
April, 2023

Matt Silvia
SMA Software Quality Engineer

CSM AND SMA
MONITORING FOR

HPE CRAY EX SYSTEMS

AGENDA

SLINGSHOT MONITORING IN SMA

SMA ALARMS AND NOTIFICATIONS

SMA COMPONENTS

SMA ARCHITECTURE

CSM SYSTEM HEALTH

2

• Prometheus
• Grafana Dashboards

CSM SYSTEM HEALTH

3

SYSTEM MANAGEMENT HEALTH SERVICE

Kubernetes
Prometheus-operator chart features Prometheus with
support for
• K8s nodes
• Etcd
• K8s internals
• K8s workloads

Istio
Istio chart includes
• Prometheus which collects Istio metrics
• Kiali and Jaeger

Ceph
Prometheus module exposes metrics from ceph-mgr

System Mgmt Health Service
Helm chart includes
• Prometheus to federate metrics
• Alertmanager for custom notifications
• Grafana with dashboards for Kubernetes, Istio, Ceph

10d

4h

4h

4h

SMA

Export Prometheus
metrics

30d

Is the system healthy?
• Independent from the System Monitoring Application (SMA)
• Does not monitor computes!

4

• Prometheus is the de-facto standard cloud-native metrics and monitoring tool
• Prometheus operator provides custom resource definitions

– Scrape metrics from service endpoints

• Prometheus alerting rules triggers alerts to Alertmanager
• Alertmanager manages the silencing, inhibition, aggregation, and sending out of notifications

• Grafana supports pulling data from Prometheus
• Dashboards are readily available

• Istio supports service mesh tracing with Jaeger and observability with Kiali
• Customer integration

• Customize Alertmanager notifications
– Email, Slack, custom web hook

• Run components “off system”
– Integrate with existing Prometheus infrastructure

INDUSTRY STANDARD TOOLS

5

22.07 RELEASE

• Kiali
• Observability console for Istio with service mesh configuration and validation capabilities
• Helps you understand the structure and health of your service mesh by monitoring traffic flow to infer the topology and report errors
• Provides detailed metrics and a basic Grafana integration, which can be used for advanced queries
• Distributed tracing is provided by integration with Jaeger
• https://kiali-istio.cmn.SYSTEM_DOMAIN_NAME
• Documentation https://kiali.io/

• Jaeger
• Distributed transaction monitoring
• Performance and latency optimization
• Root cause analysis
• Service dependency analysis
• Distributed context propagation
• https://jaeger-istio.cmn.SYSTEM_DOMAIN_NAME
• Documentation https://www.jaegertracing.io/

• Prometheus
• Monitoring system and time series database
• Record metrics that track the health of Istio and of applications within the service mesh
• https://prometheus-istio.cmn.SYSTEM_DOMAIN_NAME
• Documentation https://prometheus.io/

ISTIO WITH KIALI , JAEGER , AND PROMETHEUS

6

https://kiali.io/
https://www.jaegertracing.io/
https://prometheus.io/

• Prometheus alerts provide coverage across infrastructure and platform
• Coarse-grained and comprehensive, as opposed to fine-grained and exhaustive
• Supports preventive and diagnostic use cases

HEALTH CHECKS

NON-COMPUTE
NODES UTILITY STORAGE

CONTAINER
ORCHESTRATION SERVICE MESH WORKLOADS

• CPU and memory
utilization
• Local storage utilization
• Network I/O errors and

latency
• Clock skew

• Ceph status
• Storage utilization
• Disk I/O errors and

latency

• Kubernetes status
• API errors
• CPU and memory

overcommitments

• Istio status
• Service availability
• Service request rates
• Service response

statuses and latency

• Status of pods,
deployments, stateful
sets, daemon sets, jobs
• CPU, memory, network,

and storage utilization
and errors

7

ncn# kubectl -n sysmgmt-health get svc cray-sysmgmt-health-promet-prometheus
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cray-sysmgmt-health-promet-prometheus ClusterIP 10.21.141.187 <none> 9090/TCP 34d
ncn# curl -s http://10.21.141.187:9090/api/v1/alerts |jq -j '.data' | grep alertname | sort | uniq -c

