS TUNING

134

CUG 2023

• Add content to CPS
• Pre-stages the content to the cray-cps-cm-pm pods so it will be ready when the first client tries to mount the new content
ncn-w001# cray cps contents create --s3path s3://boot-images 08673352-fc26-4cc6-883a-f79e1ed3052b/rootfs --etag
90d7b9f298d1a638f5a80b3876691ccc-167 --transport dvs

• List all CPS content
ncn-w001# cray cps contents list
exportPath = "/var/lib/cps-local/76df050e1fde782a58365504477a7af6"
s3path = "s3://boot-images/08673352-fc26-4cc6-883a-f79e1ed3052b/rootfs"
ERROR = []
transports = ["dvs",]
artifactID = "3c070d4f16dbd81e0c1870a751251880"
[[results.exportStatus]]
status = "ready"
type = "dvs"
[results.contentReplicas]
ready = 2
total = 2
[[results.contentReplicas.status]]
status = "ready"
replicaID = "10.252.1.5"
detail = "Artifact_id=3c070d4f16dbd81e0c1870a751251880 is ready"
[[results.contentReplicas.status]]
status = "ready"
replicaID = "10.252.1.6"
detail = "Artifact_id=3c070d4f16dbd81e0c1870a751251880 is ready"

• Remove CPS Content
• Removing content downloaded by the cray-cps-cm-pm pods helps free up disk space on the nodes where those pods run
ncn-w001# cray cps contents delete --s3path s3://boot-images/08673352-fc26-4cc6-883a-f79e1ed3052b/rootfs

CPS CONTENT

135

CUG 2023 136

• CPS contents should be periodically checked and old contents removed from CPS to avoid running out of disk
space
• CPS contents expects the source data (file object) to be in the S3 storage, but they might get deleted by IMS before

the CPS contents are removed especially the old contents
• cleanup_cps.py

– Can list all the CPS contents and which ones are currently DVS mounted or not used
– Can remove CPS contents that are not in use
– Scans all compute node
– Scans with --xname option with list of comma separated xnames to search only those compute nodes

– List at least one or two nodes for different boot images that are currently used to boot compute nodes and UAN nodes as well

• List all contents
ncn-m001# cd /opt/cray/cps-utils/cps-cleanup
ncn-m001# ./cleanup_cps.py

• Remove all unused contents by scanning all compute and application nodes
ncn-m001# ./cleanup_cps.py --delete
– To delete manually instead of the above command
ncn-w001# cray cps contents delete --s3path s3://boot-images/08673352-fc26-4cc6-883a-
f79e1ed3052b/rootfs

CLEAN UP CPS CONTENT

CUG 2023

• Compute node root filesystem utilizes the Linux overlayfs architecture
• Read-only lower layer that uses the Data Virtualization Service (DVS)
• Read-write, RAM based upper layer
• This architecture supports copying files from the lower layer to the upper layer to increase performance and support

writes
• The Overlay Preload feature uses this copy operation to increase performance on frequently accessed files

• A list of files is provided at boot, and they are all copied into local memory
• All future references to those files are serviced by the local file system, rather than requiring remote data and/or

metadata DVS operations
• This improves system and application performance

– However, the amount of memory available on the node is reduced by the cumulative size of all files copied into its memory
• The total amount of memory used by Overlay Preload can be configured by the system administrator to balance

the performance and memory requirements of the system
• The system is shipped with a default list of files to be preloaded

• This list is specific to the operating system release provided and the IO access recorded during system boot
• The administrator can modify this list if desired

– Sites may define their own file lists to optimize work for specific workloads
– The Overlay Preload package ships with a script to aid in determining which files are accessed at boot time

– It will analyze boot behavior and produce a list of files accessed

CRAY OVERLAY PRELOAD

137

CUG 2023 138

• Configuration Settings
• Overlay Preload configuration is managed using the CFS overlay-preload Ansible role

– overlay-preload-size-limit
– The size, in MB, that limits the amount of file data that is promoted to the overlay cache

– A value of 0 indicates ‘unlimited’ file data
• File lists

• The list of files to be preloaded at boot are located in the file /opt/cray/overlay-preload/config/dist/overlay-preload.filelist
– The file format is a list of file paths, one per line, with support for wildcard values

• The file list in the default boot image may be modified
• The file is read early in the boot process, and files will be processed in order

– If there are constraints placed on total preload size, processing will stop once the limit is reached
– In this case, files that are critical for preloading should be placed first

• The Overlay Preload Log File and Symlinks
• Overlay Preload creates a log file on affected nodes at /var/log/cray/overlay-preload.log

– The log file contains warnings for files that were not found, as well as the number and size of the files preloaded on the node
• Any symlinks included in a file list may not be copied from the lower layer to the node-local RAM file system, which might look

confusing
– For example, if a site’s content list contains /etc/alternatives/unzip, which is a symlink to /usr/bin/unzip-plain
– In this case, both the link and its target are present in lower layer, but neither of them appear in the node-local file system
– This is expected and correct behavior
– A site that is concerned about possible confusion for administrators can decide to exclude symlinks from file lists, or simply list the target of the

symlink in a file list to ensure that it is present in the node-local file system

CONFIGURE CRAY OVERLAY PRELOAD

CUG 2023 139

• Create Custom Loads for Specific Workloads
• Sites may define their own file lists to optimize work for specific workloads

– Either create an Ansible play for CFS to run pre-boot for image customization or use the IMS method to jump into the image
customization process via ssh to run a command

• The following is a general workflow for this process:
– Enable the cray-preload-strace service in the image that will be booted
image# systemctl enable cray-preload-strace

– Boot a compute node with the new filesystem image
– Log into the compute node as root and kill any strace process.

– The strace log can be found at /cray-preload-strace.log.
– Run the preload-strace-analyze.sh script with the strace log as input.
compute# preload-strace-analyze.sh /cray-preload-strace.log
– The output will be a list of files, access counts, and sizes
– The sum is included at the bottom

– This can be used as the basis for creating or modifying an overlay file list

– Disable the cray-preload-strace service
compute# systemctl disable cray-preload-strace

CUSTOM CRAY OVERLAY PRELOAD

WORKLOAD MANAGEMENT

CUG 2023 140

• PALS – Parallel Application Launch Service
• libpals is used for both PBS Pro and Slurm
• Launcher part of PALS (mpiexec, aprun, palsd) is

only used for PBS
• Application Task Orchestration and

Management (ATOM)
• application and job prologue and epilogue task

runner
– compute node cleanup
– node health checking
– energy usage reporting

CRAY WLM SERVICES

• Actively working with SchedMD and Altair on
HPE Cray Ex system check-out and new APIs

• Cray providing integration through a new set of
services and APIs

• Both WLMs supported
• Other WLMs can also use the same APIs

SLURM and PBS Pro

WORKLOAD MANAGEMENT

CUG 2023 141

CUG 2023 142

• Set SwitchType=switch/hpe_slingshot in slurm.conf
• SwitchParameters determine behavior

• vnis=<min>-<max> - Range of VNIs to allocate for jobs
and applications
– Default is 32768-65535.

• tcs=<class1>[:<class2>]… - Set of traffic classes to
configure for applications. Supported traffic classes are
[DEDICATED_ACCESS], [LOW_LATENCY],
[BULK_DATA] and [BEST_EFFORT].

• single_node_vni=<all|user|none> - Allocates single node
VNI as follows:
– Not set - Does not allocate VNI for single-node job steps.
– single_node_vni (no value) - Allocates a VNI for all job steps.
– single_node_vni=all - Allocates a VNI for all job steps.
– single_node_vni=user - Allocates a VNI for single-node job

steps using the srun --network=single_node_vni option or
SLURM_NETWORK=single_node_vni environment variable.

– single_node_vni=none - Does not allocate VNI for single-node
job steps.

• job_vni=<all|user|none> - Allocates job VNI as follows:
– Not set - Does not allocate additional VNI for jobs.
– job_vni (no value) - Allocates an additional VNI for jobs,

shared among all job steps.
– job_vni=all - Allocates an additional VNI for jobs, shared

among all job steps.
– job_vni=user - Allocates an additional VNI for any job either

using the srun --network=job_vni option or
SLURM_NETWORK=job_vni environment variable.

– job_vni=none - Does not allocate additional VNI for jobs.
– adjust_limits - If set, slurmd sets an upper bound on network

resource reservations by taking the per-NIC maximum
– resource quantity and subtracting the reserved or used values

(whichever is higher) for any system network services. This is
– the default.

SLURM CONFIG FOR HPE 200GB CASSINI NICS

CUG 2023 143

• Set SwitchType=switch/hpe_slingshot in slurm.conf
• SwitchParameters determine behavior

• no_adjust_limits - If set, slurmd calculates network resource
reservations based only upon the per-resource configuration
default and number of tasks in the application; it does not set
an upper bound based on resource usage of already-existing
system network services. Setting no_adjust_limits can result in
more application launch failures due to network resource
exhaustion; but if an application requires a certain amount of
resources, this option ensures it.

• jlope_url=<url> - If set, slurmctld uses the configured URL to
request Instant On NIC information, from the HPE jackalope
daemon REST API, for each node in a job step.

• jlope_auth=<BASIC|OAUTH> - HPE jackalope daemon REST
API authentication type, default is OAUTH.

• jlope_authdir=<directory> - Directory containing authentication
information files. Default is /etc/jackaloped for BASIC
authentication and /etc/wlm-client-auth for OAUTH
authentication.

• def_<rsrc>=<val> - Per-CPU reserved allocation for this
resource.

• res_<rsrc>=<val> - Per-node reserved allocation for this
resource. If set, overrides the per-CPU allocation.
– max_<rsrc>=<val> - Maximum per-node application for this resource.

• Resources are:
• txqs - Transmit command queues. The default is 2 per-CPU,

maximum 1024 per-node.
• tgqs - Target command queues. The default is 1 per-CPU,

maximum 512 per-node.
• eqs - Event queues. The default is 2 per-CPU, maximum 1023

per-node.
• cts - Counters. The default is 1 per-CPU, maximum 1023 per-

node.
• tles - Trigger list entries. The default is 1 per-CPU, maximum

2048 per-node.
• ptes - Portable table entries. The default is 6 per-CPU,

maximum 2048 per-node.
• les - List entries. The default is 16 per-CPU, maximum 16384

per-node.
• acs - Addressing contexts. The default is 4 per-CPU, maximum

1022 per-node.

MORE SWITCHPARAMETERS

CUG 2023

• Application launcher that enables WLMs to function normally
• WLM-specific plugins and configured to access the WLM interfaces
• Launch daemon (palsd) integrates with WLMs that have a compute node presence

• PBS Pro’s MoM

• Runs alongside the WLM daemon on the compute node
• Coordinates execution of parallel applications on multiple compute nodes

• Treats these as a unit rather than separate processes
• Needed for WLMs that do not have a launcher or Cray PMI plugin

• PBS Pro
• What about Slurm?

• Already has a launcher (srun) and Cray PMI plugin
• PALS will be disabled

PARALLEL APPLICATION LAUNCH SERVICE (PALS)

144

• Combines functionality of Cray XC system’s
compute node cleanup, node health, and RUR
(Resource Usage and Reporting)

• General purpose job and application prologue and
epilogue task runner
• Configuration
• Compute node cleanup
• Node health testing

• ATOM is only called by PALS and WLMs
• ATOM REST API is not exposed on the network

• Users cannot call ATOM APIs directly

APPLICATION TASK ORCHESTRATION AND MANAGEMENT (ATOM)

CUG 2023

Compute Node

WLM

Parallel
Application

Launch
Service
(PALS)

ATOM

145

CUG 2023

• Allows integration with PALS or the WLM compute node daemon
• Runs a task at a given time

• ATOM service or daemon start-up (PBS Pro only)
• Job start or end by WLM Daemon (PBS Pro and Slurm)
• Application start or end by PALS (PBS Pro only)

• Does something if that task fails or succeeds
• Extensible and configurable by the customer

• New tasks added by dropping in a new task configuration file
• Runs tasks in lexical order, so sites can choose ordering

• Tasks can be disabled or enabled by site administrator or user
• Site administrator can force some tasks to run or not permit others to be enabled

• ATOM: compute node daemon runs tasks in the configured order

WHY ATOM?

146

• Any executable action that is run at a specified
time
• “On this event, run this script and if it fails, do this”
• “On this event, run this script and if it succeeds, do

this”
• Command can be inline commands or executed

(Python/shell/binaries)
• Executed in filename lexical order

• ATOM daemon startup
• Initialize Boot FreeMem

• Compute node cleanup
• Clear VM/Lustre cache
• Compact memory

• Node health
• Free memory check

• Reporting
• Task stats

WHAT IS A TASK?

CUG 2023

010_bootfreemem_init
{

"name": “bootfreemem_init",
"description": "Initialize /proc/boot_freemem",
"onSuccess": [],
"onFailure": [],
"events": ["startup"],
"timeout": 2,
"command": ["/bin/sh", "-c", "echo 1 >/proc/boot_freemem"],
"enabled": true,
"userControl": false

}

147

CUG 2023

• All tasks and actions run kept in a database only during a job or application’s lifespan
• Task details available through “tasks” endpoint

• All associated tasks and actions are deleted when a job or application is deleted!
• Tasks are considered successful if they exit with 0 exit status before their timeout period has elapsed
• In compute node image, /etc/sysconfig/atomd contains configurable variables which control file

locations and settings for ATOM daemon

ATOM ARCHITECTURE AND COMPONENTS

WLM/PALS
Daemon

ATOM
Daemon

http

ATOM only listens on a
local UNIX socket on
compute nodes

exec Task exit code ATOM
Daemon

Failure
Action

Success
Action

success

failure

148

CUG 2023

• File names must begin with three decimal digits
• Files are executed in numerical order
• Configuration changes done via customizing the node image or via post-boot node personalization using Ansible

JSON object with the following keys:

ATOM TASK CONFIGURATION FILE

Key Type Required Description

name String Yes Unique task name

description String No Human-readable task description

onSuccess Array No List of action names to take upon successful completion

onFailure Array No List of action names to take upon failure

events Array Yes List of times to run this task (startup, jobStart, jobEnd, appStart, appEnd,
action)

timeout Number No Task timeout in seconds

command Array Yes Task argv array

enabled Boolean No Enable/disable task by default

userControl Boolean No If true, allow users to enable/disable this task

149

CUG 2023

nid001000# ls -1 /etc/atom.d
010_bootfreemem_init.cfg
020_clear_lustre_caches.cfg
020_clear_lustre_caches_job.cfg
025_clean_tmpdirs.cfg
030_clear_vm_cache.cfg
040_compact_memory.cfg
040_compact_memory_job.cfg
090_hugepages_test.cfg
100_freemem_test.cfg
110_zeropage_test.cfg
120_pals_test.cfg
150_filesystem_test.cfg
200_energy_end.cfg
200_energy_start.cfg
800_admindown.cfg
850_reboot.cfg
900_panic.cfg
999_hello_atom.cfg

ATOM TASK CONFIGURATION FILES

Example task, no actual action

150

• Compact fragmented memory at end of every application and job
so hugepage allocations remain efficient
nid000001# cat
/etc/atom.d/040_compact_memory.cfg
{

"name": "compact_memory",
"description": "Compact fragmented memory to

allow better hugepages allocation",
"onSuccess": [],
"onFailure": [],
"events": ["appEnd", "jobEnd"],
"timeout": 30,
"command":

["/opt/cray/atom/sbin/compact_memory.py"],
"enabled": true,
"userControl": true

}

• Execution files are in /opt/cray/atom/sbin and are
referenced in the “command” field
• Test for zero page memory corruption at job end
nid001000# cat /etc/atom.d/110_zeropage_test.cfg
{

"name": "zeropage_test",

"description": "Check for zero page memory
corruption",

"onSuccess": [],
"onFailure": ["admindown"],
"events": ["jobEnd"],
"timeout": 5,
"command": ["/opt/cray/atom/sbin/zeropage"],
"enabled": true,

"userControl": false,
"exclusive": false

}

ATOM TASK EXECUTION FILES

CUG 2023 151

CUG 2023

• ATOM configuration is done by CFS, so add or change data in VCS (git)
• Configuration settings can be used to specify directory paths

– atom_filesystems
– list of directory paths mounted on all compute nodes to check at application and job end time

– atom_tmpdirs
– list of directory paths to be cleaned up at job end time

• Create the group_vars/all/atom.yml file in the pbs-config-management or slurm-config-management git
repository

• Edit and populate it with the desired settings. For example:
atom_filesystems:
- "/scratch"

atom_tmpdirs:
- "/tmp"
- "/var/tmp"
- "/dev/shm"

• Can override or add new ATOM configuration files or tasks
roles/atom/files/config/
roles/atom/files/tasks/

CFS CONFIGURATION FOR ATOM

152

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 153

• Provides filterable reports
• Firmware and software versions
• Hardware inventory and history
• Current sensor data
• System status

• Has automation for more dynamic workflows
• Preparing boot artifacts
• System boot and shutdown
• Blade replacement,
• BMC credential management

• Offers a command line utility which uses subcommands
• Most commands require authentication to API gateway
• Some commands require Kubernetes configuration and authentication

CUG 2023

SYSTEM ADMIN TOOLKIT (SAT)

154

Groups:
artifacts Manage artifacts in S3

auth Manage OAuth2 credentials for the Cray CLI
badger Badger Service API
bos Boot Orchestration Service

bss Boot Script Service API
capmc Cray Advanced Platform Monitoring and Control API
cfs Configuration Framework Service
config View and edit Cray configuration properties

cps Content Projection Service
crus Compute Rolling Upgrade Service
fas Firmware Action Service
hsm Hardware State Manager API
ims Image Management Service
nmd Node Memory Dump Service
scsd System Configuration Service

sls System Layout Service
uas User Access Service

vnid Virtual Network Identifier Daemon

user@ncn> cray auth login --username UserWithAdminRole
Password:
user@ncn> cray --help
Usage: cray [OPTIONS] COMMAND [ARGS]...

Cray management and workflow tool

Options:
--version Show the version and exit.
--help Show this message and exit.

Commands:
init Initialize/reinitialize the Cray CLI

CRAY CLI FRAMEWORK FROM REST API SPECIFICATION

CUG 2023

Management services which have API specifications

• Documentation convention is that if the admin
role is required for cray CLI or sat CLI, then the
command prompt will use hostname# rather
than user@hostname>

• Linux account and Keycloak authentication are
different credentials

155

• Runs on master nodes in a container using podman, a daemonless container runtime
• Using either sat or sat bash always launches a container
• The SAT container does not have access to the node’s file system

• There are two ways to run sat
• Interactive: Launching a container using sat bash, followed by sat commands
ncn-m# sat bash
(CONTAINER-ID)sat-container# sat status
(CONTAINER-ID)sat-container# sat hwinv
(CONTAINER-ID)sat-container# exit

• Non-interactive: Running a sat command directly on a master node
ncn-m# sat status

• Authentication using Keycloak credentials
•sat auth and use Keycloak username and password per session
• Account used needs to have admin role in Keycloak

• Man pages exist for sat and subcommands
• Use to get more information on how to use options for subcommands

CUG 2023

SAT CLI

156

CUG 2023

SAT COMMANDS

sat auth Authenticate to the API gateway and save the
token

sat k8s Report on Kubernetes replicasets that have co-
located replicas

sat bmccreds Set BMC Redfish access credentials sat nid2xname Translate node IDs to node xnames

sat bootprep Prepare to boot nodes with images and
configurations

sat sensors Report current sensor data

sat bootsys Boot or shutdown the system (compute nodes,
application nodes, and management nodes)

sat setrev Set HPE Cray EX system revision information

sat diag Launch diagnostics on the HSN switches and
generate a report

sat showrev Print revision information for the HPE Cray EX
system

sat firmware Report firmware version sat slscheck Perform a cross-check between SLS and HSM

sat hwhist Report hardware component history sat status Report node status across the HPE Cray EX system

sat hwinv Give a listing of the hardware of the HPE Cray
EX system

sat swap Prepare HSN switch or cable for replacement and
bring HSN switch or cable into service

sat hwmatch Report hardware mismatches for processors and
memory

sat xname2nid Translate node and node BMC xnames to node IDs

sat init Create a default SAT configuration file

Newest SAT commands
157

•sat status gets information from the following APIs
• Hardware State Manager (HSM)
• System Layout Service (SLS)
• Configuration Framework Service (CFS)
• Boot Orchestration Service (BOS)
• Image Management Service (IMS)

• Options exist to limit which APIs are queried (introduced in SAT 2.3)
•--hsm-fields
•--sls-fields
•--cfs-fields
•--bos-fields

– Introduced in SAT 2.4
– Only supported when using BOS v2 (with --bos-version v2 or corresponding config file option)

– This also includes the “Most Recent Image” field which is obtained using BOS and IMS

CUG 2023 158

SAT STATUS API INTERACTIONS

CUG 2023 159

SAT STATUS API REQUESTS

sat status

Configuration
Framework

Service (CFS)

Boot
Orchestration
Service (BOS)

Image
Management
Service (IMS)

System Layout
Service (SLS)

Hardware State
Manager (HSM)

+-------+---------+------+-----+-------+------+---------+------+-------+------+---------+----------+
| xname | Aliases | Type | NID | State | Flag | Enabled | Arch | Class | Role | SubRole | Net Type |
+-------+---------+------+-----+-------+------+---------+------+-------+------+---------+----------+

+----------------+----------------------+-------------+
| Desired Config | Configuration Status | Error Count |
+----------------+----------------------+-------------+

+-------------+-------------------------+------------------------------+-------------------+
| Boot Status | Most Recent BOS Session | Most Recent Session Template | Most Recent Image |
+-------------+-------------------------+------------------------------+-------------------+

+---------+
| Aliases |
+---------+

• Shows current status of NCNs and CNs as reported by Hardware State Manager (HSM)
• Information must be discovered by HSM

• Requires authentication to show any information
ncn-m# sat status --sort-by NID
+----------------+-----------+------|----------+-------+------+---------+------+----------+----------+---------+----------+
| xname | Aliases | Type | NID | State | Flag | Enabled | Arch | Class | Role | Subrole | Net Type |
+----------------+-----------+------|----------+-------+------+---------+------+----------+----------+---------+----------+
x3000c0s20b1n0	nid000001	Node	1	On	OK	True	X86	River	Compute	None	Sling
x3000c0s20b2n0	nid000002	Node	2	Ready	OK	True	X86	River	Compute	None	Sling
x3000c0s20b3n0	nid000003	Node	3	On	OK	True	X86	River	Compute	None	Sling
x3000c0s20b4n0	nid000004	Node	4	Ready	OK	True	X86	River	Compute	None	Sling
x3000c0s23b1n0	nid000005	Node	5	On	OK	True	X86	River	Compute	None	Sling
x3000c0s23b2n0	nid000006	Node	6	Ready	OK	True	X86	River	Compute	None	Sling
x3000c0s23b3n0	nid000007	Node	7	On	OK	True	X86	River	Compute	None	Sling
x3000c0s23b4n0	nid000008	Node	8	On	OK	True	X86	River	Compute	None	Sling
x1000c0s1b0n0	nid001004	Node	1004	Ready	OK	True	X86	Mountain	Compute	None	Sling
x1000c0s1b0n1	nid001005	Node	1005	Ready	OK	True	X86	Mountain	Compute	None	Sling
x1000c0s1b1n0	nid001006	Node	1006	Ready	OK	True	X86	Mountain	Compute	None	Sling
x1000c0s1b1n1	nid001007	Node	1007	Ready	OK	True	X86	Mountain	Compute	None	Sling
x3000c0s1b0n0	ncn-m001	Node	100001	Ready	OK	True	X86	River	Management	Master	Sling
x3000c0s3b0n0	ncn-m002	Node	100002	Ready	OK	True	X86	River	Management	Master	Sling
x3000c0s5b0n0	ncn-m003	Node	100003	Ready	OK	True	X86	River	Management	Master	Sling
x3000c0s7b0n0	ncn-w001	Node	100004	Ready	OK	True	X86	River	Management	Worker	Sling
x3000c0s9b0n0	ncn-w002	Node	100005	Ready	OK	True	X86	River	Management	Worker	Sling
x3000c0s11b0n0	ncn-w003	Node	100006	Off	OK	True	X86	River	Management	Worker	Sling
x3000c0s13b0n0	ncn-s001	Node	100007	Ready	OK	True	X86	River	Management	Storage	Sling
x3000c0s15b0n0	ncn-s002	Node	100008	Ready	OK	True	X86	River	Management	Storage	Sling
x3000c0s17b0n0	ncn-s003	Node	100009	Ready	OK	True	X86	River	Management	Storage	Sling
x3000c0s27b0n0	uan01	Node	49169248	Off	OK	True	X86	River	Application	UAN	Sling
+----------------+-----------+------|----------+-------+------+---------+------+-------+-------------+---------+----------+

CUG 2023

SAT STATUS

160

• Can filter by any of the columns with both “equal to” and “not equal to”
• Can remove some of the pretty printing

ncn-m# sat status --no-borders --filter nid=1000
xname Aliases Type NID State Flag Enabled Arch Class Role Subrole Net Type
x1000c0s0b0n0 nid001000 Node 1000 Ready OK True X86 Mountain Compute None Sling
ncn-m# sat status --no-borders --no-headings --filter role=compute --filter state!=ready \
--filter enabled=true
x1000c1s2b0n1 nid001041 Node 1041 Standby Alert True X86 Mountain Compute None Sling
x1000c2s1b0n0 nid001068 Node 1068 Off OK True X86 Mountain Compute None Sling
x1000c7s5b1n0 nid001246 Node 1246 On OK True X86 Mountain Compute None Sling
ncn-m# sat status --no-borders --no-headings --filter class=river --filter role=application
x3000c0s23b0n0 uan01 Node 49169120 Ready OK True X86 River Application UAN Sling

• Can change fields displayed
ncn-m# sat status --no-borders --filter class=river --filter role=management \
--fields xname,aliases,nid,subrole,state
xname Aliases NID Subrole State
x3000c0s3b0n0 ncn-m002 100002 Master Ready
x3000c0s7b0n0 ncn-w001 100004 Worker Ready
x3000c0s17b0n0 ncn-s003 100008 Storage Ready

• Can report status on different types of components, but default is “Node”
• all, Chassis, ChassisBMC, ComputeModule, HSNBoard, Node, NodeBMC, NodeEnclosure, RouterBMC, RouterModule
ncn-m# sat status --no-borders --types RouterBMC
xname Type State Flag Enabled Arch Class Net Type
x3000c0r21b0 RouterBMC Ready OK True X86 River Sling

CUG 2023

SAT STATUS FILTERED

161

• Search for information in the product-catalog with jq filtering the output for only CSM
ncn# kubectl get cm cray-product-catalog -n services -o json | jq -r .data.csm
1.2.0:

active: true
configuration:

clone_url: https://vcs.cmn.groot.dev.cray.com/vcs/cray/csm-config-management.git
commit: 1069629a2682bb173c42c11c85d045797637806c
import_branch: cray/csm/1.9.31
import_date: 2022-07-12 13:54:16.725749
ssh_url: git@vcs.cmn.groot.dev.cray.com:cray/csm-config-management.git

images:
cray-shasta-csm-sles15sp3-barebones.x86_64-csm-1.2:

id: 0546c3fc-2928-497f-86ad-3d92085eb6ec
recipes:

cray-shasta-csm-sles15sp3-barebones.x86_64-csm-1.2:
id: 3d2f5663-6190-4d8a-ad1d-63b09eae3fd8

CUG 2023

CHECKING SOFTWARE VERSIONS WITH KUBECTL

162

• Display information for all software products installed
ncn-m# sat showrev --products
##
Product Revision Information
##
+-------------------------+------------------+--------+--+--+
| product_name | product | active | images | image_recipes |
| |_version | | | +
+-------------------------+------------------+---+--+
analytics	1.1.28	N/A	Cray-Analytics.x86_64-base	-
cos	2.3.101	N/A	cray-shasta-compute-sles15sp3.x86_64-2.3.33	cray-shasta-compute-sles15sp3.x86_64-2.3.33
cpe	21.12.3	N/A	cpe-barebones-sles15sp3.x86_64-21.12.2	cpe-barebones-sles15sp3.x86_64-21.12.2
cpe	22.3.1	N/A	cpe-barebones-sles15sp3.x86_64-22.03.0	cpe-barebones-sles15sp3.x86_64-22.03.0
cpe	22.6.6	N/A	cpe-barebones-sles15sp3.x86_64-22.06.4	cpe-barebones-sles15sp3.x86_64-22.06.4
cray-sdu-rda	2.0.0	N/A	-	-
csm	1.0.11	N/A	cray-shasta-csm-sles15sp3-barebones.x86_64-csm-1.2	cray-shasta-csm-sles15sp3-barebones.x86_64-csm-1.2
hfp	22.05.7	N/A	-	-
sat	2.3.4	True	-	-
sle-os-backports-15-sp3	22.03.0	N/A	-	-
sle-os-products-15-sp3	22.03.0	N/A	-	-
sle-os-updates-15-sp3	22.03.0	N/A	-	-
slingshot	1.7.3-1934	N/A	-	-
slingshot-host-software	1.7.3-55	N/A	-	-
slingshot-host-software	1.7.3-55_cos-2.3	N/A	-	-
slingshot-host-software	1.7.3-55_csm-1.2.0	N/A	-	-
slurm	1.1.10	N/A	-	-
sma	1.6.22	N/A	-	-
uan	2.4.3	N/A	-	-

CUG 2023

CHECKING SOFTWARE VERSIONS WITH SAT

163

ncn-m# sat bash
(cab2475ed202) sat-container:/sat # source /etc/bash_completion.d/sat-completion.bash
(cab2475ed202) sat-container:/sat # sat hwinv --list-
--list-all --list-drives --list-node-accels --list-nodes
--list-chassis --list-hsn-boards --list-node-enclosure-power-supplies --list-procs
--list-cmm-rectifiers --list-mems --list-node-enclosures --list-router-modules
--list-compute-modules --list-node-accel-risers --list-node-hsn-nics
(cab2475ed202) sat-container:/sat # sat hwinv --list-nodes --node-fields xname,serial_number,memory_size
##
Listing of all nodes
##
+----------------+------------------+-------------------+
| xname | Serial Number | Memory Size (GiB) |
+----------------+------------------+-------------------+
x1000c0s1b0n0	HR19380063	256.0
x1000c0s1b0n1	HR19380063	256.0
x1000c0s5b0n0	HR19380023	256.0
(cab2475ed202) sat-container:/sat # sat hwinv --list-router-modules		
##		
Listing of all router modules		
##		
+-----------+--------------+		
xname	Manufacturer	
+-----------+--------------+		
x1000c0r3	Cray Inc	
x1000c0r7	Cray Inc	

CUG 2023

QUERYING HARDWARE INVENTORY
sat supports tab completion! From the podman pod, sat bash, but
not from the sat CLI. Hitting tab twice provides a list of options

164

CUG 2023

SLINGSHOT SWITCH OR CABLE REPLACEMENT

• Disable a Slingshot switch before maintenance or enable a switch after maintenance is complete.
ncn-m# sat swap switch --dry-run x1000c3r3
Ports: x1000c3r3j104p1 x1000c3r3j105p0 x1000c3r3j105p1 x1000c3r3j106p0 x1000c3r3j106p1
x1000c3r3j107p0 x1000c3r3j107p1 x1000c3r3j100p1 x1000c3r3j101p0 x1000c3r3j101p1
x1000c3r3j102p0 x1000c3r3j102p1 x1000c3r3j103p0 x1000c3r3j103p1 x1000c3r3j104p0
x1000c3r3j100p0 x1000c3r3j9p0 x1000c3r3j8p1 x1000c3r3j8p0 x1000c3r3j6p1 x1000c3r3j6p0
x1000c3r3j4p1 x1000c3r3j4p0 x1000c3r3j2p1 x1000c3r3j2p0 x1000c3r3j22p1 x1000c3r3j22p0
x1000c3r3j20p1 x1000c3r3j20p0 x1000c3r3j24p1 x1000c3r3j24p0 x1000c3r3j18p1
x1000c3r3j18p0 x1000c3r3j16p1 x1000c3r3j12p0 x1000c3r3j11p1 x1000c3r3j10p1
x1000c3r3j11p0 x1000c3r3j10p0 x1000c3r3j16p0 x1000c3r3j14p1 x1000c3r3j14p0
x1000c3r3j13p1 x1000c3r3j12p1 x1000c3r3j13p0 x1000c3r3j9p1
Dry run completed with no action to enable/disable switch.

• Determine all linked ports from a single jack
ncn-m# sat swap cable --dry-run x5000c1r3j16
Ports: x5000c1r3j16p0 x5000c3r7j18p0 x5000c1r3j16p1 x5000c3r7j18p1
Dry run completed with no action to enable/disable cable.

165

•sat bootprep automates the creation of CFS configurations, IMS images,
and BOS session templates to prepare to boot managed nodes

CUG 2023 166

SAT BOOTPREP HIGH-LEVEL DIAGRAM

configurations:
...

images:
...

session_templates:
...

sat bootprep

CFS
configuration

IMS image

Customized
IMS image

BOS session
template

bootprep-compute.yaml

• Create a sample bootprep file with proper sections
ncn-m# sat bootprep generate-example
ncn-m# cp example-bootprep-input.yaml bootprep-input.yaml
ncn-m# vi bootprep-input.yaml
ncn-m# sat bootprep run bootprep_input.yaml

• SAT 2.4 (22.11.2 recipe) has several bootprep yaml files in the hpc-csm-software-
recipe git repository
ncn-m# ls -l bootprep product_vars.yaml
-rw-r--r-- 1 root root 511 Apr 26 15:32 product_vars.yaml

bootprep:
total 28
-rw-r--r-- 1 root root 6711 Apr 28 14:21 compute-and-uan-bootprep.yaml
-rw-r--r-- 1 root root 1112 Mar 30 10:24 management-bootprep-image-customization.yaml
-rw-r--r-- 1 root root 2856 Apr 26 15:48 management-bootprep-node-personalization.yaml
-rw-r--r-- 1 root root 2665 Mar 28 08:39 management-bootprep.yaml

SAT BOOTPREP YAML

CUG 2023 167

(C) Copyright 2022 Hewlett Packard Enterprise Development LP

schema_version: 1.0.2

configurations:
- name: compute-{{recipe.version}}

layers:

- name: shs-cassini_install-integration-{{shs.version}}

playbook: shs_cassini_install.yml

product:

name: slingshot-host-software

version: "{{shs.version}}"

branch: integration-{{shs.version}}

- name: cos-compute-integration-{{cos.version}}

playbook: cos-compute.yml

product:

name: cos

version: "{{cos.version}}"

branch: integration-{{cos.version}}

- name: csm-packages-integration-{{csm.version}}

playbook: csm_packages.yml
product:

name: csm

version: "{{csm.version}}"

- name: csm-diags-compute-{{csm_diags.version}}

playbook: csm-diags-compute.yml

product:

name: csm-diags

version: "{{csm_diags.version}}"

- name: sma-ldms-compute-{{sma.version}}

playbook: sma-ldms-compute.yml

product:

name: sma

version: "{{sma.version}}"

branch: integration-{{sma.version}}
- name: cpe-pe_deploy-integration-{{cpe.version}}

playbook: pe_deploy.yml

product:

name: cpe

version: "{{cpe.version}}"

branch: cpe-{{cpe.version.split('.')[0]}}.{{cpe.version.split('.')[1].zfill(2)}}-integration

- name: analytics-site-integration-{{analytics.version}}

playbook: site.yml

product:

name: analytics

version: "{{analytics.version}}"
branch: integration

- name: slurm-site-{{slurm.version}}

playbook: site.yml

product:
name: slurm

version: "{{slurm.version}}"

branch: integration-{{slurm.version}}

- name: cos-compute-last-integration-{{cos.version}}

playbook: cos-compute-last.yml

product:

name: cos

version: "{{cos.version}}"

branch: integration-{{cos.version}}

- name: uan-{{recipe.version}}

layers:

(SAME type of layers)

#- name: gpu-{{recipe.version}}

layers:

- name: cos-gpu-customize-playbook-{{cos.version}}

playbook: gpu_customize_playbook.yml

product:

name: cos

version: "{{cos.version}}"

branch: integration

SAT COMPUTE-AND-UAN-BOOTPREP.YAML 1

CUG 2023 168

images:
- name: "{{base.name}}"

ref_name: base_cos_image

base:

product:

name: cos

type: recipe

version: "{{cos.version}}"

- name: compute-{{base.name}}

ref_name: compute_image

base:

image_ref: base_cos_image

configuration: compute-{{recipe.version}}

configuration_group_names:

- Compute

NOTE: In order for this image to contain GPU content you need the GPU content available in Nexus.

NOTE: On a worker node check by running `gpu-nexus-tool repo check -v <vendor>` (e.g. AMD, Nvidia).

NOTE: Additionally, you need to also uncomment the configuration gpu-{{recipe.version}} above.

#- name: gpu-image

base:

image_ref: compute_image

configuration: gpu-{{recipe.version}}

configuration_group_names:

- Compute

- name: uan-{{base.name}}

ref_name: uan_image

base:

image_ref: base_cos_image

configuration: uan-{{recipe.version}}

configuration_group_names:

- Application

- Application_UAN

session_templates:
- name: compute-{{recipe.version}}

image:

image_ref: compute_image

configuration: compute-{{recipe.version}}

bos_parameters:

boot_sets:

compute:

kernel_parameters: ip=dhcp quiet spire_join_token=${SPIRE_JOIN_TOKEN} lnm=full lnm.cpu=0 no_hz_full=1-223
rcu_nocbs=1-223 rcu_nocb_poll cxi_core.disable_default_svc=0 cxi_core.enable_fgfc=1 cxi_core.ioi_enable=0

node_roles_groups:

- Compute

rootfs_provider_passthrough: "dvs:api-gw-service-nmn.local:300:hsn0,nmn0:0"

- name: uan-{{recipe.version}}

image:

image_ref: uan_image

configuration: uan-{{recipe.version}}

bos_parameters:

boot_sets:

uan:

kernel_parameters: spire_join_token=${SPIRE_JOIN_TOKEN} cxi_core.disable_default_svc=0 cxi_core.enable_fgfc=1
cxi_core.ioi_enable=0

node_roles_groups:

- Application

rootfs_provider_passthrough: "dvs:api-gw-service-nmn.local:300:hsn0,nmn0:0"

If BOS v2 will be used to create the session from this session template,

you can target the UAN subrole here instead. E.g.:

#

node_roles_groups:

- Application_UAN

#

If not using BOS v2, and the system has other nodes with the

"Application" role in HSM that are not UANs, use node_list instead of

node_roles_groups. E.g.:

#

node_list:

- xname1

- xname2

SAT COMPUTE-AND-UAN-BOOTPREP.YAML 2

CUG 2023 169

ncn-m# sat bootprep run compute-and-uan-bootprep.yaml
CFS creating configurations
INFO: Validating given input file compute-and-uan-bootprep.yaml

INFO: Input file successfully validated against schema

INFO: Creating 2 CFS configuration(s)

INFO: Creating CFS configuration with name "compute-22.11.2"

INFO: Creating CFS configuration with name "uan-22.11.2”

IMS building recipes
INFO: Using IMS public key with id b7a7edc8-9a32-4e32-85ce-0fc1ff76ce71

INFO: image at index 1 depends on image at index 0.

INFO: image at index 2 depends on image at index 0.

INFO: Found IMS base for image at index 0: recipe provided by version 2.4.109 of product cos

INFO: Found IMS base for image at index 1: image from input instance with ref_name="base_cos_image"

INFO: Found IMS base for image at index 2: image from input instance with ref_name="base_cos_image"

INFO: Of the 3 that will be created, 1 have no dependencies and will be created first.

INFO: Creating 3 images.

INFO: Creating images

INFO: Launching IMS job to create image

INFO: Created IMS image creation job with ID 4a6aedcc-da17-4337-947d-1eb8b527b45f

INFO: Creation of image cray-shasta-compute-sles15sp4.x86_64-2.4.17 succeeded: ID 29ef5db0-29b6-40e1-8219-5fb0909a0146

INFO: Image cray-shasta-compute-sles15sp4.x86_64-2.4.17 does not need configuration.

INFO: Creation of image cray-shasta-compute-sles15sp4.x86_64-2.4.17 succeeded: ID 29ef5db0-29b6-40e1-8219-5fb0909a0146

INFO: Base for image with name uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17 is a pre-built image.

INFO: Base for image with name compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17 is a pre-built image.

CFS customizing images
INFO: Creating CFS session sat-8302d116-42c1-41a2-b326-489b4b538c30 to configure image uan-cray-shasta-compute-
sles15sp4.x86_64-2.4.17

INFO: Created CFS session sat-8302d116-42c1-41a2-b326-489b4b538c30 to configure image uan-cray-shasta-compute-
sles15sp4.x86_64-2.4.17

INFO: Waiting for CFS to create Kubernetes job associated with session sat-a5e8f2c7-5c03-40e5-afba-025986334cb9.

INFO: Creating CFS session sat-6543c6a0-007a-4957-ad1a-8a906146bf53 to configure image compute-cray-shasta-compute-
sles15sp4.x86_64-2.4.17

INFO: Created CFS session sat-6543c6a0-007a-4957-ad1a-8a906146bf53 to configure image compute-cray-shasta-compute-
sles15sp4.x86_64-2.4.17

INFO: Waiting for CFS to create Kubernetes job associated with session sat-740406c1-6890-484c-8887-b8583d6271e5.

INFO: CFS session: sat-a5e8f2c7-5c03-40e5-afba-025986334cb9 Image: uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container git-clone transitioned to succeeded

INFO: Container istio-init transitioned to succeeded

INFO: Container ansible transitioned to running

INFO: Container inventory transitioned to running

INFO: Container istio-proxy transitioned to running

INFO: Container teardown transitioned to running

INFO: CFS session: sat-740406c1-6890-484c-8887-b8583d6271e5 Image: compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container git-clone transitioned to succeeded

INFO: Container istio-init transitioned to succeeded

INFO: Container ansible transitioned to running

INFO: Container inventory transitioned to running

INFO: Container istio-proxy transitioned to running

INFO: Container teardown transitioned to running

INFO: CFS session: sat-740406c1-6890-484c-8887-b8583d6271e5 Image: compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container inventory transitioned to succeeded from running

INFO: CFS session: sat-a5e8f2c7-5c03-40e5-afba-025986334cb9 Image: uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container inventory transitioned to succeeded from running

INFO: CFS session: sat-740406c1-6890-484c-8887-b8583d6271e5 Image: compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container ansible transitioned to succeeded from running

INFO: CFS session: sat-a5e8f2c7-5c03-40e5-afba-025986334cb9 Image: uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container ansible transitioned to succeeded from running

INFO: CFS session: sat-740406c1-6890-484c-8887-b8583d6271e5 Image: compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container teardown transitioned to succeeded from running

INFO: CFS session: sat-740406c1-6890-484c-8887-b8583d6271e5 Image: compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container istio-proxy transitioned to succeeded from running

INFO: Renaming configured image with ID 132829e6-c071-4ca8-97c5-286a3f7be599 to compute-cray-shasta-compute-
sles15sp4.x86_64-2.4.17

INFO: Deleting image with ID 613ef053-46d5-4680-a072-0d024d797f8a which was overwritten by a new image named compute-cray-
shasta-compute-sles15sp4.x86_64-2.4.17

INFO: Creation of image compute-cray-shasta-compute-sles15sp4.x86_64-2.4.17 succeeded: ID b63c7856-5771-49ad-80b7-
c07b2e0ee40f

INFO: CFS session: sat-a5e8f2c7-5c03-40e5-afba-025986334cb9 Image: uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container teardown transitioned to succeeded from running

INFO: CFS session: sat-a5e8f2c7-5c03-40e5-afba-025986334cb9 Image: uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17:

INFO: Container istio-proxy transitioned to succeeded from running

INFO: Renaming configured image with ID 204aa950-277f-417c-8922-232019b6b9f0 to uan-cray-shasta-compute-sles15sp4.x86_64-
2.4.17

INFO: Deleting image with ID 5d4c1224-fe15-4e8e-8504-e8cc08a0a5b5 which was overwritten by a new image named uan-cray-
shasta-compute-sles15sp4.x86_64-2.4.17

INFO: Creation of image uan-cray-shasta-compute-sles15sp4.x86_64-2.4.17 succeeded: ID 4d09554c-0fd7-4d81-986d-08ee61f427d0^M

INFO: Image creation completed successfully

BOS creating BOS session templates with customized images
INFO: Creating 2 BOS session templates

INFO: Creating BOS session template with the name “compute-22.11.2”

INFO: Creating BOS session template with the name “uan-22.11.2”

CUG 2023 170

SAT BOOTPREP RUN

CUG 2023

FIRMWARE REPORTING

ncn-m# sat firmware -x x1000c0s0b0
+-------------+--------------------------+--------------------------+---+
| xname | name | target_name | version |
+-------------+--------------------------+--------------------------+---+
x1000c0s0b0	Node0.ManagementEthernet	Node0.ManagementEthernet	wnc.i210-p2sn01
x1000c0s0b0	Bootloader	Bootloader	1.10-wnc
x1000c0s0b0	FPGA2	mFPGA1	1.05
x1000c0s0b0	BMC	BMC	nc.1.5-31-shasta-release.arm.2021-11.-
03T03:49:30+00:00.b9ced71			
x1000c0s0b0	FPGA1	mFPGA0	1.05
x1000c0s0b0	Node1.BIOS	Node1.BIOS	ex425.bios-1.6.1
x1000c0s0b0	Node0.BIOS	Node0.BIOS	ex425.bios-1.6.1
x1000c0s0b0	FPGA0	nFPGA	5.02
x1000c0s0b0	Recovery	Recovery	nc.1.5-31-shasta-release.arm.2021-11-
03T03:49:30+00:00.b9ced71			
x1000c0s0b0	Node1.ManagementEthernet	Node1.ManagementEthernet	wnc.i210-p2sn01
+-------------+--------------------------+--------------------------+---+

Node controller (or BMC) for two liquid-cooled nodes

171

CUG 2023

FIRMWARE REPORTING WITH XNAME LIST

List of xnames: cabinet controller and Slingshot switch
ncn-m# sat firmware -x x1003c6b0,x3001c0r11b0
+--------------+------------+---------------+---+
| xname | name | target_name | version |
+--------------+------------+---------------+---+
x1003c6b0	Recovery	Recovery	cc.1.5-31-shasta-release.arm64.2021-11-03T03:50:18+00:00.b9ced71
x1003c6b0	Rectifier1	Rectifier 1	PFC_01.03-SEC_02.10
x1003c6b0	Bootloader	Bootloader	1.7-cc-pass4
x1003c6b0	Rectifier0	Rectifier 0	PFC_01.03-SEC_02.10
x1003c6b0	BMC	BMC	cc.1.5-31-shasta-release.arm64.2021-11-03T03:50:18+00:00.b9ced71
x1003c6b0	FPGA0	cFPGA	3.03
x1003c6b0	Rectifier2	Rectifier 2	PFC_01.03-SEC_02.10
x3001c0r11b0	BMC	BMC	sc.1.7.0-45-slingshot-release.arm64.2022-03-05T22:28:42+00:00.9a31838
x3001c0r11b0	Recovery	Recovery	rec.1.4.22-shasta-release.arm64.2021-04-26T23:22:15+00:00.79c40dd
x3001c0r11b0	FPGA0	sFPGA-ROS	1.08
x3001c0r11b0	Packages	Packages	na
x3001c0r11b0	Bootloader	Bootloader	1.9-sc-ros-tor
x3001c0r11b0	FPGA1	sFPGA-ROS-TOR	1.04
+--------------+------------+---------------+---+

172

CUG 2023

CHECK SENSORS

• Obtain sensor readings from BMCs (ChassisBMC, NodeBMC, RouterBMC)
• Limit the telemetry topics queried to the topics listed
• The default is to query all topics:

– cray-telemetry-temperature, cray-telemetry-voltage, cray-telemetry-power, cray-telemetry-energy, cray-telemetry-fan,
cray-telemetry-pressure

ncn-m# sat sensors -x x1003c2s6b1 -t NodeBMC -b 2 --timeout 10 --topic cray-telemetry-temperature
Telemetry data being collected for x1003c2s6b1
Please be patient...
Waiting for metrics for all requested xnames from cray-telemetry-temperature.
Receiving metrics from stream: cray-telemetry-temperature...
Telemetry data received from cray-telemetry-temperature for all requested xnames.
+-------------+---------+----------------------------+--------------------------------+--------------+----------+-----------+----------+------+
| xname | Type | Topic | Timestamp | Location | Parental Context | Physical Context | Index |Value |
+-------------+---------+----------------------------+--------------------------------+--------------+----------+-----------+----------+------+
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.079525696Z	x1003c2s6b1n0	Chassis	VoltageRegulator	0	55.4
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:56.585058025Z	x1003c2s6b1n0	Chassis	VoltageRegulator	2	45.8
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.081500532Z	x1003c2s6b1n1	Chassis	VoltageRegulator	0	51.2
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:56.580577726Z	x1003c2s6b1n1	Chassis	VoltageRegulator	2	45.8
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.072975044Z	x1003c2s6b1n0	MISSING	CPU	0	30.875000
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.072913765Z	x1003c2s6b1n0	MISSING	CPU	1	26.500000
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.073033042Z	x1003c2s6b1n1	MISSING	CPU	0	29.750000
x1003c2s6b1	NodeBMC	cray-telemetry-temperature	2022-04-01T18:17:57.073074561Z	x1003c2s6b1n1	MISSING	CPU	1	27.500000
+-------------+---------+----------------------------+--------------------------------+--------------+----------+-----------+----------+------+

173

CUG 2023

TRANSLATE XNAME AND NID
ncn-m# sat bash
(1e2360e3e3f0) sat-container:/sat # sat status | head -4
+---------------+-----------+------+------+-------+------+---------+------+----------+---------+---------+--------+
| xname | Aliases | Type | NID | State | Flag | Enabled | Arch | Class | Role | Subrole | NetType|
+---------------+-----------+------+------+-------+------+---------+------+----------+---------+---------+--------+
| x1000c0s0b0n0 | nid001000 | Node | 1000 | Ready | OK | True | X86 | Mountain | Compute | None | Sling |

(1e2360e3e3f0) sat-container:/sat # sat xname2nid x1000c0s0b0n0
nid001000
(1e2360e3e3f0) sat-container:/sat # sat nid2xname 1000
x1000c0s0b0n0
(1e2360e3e3f0) sat-container:/sat # sat xname2nid x1000c0s0b0
nid001000,nid001001

(1e2360e3e3f0) sat-container:/sat # sat xname2nid x3000c0s19,x1000c0s0b0n0
nid[000001-000004,1000]

(1e2360e3e3f0) sat-container:/sat # sat xname2nid -f nid x3000c0s19,x1000c0s0b0n0
nid000001,nid000002,nid000003,nid000004,nid001000

This BMC has two nodes which would be affected by hardware work

Recursively expand slot, chassis, and cabinet xnames to a range of nids

Recursively expand slot, chassis, and cabinet xnames to a list of nids

174

CUG 2023

• Display hardware component history by xname or Field-Replaceable Unit (FRU) ID by querying HSM
• FRU ID was added to output of sat hwinv

ncn-m# sat hwhist --help
usage: sat hwhist [-h] [-f PATH] [-x XNAME] [--format {pretty,yaml,json}] [--no-borders] [--no-headings]

[--reverse] [--sort-by FIELD] [--show-empty] [--show-missing] [--fields FIELDS] [--filter QUERY]
[--by-fru] [--fruid FRUID]

Report hardware component history.

optional arguments:
-h, --help show this help message and exit
--by-fru Display hardware component history by FRU.
--fruid FRUID, --fruids FRUID

A comma-separated list of FRUIDs to include in the hardware component history report.
xnames:
Options for specifying target xnames.

-f PATH, --xname-file PATH
Path to a newline-delimited file of xnames. In order to share the path between the host and container
when sat is run in a container environment, the path should be either an absolute or relative path of
a file in or below the home or current directory. Overrides value set in config file.

-x XNAME, --xname XNAME, --xnames XNAME
Specify an xname on which to operate. Multiple xnames may be specified via comma-separated entries or
by providing this option multiple times.

TRACK HARDWARE

175

• Argo Workflows is an open source container-native workflow engine for orchestrating parallel jobs on Kubernetes
• https://argoproj.github.io/workflows/
• Implemented as a Kubernetes CRD (Custom Resource Definition)
• Easily orchestrate highly parallel jobs on Kubernetes

• Define workflows where each step in the workflow is a container
• Model multi-step workflows as a sequence of tasks or capture the dependencies between tasks using a graph

(Directed Acyclic Graph)
• Argo UI with CSM
• Requires authentication with Keycloak
• Useful for watching the progress of an install or upgrade and debugging

• NLS workflows
• Once a workflow is started, it will proceed through multiple steps in a set order
• Most steps depend on previous steps and will wait for its dependencies to finish before starting
• If any step fails, by default, that step will be continuously retried until it succeeds
• There are two ways to make Argo not continuously retry a failed step

• Logs in the Argo UI show output from individual stages of a workflow and are useful for debugging

MARCH 2023

ARGO – NODE LIFECYCLE SERVICE (NLS)

https://argoproj.github.io/workflows/

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 177

CUG 2023 178

• Booting process
• Booting overview
• Boot Script Service (BSS)
• Content Projection Services (CPS)
• Boot Orchestration Service (BOS)

• Logs
• Console logs and access
• SMA-Kibana

• Troubleshooting tips

TROUBLESHOOTING BOOT FAILURES

• Booting overview
• Boot Script Service
• Content Projection Service
• Boot Orchestration Service

BOOTING PROCESS

CUG 2023 179

CUG 2023

The Boot Orchestration Service (BOS) is responsible for booting, configuring, or
shutting down collections of nodes.

The Boot Orchestration Service has the following components:
• Boot Orchestration Session Template – a collection of one or more boot set

objects
• A boot set defines a collection of nodes and the information about the boot

artifacts and parameters
• Boot Orchestration Session – An instance of a BOS operation that manages Boot

Orchestration Agents
• Boot Orchestration Agent (BOA) – Executes actions submitted to the BOS API

BOS coordinates with several services to boot compute nodes:
• Hardware State Manager (HSM) – Tracks the state of each node and holds their

group and role associations
• Image Management Service (IMS) – Manages image records (kernel, initrd,

image root)
• Simple Storage Service (S3) – Stores boot artifacts (kernel, initrd, image root)
• Boot Script Service (BSS) – Stores per-node information about iPXE boot script
• Cray Advanced Platform and Monitoring Control (CAPMC) – provides system-

level power control for nodes in the system
• Configuration Framework Service (CFS) – Configures node(s) using

configuration framework

BOOT FLOWCHART WITH BOS AND S3

manifest.json

BOS

S3

BOA BSS iPXE

Session template
(S3 Boot image
reference)

http
s d

ownload

BSS generates presigned
download URL when boot
script is generated.

During boot, BOS/BOA will get the S3 reference to boot image.
BOA will need to access the image to read boot parameters. At the
point that BSS generates the iPXE bootscript, BSS will generate the
pre-signed S3 Download URL for the kernel and initrd. CPS will
similarly need to be updated to project the rootfs.

180

CUG 2023

1. The compute node is powered on
2. The BIOS issues a DHCP discover request
3. DHCP Server responds with:

• The IP address of the TFTP server
• The name of the file to download

4. The node sends a request to the TFTP server
5. The TFTP server sends ipxe.efi to the node
6. The node chainloads the iPXE binary
7. iPXE downloads an ipxe boot script from BSS
8. Following the boot script, iPXE downloads the kernel,

initrd, and kernel parameters from S3
9. The node attempts to boot using the boot artifacts

pulled from S3

COMPUTE NODE BOOT SEQUENCE

Compute
Node

UEFI
(BIOS)

iPXE

DHCP
Server

TFTP
Server

S3
(via HTTP)

BSS

1

2

3

4

6
5

7

8

9

{BSS}

initrd

kernel

181

CUG 2023

Boot Script Service (BSS)
• REST API to interact with HSM and provide nodes with boot artifacts and cloud-init payloads
• Stores the configuration information that is used to boot each hardware component
• Nodes consult BSS for their boot artifacts and boot parameters when nodes boot or reboot

• The BSS stores the current image and parameters that are assigned to each node
• The boot parameters stored in BSS for a node when a node is powered on will be used for that boot
• The Boot Orchestration Service (BOS) is used to update the boot script for a given node

• Updating the boot script for a node in the BSS directly is not recommended
• BSS does not have any information about how a node should be configured after it boots
• Post-boot configuration (node personalization) is controlled by the Configuration Framework Service (CFS)

– BOS calls CFS as part of the process of orchestrating the boot process

BOOT SCRIPT SERVICE (BSS)

182

CUG 2023

• The boot script for a node includes the following boot artifacts (highlighted):

ncn# cray bss bootscript list --name x3000c0s23b2n0
#!ipxe
kernel --name kernel http://rgw-vip.nmn/boot-images/1c4f7f49-bfaf-4c25-9110-f5b46440c9a2/kernel?
X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=L18PWYUE7B8KBQR3X4NB%2F20220105%2Fdefault%2Fs3%2Faws4_request&X-Amz-
Date=20220105T012211Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-
Signature=8aa3bdb208d5e216a0331c41c66f4346f6bf75b75b0f5f0addf0caf4bde3fd7e
initrd=initrd console=ttyS0,115200 bad_page=panic crashkernel=360M hugepagelist=2m-2g intel_iommu=off
intel_pstate=disable iommu=pt numa_interleave_omit=headless oops=panic pageblock_order=14 pcie_ports=native
rd.neednet=1 rd.retry=10 rd.shell turbo_boost_limit=999 biosdevname=0 ip=dhcp quiet
spire_join_token=8900a2f6-3bee-4757-bccb-75247893a6d0
root=craycps-s3:s3://boot-images/1c4f7f49-bfaf-4c25-9110-f5b46440c9a2/rootfs:
c91e4b1462822da009f191c206d8c9fa-205:dvs:api-gw-service-nmn.local:300:nmn0 nmd_data=url=s3://boot-images/1c4f7f49-bfaf-
4c25-9110-f5b46440c9a2/rootfs,etag=c91e4b1462822da009f191c206d8c9fa-205 bos_session_id=f8937b77-2c10-4a05-93bd-06cff8ee076b
xname=x3000c0s23b2n0 nid=6 ds=nocloud-net;s=http://10.92.100.81:8888/ || goto boot_retry
initrd --name initrd http://rgw-vip.nmn/boot-images/1c4f7f49-bfaf-4c25-9110-f5b46440c9a2/initrd?
X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=L18PWYUE7B8KBQR3X4NB%2F20220105%2Fdefault%2Fs3%2Faws4_request&X-Amz-
Date=20220105T012211Z&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-
Signature=0dc66fb06761dd2e8f022446da6a5d31f9320c0bdb0c054cc2e7a10d0af4a972 || goto boot_retry
boot || goto boot_retry
:boot_retry
sleep 30
chain https://api-gw-service-nmn.local/apis/bss/boot/v1/bootscript?mac=b4:2e:99:7f:0d:24&retry=1

RETRIEVING A BOOT SCRIPT FROM BSS

kernel image

initrd image

root file system
squashfs image

Kernel
parameters

MAC address of node’s NIC

183

CUG 2023

• It is useful to monitor the logs of the cray-bss container within the BSS pods.

03/08 19:00:33 ncn# kubectl get pods -n services | grep bss
cray-bss-647fb9775f-jmxs7 2/2 Running 0 54d
cray-bss-647fb9775f-k4gl5 2/2 Running 0 53d
cray-bss-647fb9775f-qzxf5 2/2 Running 0 53d
cray-bss-etcd-4kvjphv69p 1/1 Running 0 53d
cray-bss-etcd-7lxvcq4drk 1/1 Running 0 54d
cray-bss-etcd-brp85brbnd 1/1 Running 0 119d
03/08 19:01:05 ncn# for POD in $(kubectl get pods -n services | grep bss |grep -v etcd | awk '{ print$1}');
do kubectl logs -n services --since 10m $POD -c cray-bss; done
03/08 19:01:23 ncn# ssh x1000c1s1b0n1 reboot
Connection to x1000c1s1b0n1 closed by remote host.
03/08 19:01:35 ncn# sleep 480
03/08 19:11:07 ncn# for POD in $(kubectl get pods -n services | grep bss |grep -v etcd | awk '{ print$1}');
do kubectl logs -n services --since 10m $POD -c cray-bss | grep -v DEBUG; done
2022/03/08 19:10:18 Retrieving state info from http://cray-smd/hsm/v1
2022/03/08 19:10:18 GET /meta-data, xname: x1000c1s1b0n1 ip: 10.100.0.114
2022/03/08 19:10:18 http: superfluous response.WriteHeader call from main.metaDataGetAPI
(cloudInitAPI.go:209)
'
', &spireResp): { 0 9a4f8130-7dee-4180-a4cd-63b22138c03c}
2022/03/08 19:07:34 BSS request succeeded for MAC 00:40:a6:83:63:34 (x1000c1s1b0n1)

BSS LOGS

Like other core boot
services, BSS runs insides
a Kubernetes pod

reboot is NOT the recommended way to reboot a node; BOS should be used

184

CUG 2023

ncn# cray bss bootparameters list --name x3000c0s14b0n0 --format json | jq '.[].kernel'
"s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/kernel“

ncn# cray bss bootparameters list --name x3000c0s14b0n0 --format json | jq '.[].params'
"console=ttyS0,115200 bad_page=panic crashkernel=360M hugepagelist=2m-2g intel_iommu=off
intel_pstate=disable iommu=pt ip=nmn0:dhcp numa_interleave_omit=headless numa_zonelist_order=node
oops=panic pageblock_order=14 pcie_ports=native printk.synchronous=y quiet rd.neednet=1 rd.retry=10
rd.shell turbo_boost_limit=999 ifmap=net2:nmn0,lan0:hsn0,lan1:hsn1 spire_join_token=${SPIRE_JOIN_TOKEN}
root=craycps-s3:s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs:
4f862288a668ed8328158a438f276ab3-190:dvs:api-gw-service-nmn.local:300:nmn0 nmd_data=url=s3://boot-
images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs,etag=4f862288a668ed8328158a438f276ab3-190
bos_session_id=43254b57-d787-4797-8b45-ab621ca0b327”

ncn# ssh x3000c0s14b0n0 cat /proc/cmdline
kernel initrd=initrd console=ttyS0,115200 bad_page=panic crashkernel=360M hugepagelist=2m-2g
intel_iommu=off intel_pstate=disable iommu=pt ip=nmn0:dhcp numa_interleave_omit=headless
numa_zonelist_order=node oops=panic pageblock_order=14 pcie_ports=native printk.synchronous=y quiet
rd.neednet=1 rd.retry=10 rd.shell turbo_boost_limit=999 ifmap=net2:nmn0,lan0:hsn0,lan1:hsn1
spire_join_token=d399ee35-c191-46c7-9f40-da63f895d368 root=craycps-s3:s3://boot-images/1c329db9-3a32-49b8-
be7c-2b09d47a609f/rootfs:4f862288a668ed8328158a438f276ab3-190:dvs:api-gw-service-nmn.local:300:nmn0
nmd_data=url=s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs,
etag=4f862288a668ed8328158a438f276ab3-190 bos_session_id=43254b57-d787-4797-8b45-ab621ca0b327
xname=x3000c0s14b0n0 nid=49168832 ds=nocloud-net;s=http://10.92.100.81:8888/

IDENTIFYING THE IMAGE IN USE BY A NODE

185

CUG 2023

ncn# cray cps contents list --format json | grep 1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs
"s3path": "s3://boot-images/1c329db9-3a32-49b8-be7c-2b09d47a609f/rootfs",

ncn# cray cps contents list --format json | jq 'map(select(.s3path == "s3://boot-images/1c329db9-3a32-49b8-
be7c-2b09d47a609f/rootfs")) | .[].artifactID'
"e2e335eda4055fd1b293de4f2c9ab6ce”

ncn# cray cps contents list --format json | jq 'map(select(.s3path == "s3://boot-images/1c329db9-3a32-49b8-
be7c-2b09d47a609f/rootfs")) | .[].exportPath'
"/var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce"

ncn# ssh ncn-w001
Last login: Thu Jul 15 04:53:58 2021 from 10.252.1.9

ncn-w001# file /var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce/rootfs
/var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce/rootfs: Squashfs filesystem, little endian, version
4.0, 1589565630 bytes, 90812 inodes, blocksize: 131072 bytes, created: Tue Jun 29 17:23:47 2021

ncn-w001# df /var/lib/cps-local/e2e335eda4055fd1b293de4f2c9ab6ce/rootfs
Filesystem 1K-blocks Used Available Use% Mounted on
s3fs 18014398509465600 0 18014398509465600 0% /var/lib/cps-local/boot-images

TRACKING AN IMAGE FROM NODE TO CPS TO S3

When a node requests a new image from CPS the content
manager (CM) will cache the squashfs file from S3 bucket to
s3fs available to each cray_cps_cm_pm_ pod. The squashfs
files are stored on s3fs until CPS deletes the content.

186

CUG 2023

• Use the provided empty session template template as a JSON framework and edit all the fields
ncn# cray bos sessiontemplatetemplate list --format json
{
"boot_sets": {
”boot_set1": {
"boot_ordinal": 1,
"etag": "your_boot_image_etag",
"kernel_parameters": "your-kernel-parameters",
"network": "nmn",
"node_list": ["x3000c0s19b1n0", "x3000c0s19b1n1", "x3000c0s19b2n0"]
"path": "your-boot-path",
"rootfs_provider": "your-rootfs-provider",
"rootfs_provider_passthrough": "your-rootfs-provider-passthrough",
"type": "your-boot-type"

},
"boot_set2": { ... }

},
"cfs": {
"configuration": "desired-cfs-config"

},
"enable_cfs": true,
"name": "name-your-template"

}

TEMPLATE OF BOS SESSION TEMPLATE

Can specify nodes one of these ways:
"node_list": ["x3000c0s19b1n0", "x3000c0s19b1n1", "x3000c0s19b2n0"]
"node_groups": ["green", "white", "pink"]
"node_roles_groups": ["Compute"]

Multiple boot sets can be defined that will have same
CFS configuration to be applied, but different kernel
parameters or different path to boot artifacts

187

CUG 2023

ncn# cray bos sessiontemplate describe cos-2.3.101 --format json
{
"boot_sets": {
"compute": {
"boot_ordinal": 2,
"etag": "b29bb9e8cd8c64541f4ff025e108f7a6",
"kernel_parameters": "ip=dhcp quiet spire_join_token=${SPIRE_JOIN_TOKEN}",
"network": "nmn",
"node_roles_groups": [
"Compute"

],
"path": "s3://boot-images/c26034f1-4acf-4a45-b898-c5842d711ef6/manifest.json",
"rootfs_provider": "cpss3",
"rootfs_provider_passthrough": "dvs:api-gw-service-nmn.local:300:hsn0,nmn0:0",
"type": "s3"

}
},
"cfs": {
"configuration": "cos-config-2.3.101"

},
"enable_cfs": true,
"name": "cos-2.3.101"

}

BOS SESSION TEMPLATE DETAIL

etag: 'entity tag helps identify the version of the manifest.json file. Currently not used but cannot be left blank

network: The network over which the node will boot kernel parameters : Kernel parameters passed to the operating system

rootfs_provider: The root file system provider

rootfs_provider_passthrough: Additional kernel parameters that will be appended to the 'rootfs=' kernel parameter

cfs or cfs_url: The repository configuration file or clone URL for the repository providing the configuration

enable_cfs: Whether to enable the Configuration Framework Service (CFS)

boot_sets: A collection of nodes & the images they should boot with. One or more boot_sets may be specified per session template

Path: s3 location of the components of the boot image file ([IMS_Image_ID] manifest.json). Processed based on the “type”

name: Name of the Session Template. The length of the name is restricted to 45 characters

188

CUG 2023

ncn# cat INPUT_FILE.json
{
"name": "cos-2.3.101",
"boot_sets": {
"test_compute": {
"network": "nmn",
"boot_ordinal": 1,
"kernel_parameters": "ip=dhcp quiet spire_join_token=${SPIRE_JOIN_TOKEN}",
"rootfs_provider": "cpss3”,
"node_list": ["x3000c0s19b1n0"],
"etag": "90b2466ae8081c9a604fd6121f4c08b7",
"path": "s3://boot-images/06901f40-f2a6-4a64-bc26-772a5cc9d321/manifest.json",
"rootfs_provider_passthrough": "dvs:api-gw-service-nmn.local:300:hsn0,nmn0:0 ",
"type": "s3" }

},
"cfs": {
"configuration": "cos-config-2.3.101"

},
"enable_cfs": true

}
ncn# cray bos sessiontemplate create --file INPUT_FILE.json --name cos-2.3.101
ncn# cray bos sessiontemplate list --format json | jq '.[].name'
"cos-2.3.101"
"uan-2.4.3"

CREATE A BOS SESSION TEMPLATE

Display a list of all session templates in your system, filtering the output with jq for the .name

189

CUG 2023

• A BOS Session represents an operation on a Session Template
• boot – Boot nodes that are off
• configure – Reconfigure the nodes using the Configuration Framework Service (CFS)
• reboot – Gracefully power down nodes that are on and then power them back up
• shutdown – Gracefully power down nodes that are on

• Use cray bos session create to create a BOS session
ncn# cray bos session create --template-uuid cos-2.3.101 --operation reboot
operation = "Reboot"
templateUuid = "cos-2.3.101"
[[links]]
href = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605"
jobId = "boa-158fc371-d279-4494-a60e-fcac5612d605"
rel = "session"
type = "GET"

[[links]]
href = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605/status"
rel = "status"
type = "GET“
• BOS supports an optional --limit parameter when creating a session

• List of nodes, HSM groups, or HSM roles to limit the nodes that BOS runs against
• Components are treated as OR operations unless preceded by “&” for AND or “|” for NOT

cray bos session create --template-uuid cos-2.3.101 --operation reboot --limit x3000c0s20b2n0
• Operate on all except some nodes, HSM groups, or HSM roles

cray bos session create --template-uuid cos-2.3.101 --operation configure --limit all,!x3000c0s20b2n0

CREATE BOS SESSION

When a BOS session is created it initiates one or more Boot Orchestration Agent (BOA) jobs. The name of the
session created will be labeled href and included in the BOA jobid – which is part of the BOA pod name

190

CUG 2023

• Use cray bos session describe to view progress of the BOS job
• Use kubectl get pods to view the status of the Boot Orchestration Agent (BOA) job

associated with the BOS job

ncn# cray bos session describe 158fc371-d279-4494-a60e-fcac5612d605

boa_job_name = "boa-158fc371-d279-4494-a60e-fcac5612d605"
complete = false
error_count = 0
in_progress = true
operation = "Reboot"
start_time = "2022-06-28 08:40:14.949422"
status_link = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605/status"
templateUuid = ”cos-2.3.101“

ncn# kubectl get pods -n services -l job-name=boa-158fc371-d279-4494-a60e-fcac5612d605

NAME READY STATUS RESTARTS AGE
boa-158fc371-d279-4494-a60e-fcac5612d605-xw4xh 2/2 Running 0 2m47s

VIEW RUNNING BOS SESSION INFORMATION

When a BOS session is created it initiates one or more Boot
Orchestration Agent (BOA) jobs. The name of the session
created will be labeled href and included in the BOA jobid –
which is part of the BOA pod name

cray bos session describe <JOB ID> is used to
view the status and progress of the job.
boa_job_name – Boot Orchestration Agent job name.

Monitoring the BOA JOB with kubectl get pods command.

191

CUG 2023

ncn# cray bos session status describe CATEGORY_NAME PHASE_NAME BOOT_SET_NAME SESSION_ID --format json

• BOS session status Phases
• shutdown
• boot
• configure

• BOS session status Categories
• not_started
• succeeded
• failed
• excluded
• in_progress

ncn# cray bos session status describe succeeded shutdown compute fb808925-2dd6-440d-8d6c-834892472036
name = "succeeded"
node_list = ["x3000c0s19b4n0", "x3000c0s19b2n0", "x3000c0s19b3n0", "x3000c0s19b1n0",]
ncn# cray bos session status describe failed boot compute fb808925-2dd6-440d-8d6c-834892472036
name = ”failed"
node_list = ["x3000c0s19b4n0",]
ncn# cray bos session status describe in_progress configure compute fb808925-2dd6-440d-8d6c-834892472036
name = "in_progress"
node_list = ["x3000c0s19b2n0", "x3000c0s19b3n0", "x3000c0s19b1n0",]

VIEW BOS SESSION STATUS

192

CUG 2023

• Use cray bos session describe to view progress of the BOS job.
• Use kubectl get pods to view the status of the Boot Orchestration Agent (BOA) job

associated with the BOS job.

ncn# cray bos session describe 158fc371-d279-4494-a60e-fcac5612d605

boa_job_name = "boa-158fc371-d279-4494-a60e-fcac5612d605"
complete = true
error_count = 0
in_progress = false
operation = "Reboot"
start_time = "2021-06-28 08:40:14.949422"
status_link = "/v1/session/158fc371-d279-4494-a60e-fcac5612d605/status"
stop_time = "2021-06-28 08:53:50.711327"
templateUuid = ”cos-2.3.101“

ncn# kubectl get pods -n services -l job-name=boa-158fc371-d279-4494-a60e-fcac5612d605
NAME READY STATUS RESTARTS AGE
boa-158fc371-d279-4494-a60e-fcac5612d605-xw4xh 0/2 Completed 0 14m

VIEW COMPLETED BOS SESSION INFORMATION

Monitoring the BOS job with cray bos session describe <JOB ID> to completion

Monitoring the BOA job with kubectl get pods command to completion

193

• Console logs and access
• SMA-Kibana

LOGS

CUG 2023 194

CUG 2023

• ConMan is a serial console management program designed to support a large number of console devices
and simultaneous users

• cray-console uses ConMan for interactive remote console access and console log collection
• Automatically detects nodes which have been added or removed
• Shared filesystem in Ceph for all cray-console pods to easily view log data
• Console log data sent to SMA for other log processing
• Dynamic autoscaling number of cray-console-node pods for size of system

– Minimally, two pods are started
– The number of PODs is scaled on

– 750 Liquid-cooled nodes and/or 2000 “River” nodes

– The Liquid-cooled nodes each require an ssh connection, so numbers are different

• Log locations:
• Logs visible in any cray-console-node-x pod
• Node logs: /var/log/conman/console.XNAME
• ConMan damon logs: /var/log/conman.log

CONTAINERIZED CONSOLE ACCESS

ncn# kubectl get pods -A |grep cray-console
services cray-console-data-5cd59677d9-lf4f4
services cray-console-data-postgres-0
services cray-console-data-postgres-1
services cray-console-data-postgres-2
services cray-console-node-0
services cray-console-node-1
services cray-console-operator-7f9894f657-5psn5

195

CUG 2023

ncn# kubectl get pods -A |grep console-node
services cray-console-node-0 3/3 Running 1 62d
services cray-console-node-1 3/3 Running 0 68d
ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node -- ls /var/log/conman
console.x1000c0s1b0n0 console.x1000c3s3b0n0 console.x3000c0s20b4n0
console.x1000c0s1b0n1 console.x1000c3s3b0n1 console.x3000c0s23b1n0
console.x1000c0s1b1n0 console.x1000c3s3b1n0 console.x3000c0s23b2n0
console.x1000c0s1b1n1 console.x1000c3s3b1n1 console.x3000c0s23b3n0
console.x1000c0s5b0n0 console.x1000c5s5b0n0 console.x3000c0s23b4n0
console.x1000c0s5b0n1 console.x1000c5s5b0n1 console.x3000c0s25b1n0
console.x1000c0s5b1n0 console.x1000c5s5b1n0 console.x3000c0s25b2n0
console.x1000c0s5b1n1 console.x1000c5s5b1n1 console.x3000c0s25b3n0
console.x1000c0s7b0n0 console.x1000c7s7b0n0 console.x3000c0s25b4n0

ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node -- \
tail -f /var/log/conman/console.x1000c0s1b0n0

ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node –- /bin/bash
cray-console-node-1-pod# grep –i error /var/log/conman/console.x1000c0s1b0n0

• Access Console Log Data Via the SMA-kibana user interface
https://github.com/Cray-HPE/docs-csm/blob/release/1.3/operations/conman/Access_Console_Log_Data_Via_the_System_Monitoring_Framework_SMF.md

CONSOLE LOGS WITH CRAY-CONSOLE-NODE

Can view log without entering pod

Can view log by entering pod

Each pod sees all the console files,
only one cray-console-node pod is
managing that node and writing its
log file

196

https://github.com/Cray-HPE/docs-csm/blob/release/1.3/operations/conman/Access_Console_Log_Data_Via_the_System_Monitoring_Framework_SMF.md

CUG 2023

• To join the console, use conman -j
• Retrieve the `cray-console-operator` pod ID
ncn# CONPOD=$(kubectl get pods -n services \

-o wide|grep cray-console-operator|awk '{print $1}')
ncn# echo $CONPOD
cray-console-operator-79bf95964-qpcpp

• Set the `XNAME` variable to the xname of the node whose console you wish to open
ncn# XNAME=x1000c0s0b0n0

• Find the `cray-console-node` pod that is managing that node
ncn# NODEPOD=$(kubectl -n services exec $CONPOD -c cray-console-operator \
-- sh -c "/app/get-node $XNAME" | jq .podname | sed 's/"//g')
ncn# echo $NODEPOD
cray-console-node-1

• Connect to the node's console using ConMan on the `cray-console-node` pod you found
ncn# kubectl exec -it -n services $NODEPOD -- conman -j $XNAME
<ConMan> Connection to console [x1000c0s0b0] opened.
nid000001 login:

• To exit console use &. command

INTERACTIVE CONSOLE EXAMPLE (LONG)

197

CUG 2023

• Alternate form of previous slide
ncn# ConsoleJ ()
{

XNAME=$@;
CONPOD=$(kubectl get pods -n services -o wide|grep cray-console-operator|awk '{print $1}');
NODEPOD=$(kubectl -n services -c cray-console-operator exec $CONPOD -- sh -c "/app/get-node $XNAME" | jq .podname | tr -d '"');
echo conpod = $CONPOD nodepod = $NODEPOD;
kubectl exec -it -n services $NODEPOD -c cray-console-node -- conman -j $XNAME

}

ncn# ConsoleJ x1000c0s0b0n0
<ConMan> Connection to console [x1000c0s0b0n0] opened.
nid000001 login:

• To exit console use &. command
• To view the console read-only instead of joining it read-write, use conman –m $XNAME

INTERACTIVE CONSOLE EXAMPLE (SHORT)

198

CUG 2023

• Sma-kibana enables
• Viewing all logs from CNs, NCNs, and Kubernetes pods in Kibana
• Sorting and searching through log information from multiple sources to help troubleshoot issues

• View and analyze Shasta system logs in the web UI provided by the Kibana service
• Access sma-kibana

1. Determine the external domain name by running the following command on any NCN:
ncn-m001# kubectl get secret site-init -n loftsman \
-o jsonpath='{.data.customizations\.yaml}' | base64 -d | grep "external:"
external: SYSTEM_DOMAIN_NAME

2. Navigate to the following URL in a web browser:
https://sma-kibana.cmn.SYSTEM_DOMAIN_NAME/

3. Login by entering a valid username and password
4. Select the index for the type of logs desired (Shasta or ClusterStor) from the drop-down list to search that data

source
5. Refine the displayed results by entering Search terms, which can be simple or complex
6. Expand displayed log entries for more details
7. Click a field from the list of Available Fields to see a list of the most common entries in that field
8. Click the time range drop-down menu to select the time period for which logs are displayed

• https://www.elastic.co/kibana to further explore and analyze the system logs

SMA-KIBANA

199

https://www.elastic.co/kibana

CUG 2023

SMA-KIBANA DISCOVER

200

CUG 2023

SMA-KIBANA ALERTA DASHBOARD

201

CUG 2023

SAT DASHBOARDS IN SMA-KIBANA
Dashboard Short Description Long Description

sat-aer AER corrected Corrected Advanced Error Reporting messages from PCI Express devices on each node

sat-aer AER fatal Fatal Advanced Error Reporting messages from PCI Express devices on each node

sat-atom ATOM failures Application Task Orchestration and Management tests are run on a node when a job finishes. Test failures are logged

sat-atom ATOM admindown ATOM test failures can result in nodes being marked admindown. An admindown node is not available for job launch

sat-heartbeat Heartbeat loss events Heartbeat loss event messages reported by the hbtd pods that monitor for heartbeats across nodes in the system

sat-kernel Kernel assertions The kernel software performs a failed assertion when some condition represents a serious fault. The node goes down

sat-kernel Kernel panics The kernel panics when something is seriously wrong. The node goes down

sat-kernel Lustre bugs (LBUGs) The Lustre software in the kernel stack performs a failed assertion when some condition related to file system logic
represents a serious fault. The node goes down

sat-kernel CPU stalls CPU stalls are serous conditions that can reduce node performance, and sometimes cause a node to go down. Technically
these are Read-Copy-Update stalls where software in the kernel stack holds onto memory for too long

sat-kernel Out of memory An Out Of Memory (OOM) condition has occurred. The kernel must kill a process to continue. The kernel will select an
expendable process when possible. If there is no expendable process the node usually goes down in some manner. Even if
there are expendable processes the job is likely to be impacted. OOM conditions are best avoided

sat-mce MCE Machine Check Exceptions (MCE) are errors detected at the processor level

sat-rasdaemon rasdaemon errors Errors from the rasdaemon service on nodes. The rasdaemon service is the Reliability, Availability, and Serviceability
Daemon, and it is intended to collect all hardware error events reported by the linux kernel, including PCI and MCE errors

sat-rasdaemon rasdaemon messages All messages from the rasdaemon service on nodes

202

TROUBLESHOOTING TIPS

CUG 2023 203

CUG 2023 204

• Tried to boot all compute nodes, but some failed to boot
• Where do you start looking?

• BOA log shows widest view for BOSv1
– Does the end of the BOA log have a traceback from some execution error?
– Were there problems with BOA talking to BSS to assign the boot artifacts or to CFS to set desired configuration?
– Were the power management calls to CAPMC smoothly done?
– Were the node state status calls to HSM showing all nodes moving from OFF to ON to READY

– With BOSv1, BOA has a 30-minute timeout to make these calls before giving up on the boot
– Were the node configuration status calls to CFS showing all nodes (that had been in READY) moving to configured?
– Did any of the calls from BOA to other services have 503 error messages?

– This may mean that the are problems with the API gateway or that specific service might have an issue
– Check the Kubernetes pod logs for the API gateway and the services which had 503 errors
– Check whether any of the pods have an increasing restart count (or are in CrashLoopBackOff)
– Check whether there have been OOMkill or CPUthrottling alerts during the boot

– Some pods may need larger requests for memory or CPU resources if the system has recently been expanded with more nodes

– Explore SMA-grafana dashboards for the time interval of the boot
– Explore SMA-kibana dashboards for the time interval of the boot

• If BOA reports power management errors, there might be more detail in the CAPMC logs
– If there has been an Emergency Power Off (EPO) event, special handling may be needed to recover from it before trying to boot

TROUBLESHOOTING FAILED BOOT

CUG 2023 205

• Check node state with HSM or SAT commands for which nodes are not in the READY state to find missing nodes
ncn# sat status --filter role=compute --filter state!=ready

• For any nodes in the OFF state, check the power logs on their BMC (nodecontroller) for power up faults
– Olympus nodes: (example x1000c0s0b0n1)

ncn# ssh x1000c0s0b0
x1000c0s0b0> egrep "\(partially powered up\)|Stopped at PS|already fully powered up" /var/log/powerfault_up.Node1

– Refer to hardware service team if these message patterns are found
• For any nodes in the ON state, check the console logs for each node

– After inspecting a few console logs to find a pattern, grep for that pattern in all the console logs conman
ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node -- grep pattern /var/l
og/conman/console.*

– Repeat that grep command but count how many nodes have a problem matching that pattern
ncn# kubectl -it exec -n services cray-console-node-1 -c cray-console-node -- grep pattern /var/l
og/conman/console.* | wc -l

– Do the console messages indicate whether the node failed
– To get a DHCP response and start downloading ipxe.efi binary? – check cray-kea and cray-ipxe pods
– To contact BSS for the iPXE boot script once ipxe.efi started running? – check BSS pods and whether the MACaddr used has valid data in BSS
– To download the boot artifacts (kernel, initrd) from S3? Check for presence of them with “cray artifacts” command
– To configure the HSN NICs as tmp0, tmp1, etc while in Dracut? Check Slingshot fabric manager configuration and edge port health
– To generate DVS node map and enumerate the DVS server addresses? Check DVS server health (on nodes running CPS cm-pm pods)
– To mount the rootfs squashfs image from DVS servers? Check whether nodes with CPS cm-pm pods have the image cached in /var/lib/cps-local

– Did the node have any of these errors in the console log? Some are kernel panics, some show node dropping into UEFI shell, and some indicate hardware errors
startup.nsh|ernel panic|any other key to continue|Enter for maintenance|Entering emergency mode|query
intf hsn|WHEA: Detected Memory Error|ASSERT|Shell\>|Unable to get TLV for interface|Machine Check"

TROUBLESHOOTING NODES NOT READY

CUG 2023 206

– If BOA reports some CFS failures
– check the CFS batches that ran for this boot
ncn# kubectl -n services --sort-by=.metadata.creationTimestamp get pods | grep cfs

– Confirm that CFS batcher started enough batches for the number of compute nodes divided by the CFS batch size
– Check Ansible logs from the CFS pods looking for the PLAY RECAP summary to see how many tasks failed and on which nodes

– Look in these logs for the tasks that failed with their failure messages and cross-reference messages with the Ansible code for this task

– Confirm that the correct CFS configuration was assigned to the node (test versus production)
– Check how many nodes completed configuration
ncn# sat status --filter role=compute | grep –i configured

– Check how many nodes failed configuration
ncn# sat status --filter role=compute | grep –i failed

– Check how many nodes are still trying to configure
ncn# sat status --filter role=compute | grep –i pending

• If the failures in the BOA log and other logs were transitory, then run the cray bos command from the end of
the BOA log with the --limit option to retry the boot of the problematic nodes with the same boot artifacts

TROUBLESHOOTING CFS

CUG 2023 207

• Booted, but some nodes appeared to be slow to boot
• Where do you start looking?

• Console logs can help to identify which nodes are the slowest in any part of the booting process
• BOA log shows widest view

– BOA gets status from HSM and reports how many nodes are in OFF, ON, READY state and when they change states, but
not to the node name granularity
– Are nodes of the same type all changing state mostly together?

– The slow nodes may be on the path to hardware failure
– A system with a mixture of compute node types will often show variation in boot time by node type

– BOS gets configuration status from CFS and reports how many nodes are not yet configured
– Are nodes of the same type all moving into configured state together?
– There may be tuning problems to address with Ansible plays run by CFS

– There may be tuning need for the CFS infrastructure for the size of the system

TROUBLESHOOTING SLOW BOOT

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 208

CUG 2023 209

• Node Memory Dump (NMD)
• Slingshot (hsn_triage_capture)
• System Diagnostic Utility (SDU)

COLLECTING DATA FOR HPE SERVICE

CUG 2023

• Standard Linux kdump mechanism
• Uses kexec for booting into the dump-capture kernel (kdump boot) immediately after kernel crash
• Standard kdump not scalable to large systems

– Standard, each node decides on its own to produce a node memory dump
• Needs a service to initiate dumps of selected nodes

• NMD controls the kdump process of the panicked node
• Provides concurrent dump capability
• Controls automated kdump so that the dump is generated only for the requested nodes
• Provides a configurable makedumpfile dump level option for the selected node at dump time

– Can specify dumplevel argument of the makedumpfile command
– 31 by default
– 16 if it is required to retrieve user process core dump (user data pages) or non-private cache pages

ncn# cray nmd dumps --help
Usage: cray nmd dumps [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.

Commands:
create
delete
describe
list

NODE MEMORY DUMP (NMD)

210

CUG 2023 211

• If a problem occurs while following the HSN Debug Procedure, capture system log files by running
hsn_triage_capture to capture state and logs from the fabric manager, switches and CMMs
• When it completes, it prints the path to the tarball of captured data
ncn# kubectl exec -it -n services $(kubectl get pods -A |grep fabric |awk '{print
$2}') -c slingshot-fabric-manager -- /bin/bash
slingshot-fabric-manager# hsn_triage_capture -h
usage: ./hsn_triage_capture [-h] [-a] [-c] [-f] [-s] [-t
TARGET_XNAME[,TARGET_XNAME]]
Collect HSN debug information from the FMN, CMMs and switches,
then aggregate into a single tarball.
Note: it is assumed that passwordless ssh is configured to all devices.
optional arguments:
-h Show usage and exit
-a Collect FMN, console, and switch data (default)
-c Collect switch console logs
-f Collect FMN data
-s Collect switch data
-t TARGET_XNAME[,TARGET_XNAME] Specific targets only

HSN_TRIAGE_CAPTURE

CUG 2023

• Pluggable architecture to collect logs, core files, register dumps, and more
• Can package the output to tar to share any useful system triage information
• Collects data from distributed parts of the system

• Remote Device Access (RDA) is capable of securely transporting this data to HPE
• RDA Documentation: https://midway.ext.hpe.com/home
• Security white paper: https://support.hpe.com/hpesc/public/docDisplay?docId=a00006791en_us
• AFT (Asynchronous File Transport) is used to securely transport SDU data to HPE
• IDA (Interactive Device Access) is used to tunnel TCP sessions with HPE
• Independent from one another and both are opt-in features

• SDU runs in a podman container
• Container is controlled as a service via systemd on master node

– /etc/sysconfig/cray-sdu-rda – container settings
– ncn-m# systemctl start cray-sdu-rda.service

– /usr/sbin/cray-sdu-rda – used by systemd to configure, start, and stop container
–/usr/sbin/sdu – passes commands into the cray-sdu-rda podman container
–allows sdu commands to be run whether on NCN or in the container

•sdu commands can be run from the master node or within the container
ncn-m001: # sdu bash
ncn-m001-sdu: # <--- prompt indicates you are inside the SDU/RDA container

SYSTEM DIAGNOSTIC UTILITY (SDU)

212

https://midway.ext.hpe.com/home
https://support.hpe.com/hpesc/public/docDisplay?docId=a00006791en_us

CUG 2023

SYSTEM DUMP FRAMEWORK (SDF)

• Provides a standard system dump feature
• Onsite triage
• Onsite to central support
• Provides a structured data format

• Resiliency model
• ncn-m001 and ncn-m002 (but SDU can be started

on ANY master node, only 1 at a time)
• Each eligible master node should have a unique

RDA configuration

213

CUG 2023

• Health
• Performs a system health collection to gather health information from the system
• Useful times to run

–After CSM install.sh completes
–Before and after NCN reboots
–After the system is brought back up
–Any time there is unexpected behavior observed
–In order to provide relevant information to create support tickets

• Inventory
• Performs an inventory collection to gather version information for software, firmware, and hardware
• Useful to run after system upgrades

–The information collected is used by the HPE Cray Service and R & D organizations to improve customer
support

• Triage
• Performs a triage collection which will gather diagnostic information and logs necessary for HPE Cray

Service and R & D to perform problem determination and isolation
• You are encouraged to provide the --ref 'sfdc:<case number>' command line option to ensure that the

snapshot is associated with your service case

SDU SCENARIOS

214

CUG 2023

ncn-m001# sdu --scenario triage --start_time '-2 days' --reason "Problem with system"
[stdout] INFO Configuration file "/etc/opt/cray/sdu/sdu.conf" and CLI Options Valid.
[stdout] INFO UI master_control status is (enabled) [no control file created]
[stdout] INFO MASTER CONTROLS -> (M:True, U:False)
[stdout] INFO UI CONTROLS -> (C:True, U:True)
[stdout] INFO Exclusive run: Lock file created
@ /var/opt/cray/sdu/lock/sdu.lock_channel-triage_system-devkit
[stdout] INFO COLLECT stage start
[...]
[stdout] INFO dir created in view /var/opt/cray/sdu/collection/triage/view/
2021-02-15T03-10-53_UTC-3c7c6d3040cef5b59b15f15f29c9eda2
[stdout] INFO starting purge
[stdout] INFO work directory removed from '/var/opt/cray/sdu/collection/triage/.work'
[stdout] INFO keeping 10 snapshot(s) max
[stdout] INFO Found 2 snapshot(s) to keep, 0 to purge
[stdout] INFO exiting purge, nothing to do
[stdout] INFO 1813098605.0 raw bytes collected.
[stdout] INFO SDU session stop successfully
[stdout] INFO run took 2431.83 seconds
ncn-m001# cd /var/opt/cray/sdu/collection/triage/view/\
2021-02-15T03-10-53_UTC-3c7c6d3040cef5b59b15f15f29c9eda2

SDU TRIAGE SCENARIO

All data collected from plugins
will be in the view directory

215

CUG 2023

• Dump contents are organized first by host or system management component, and then by content type (files and
cmds)
• The following is an example of the directory path:
ncn-m001# ls -l
total 3576
drwxr-x--- 4 root root 31 Feb 15 03:51 ceph
drwxr-x--- 3 root root 18 Feb 15 03:51 fmn
drwxr-x--- 3 root root 18 Feb 15 03:51 k8s
drwxr-x--- 3 root root 19 Feb 15 03:51 localhost
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-m002
drwxr-x--- 4 root root 31 Feb 15 03:51 ncn-m003
drwxr-x--- 4 root root 31 Feb 15 03:51 ncn-m003-sdu
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-s001
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-s002
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-s003
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-w001
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-w002
drwxr-x--- 3 root root 19 Feb 15 03:51 ncn-w003
-rw-r--r-- 1 root root 3659206 Feb 15 03:51
session-1613358653-3c7c6d3040cef5b59b15f15f29c9eda2.json

• Additional subdirectories exist that contain the logs, core files, register dumps, and more

EXPLORE SDU VIEW

216

CUG 2023

• Sample files in subdirectories
• ceph/cmds/ncn-s001_usr_bin_ceph_status
• ceph/cmds/ncn-s001_usr_bin_ceph_osd_pool_stats
• ceph/files/ncn-s001/ncn-s001-ceph-logs.tgz
• fmn/cmds/usr_bin_fmn_status
• fmn/cmds/usr_bin_fmctl__get_fabric_switches
• fmn/cmds/usr_bin_slingshot-topology-tool_--cmd_run_show-flaps
• fmn/cmds/usr_bin_slingshot-topology-tool_--cmd_show_cables
• k8s/cmds/usr_bin_kubectl_describe_*
• k8s/cmds/usr_bin_kubectl_get_*
• k8s/cmds/usr_bin_kubectl_-n_namespace_describe_pod_*
• k8s/cmds/usr_bin_kubectl_-n_namespace_logs_*
• k8s/cmds/usr_bin_kubectl_top_nodes
• k8s/cmds/usr_bin_kubectl_top_pods
• localhost/files/report/summary_report
• ncn-s001/ncn-s001-ceph-logs.tgz
• ncn-w003/cmds/usr_bin_dmesg
• ncn-w003/cmds/sbin_lsmod
• ncn-w003/cmds/sbin_sysctl_-a
• ncn-w003/cmds/usr_sbin_smartctl_dev_s

EXPLORE SDU DATA

SDU summary report
• Metadata about the collection
• List of all commands run
• List of files collected
• Exit_code from all plugins

Output from commands run on specific nodes

Ceph commands and files

Fabric Manager commands and files

Kubernetes commands and files

217

CUG 2023

• Service (manages SDU container)
• /usr/lib/systemd/system/cray-sdu-rda.service

• Application (inside the container)
• SDU core: /opt/cray/sdu/default/
–ncn-m001-sdu:/ # ls /opt/cray/sdu

3.3.12-20210624113255_6631f99 default
• SDU Plugins: /opt/cray/sdu/default/plugins

• Configuration
• /etc/opt/cray/sdu/sdu.conf

• scenario_dir: /etc/opt/cray/sdu/scenario (defined in sdu.conf, may have changed from default)
• output (defined in sdu.conf, may have changed from default)

• log_dir: /var/opt/cray/sdu/log

• lock_dir: /var/opt/cray/sdu/lock
• state_dir: /var/opt/cray/sdu/run

• collection_dir: /var/opt/cray/sdu/collection

SDU – KEY DIRECTORIES

218

CUG 2023

• Tar up collection
ncn-m001# cd /var/opt/cray/sdu/collection/<scenario>/view
ncn-m001# tar cvfzh test-system-2020-10-01T00-35-20_UTC-c410d30f1d5656ae006f657aa09d4d27.tgz
2020-10-01T00-35-20_UTC-c410d30f1d5656ae006f657aa09d4d27

• RDA Configuration (within the SDU container)
• /etc/rda/rda.conf (if proxy settings are needed)

• RDA Outbox
• /var/opt/cray/sdu/outbox

• Staging files to RDA (to send to HPE) (this will be automated in a future release)
ncn-m001-sdu# cd /var/opt/cray/sdu/collection/<scenario>/view
ncn-m001-sdu# sdu-stage-to-rda 2021-02-25T20-09-52_UTC-
f6cade95450824711405aa52dade8092
Staging files for RDA transport
Moving files from /var/tmp/RDA_STAGE.7gL3 to RDA outbox /var/tmp/rda/outbox
Done.

SDU – MOVING THE COLLECTION (TAR / RDA)

219

HPE CRAY EX SYSTEM OVERVIEW
ANSIBLE BEST PRACTICES
MONITORING TOOLS
SYSTEM MANAGEMENT HEALTH
TUNING COMPUTE NODES
SYSTEM ADMIN TOOLKIT
TROUBLESHOOTING BOOT FAILURES
COLLECTING DATA FOR HPE SERVICE
RESOURCES

CUG 2023 220

CUG 2023

• Documentation
• Open-Source Software
• Training
• Related Presentations

RESOURCES

221

CUG 2023

• HPE Cray EX System Software Getting Started Guide S-8000
• HPE Cray System Management (CSM) Markdown

• https://github.com/Cray-HPE/docs-csm/tree/release/1.3
• HPE Cray System Management (CSM) HTML

• https://cray-hpe.github.io/docs-csm/en-13/
• HPE Cray EX System HPC Firmware Pack Installation Guide S-8037
• HPE Cray EX System Admin Toolkit HTML

• https://cray-hpe.github.io/docs-sat/en-24/
• HPE Cray EX System Diagnostic Utility Installation Guide S-8034
• HPE Cray EX System Monitoring Application Installation Guide S-8030
• HPE SUSE Linux Enterprise Operating System Installation Guide S-8028
• HPE Slingshot Release Notes
• HPE Slingshot Operations Guide
• HPE Cray Operating System Installation Guide CSM on HPE Cray EX Systems S-8025
• HPE Cray User Access Node Software Installation Guide S-8032
• HPE Cray Programming Environment Installation Guide: CSM on HPE Cray EX S-8003
• HPE Cray EX Analytics Applications Guide S-8027

DOCUMENTATION - INSTALLATION

222

https://github.com/Cray-HPE/docs-csm/tree/release/1.0
https://cray-hpe.github.io/docs-csm/en-10/
https://cray-hpe.github.io/docs-sat/en-24/usage/sat_bootprep/

CUG 2023

• HPE Cray System Management (CSM) Markdown
• https://github.com/Cray-HPE/docs-csm/tree/release/1.3
• https://github.com/Cray-HPE/docs-csm/blob/release/1.3/operations/kubernetes/Kubernetes.md
• https://github.com/Cray-HPE/docs-csm/blob/release/1.3/glossary.md

• HPE Cray System Management (CSM) HTML
• https://cray-hpe.github.io/docs-csm/en-13/

• HPE Cray EX System Admin Toolkit Guide S-8031
• HPE Cray EX System Diagnostic Utility Administration Guide S-8035
• HPE Cray EX System Monitoring Application Administration Guide S-8029
• HPE Cray EX Analytics Applications Guide S-8027
• HPE Cray Operating System Administration Guide CSM on HPE Cray EX Systems S-8024
• HPE Cray User Access Node Software Administration Guide S-8033
• HPE Cray System Management Diagnostics Guide S-8038
• HPE Slingshot Operations Guide
• HPE Slingshot Troubleshooting
• HPE Slingshot Hardware Guide
• HPE Cray Programming Environment User Guide: CSM on HPE Cray EX S-8005

DOCUMENTATION - ADMINISTRATION

223

https://github.com/Cray-HPE/docs-csm/tree/release/1.2
https://github.com/Cray-HPE/docs-csm/blob/release/1.0/operations/kubernetes/Kubernetes.md
https://github.com/Cray-HPE/docs-csm/blob/release/1.0/glossary.md
https://cray-hpe.github.io/docs-csm/en-10/

CUG 2023

• CSM
• MIT License
• Github Hosted

– https://github.com/Cray-HPE

• Community Governance
– https://github.com/Cray-HPE/community

• SAT
• MIT License
• Github Hosted

– Primary repository for the sat CLI written in Python:
https://github.com/Cray-HPE/sat

– Podman wrapper script written in Bash: https://github.com/Cray-
HPE/sat-podman

– An important library used by sat CLI: https://github.com/Cray-
HPE/python-csm-api-client

• Documentation starting point:
– https://github.com/Cray-HPE/sat/blob/integration/CONTRIBUTING.md
– https://github.com/Cray-HPE/sat/blob/integration/docs/developer/README.md

• 3rd party open-source
• https://kubernetes.io/docs/home/
• https://kubernetes.io/docs/reference/kubectl/cheatsheet/
• https://lmgtfy.com/?q=kubernetes+troubleshooting
• https://www.elastic.co/guide/en/kibana/current/index.html
• https://grafana.com/docs/
• https://github.com/aelsabbahy/goss
• http://docs.ansible.com/
• https://kubernetes.io/docs/reference/kubectl/jsonpath/
• https://stedolan.github.io/jq/manual/
• http://www.compciv.org/recipes/cli/jq-for-parsing-json/
• https://osinside.github.io/kiwi/

DOCUMENTATION – OPEN SOURCE TOOLS

224

https://github.com/Cray-HPE
https://github.com/Cray-HPE/community
https://github.com/Cray-HPE/sat
https://github.com/Cray-HPE/sat-podman
https://github.com/Cray-HPE/sat-podman
https://github.com/Cray-HPE/python-csm-api-client
https://github.com/Cray-HPE/python-csm-api-client
https://github.com/Cray-HPE/sat/blob/integration/CONTRIBUTING.md
https://github.com/Cray-HPE/sat/blob/integration/docs/developer/README.md
https://kubernetes.io/docs/home/
https://lmgtfy.com/?q=kubernetes+troubleshooting
https://www.elastic.co/guide/en/kibana/current/index.html
https://grafana.com/docs/
https://github.com/aelsabbahy/goss
http://docs.ansible.com/
https://kubernetes.io/docs/reference/kubectl/jsonpath/
http://www.compciv.org/recipes/cli/jq-for-parsing-json/
https://osinside.github.io/kiwi/

Where to start?
SUPERCOMPUTING: HPE CRAY EX TRAINING

From HPE Edu
http://www.hpe.com/ww/training
• Select HPE Cray EX Series and

ClusterStor Storage
https://education.hpe.com/ww/en/traini
ng/portfolio/servers.html#ServersLearn
ingPathsIntro

CUG 2023 225

http://www.hpe.com/ww/training
https://education.hpe.com/ww/en/training/portfolio/servers.html
https://education.hpe.com/ww/en/training/portfolio/servers.html
https://education.hpe.com/ww/en/training/portfolio/servers.html

CUG 2023

• CUG 2022
• HPE Cray EX Shasta 22.03 Cray System Management Overview
• Cray System Management for HPE Cray EX Systems
• Dealing with Metrics Data – Where is it, How to get it, What to do with it?

• CUG 2021
• User and Administrative Access Options for CSM-Based Shasta Systems

• CUG 2020
• Advanced Topics in Configuration Management

• CUG 2019
• Shasta Software Technical Workshop
• Shasta System Management Overview
• Reimagining Image Management in the New Shasta Environment
• Hardware Discovery and Maintenance Workflows in Shasta Systems

RELATED PRESENTATIONS AND PAPERS

226

harold.longley@hpe.com

THANK YOU

CUG 2023