12 "alertname": "CPUThrottlingHigh",
108 "alertname": "IstioHighRequestLatency",
103 "alertname": "IstioLatency99Percentile",
1 "alertname": "IstioLowTotalRequestRate",
1 "alertname": "KubeAPIErrorBudgetBurn",
1 "alertname": "KubeDeploymentReplicasMismatch",

131 "alertname": "KubeJobCompletion",
130 "alertname": "KubeJobFailed",
2 "alertname": "KubePersistentVolumeFillingUp",
1 "alertname": "KubePodCrashLooping",
1 "alertname": "NodeClockNotSynchronising",
1 "alertname": "PodReadinessProbeFailure",
1 "alertname": "PostgresqlFollowerReplicationLagSMA",
2 "alertname": "PostgresqlHighRollbackRate",
1 "alertname": "PostgresqlInactiveReplicationSlot",
3 "alertname": "PostgresqlNotEnoughConnections",
3 "alertname": "TargetDown",
1 "alertname": "Watchdog",

RETRIEVING ALERTS FROM PROMETHEUS

8

ncn# curl -s http://10.21.141.187:9090/api/v1/alerts |jq -j '.data.alerts \
| map(select(.labels.alertname == "CPUThrottlingHigh")) | max_by(.activeAt)'
{

"labels": {
"alertname": "CPUThrottlingHigh",
"container": "manager",
"namespace": "gatekeeper-system",
"pod": "gatekeeper-controller-manager-588d6476db-d5g8v",
"severity": "info"

},
"annotations": {

"message": "28.03% throttling of CPU in namespace gatekeeper-system for container manager
in pod gatekeeper-controller-manager-588d6476db-d5g8v.",

"runbook_url": "https://github.com/kubernetes-monitoring/kubernetes-
mixin/tree/master/runbook.md#alert-name-cputhrottlinghigh"

},
"state": "pending",
"activeAt": "2022-04-27T16:11:07.129355508Z",
"value": "2.8030608135320173e-01"

}

RETRIEVING THE LATEST ALERT FROM PROMETHEUS

9

PROMETHEUS - GRAPH

Graph of container receive packets total

Point on graph shows details for ncn-m003

https://prometheus.cmn.SYSTEM_DOMAIN_NAME 10

PROMETHEUS - ALERTS

https://prometheus.cmn.SYSTEM_DOMAIN_NAME
11

ALERTMANAGER

https://alertmanager.cmn.SYSTEM_DOMAIN_NAME 12

GRAFANA

13

• Uses Keycloak authentication/authorization
• Secured with TLS sharing cluster certificate bundle
• About 40 included dashboards
• Ceph
• CoreDNS
• Etcd
• ETCD Clusters
• Istio
• Kea-dhcp
• Kubernetes
• Node Exporter
• Nodes
• PostgreSQL
• Prometheus

https://grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

GRAFANA DASHBOARDS CATALOG

14

• Nodes up (quorum)
• RPC Rate
• Active Streams
• DB Size
• Disk Sync Duration
• Memory
• Client Traffic in
• Client Traffic Out
• Peer Traffic In
• Peer Traffic Out
• Raft proposals
• Total Leader Elections Per day

GRAFANA DASHBOARDS: ETCD

15

GRAFANA DASHBOARDS: KUBERNETES CLUSTER

16

GRAFANA DASHBOARDS: KUBERNETES POD REQUESTS AND LIMITS

CPU usage

Memory Usage

17

• System Monitoring Application
• LDMS
• Telemetry API
• SMA-Grafana
• Dashboards

SMA MONITORING

18

• Tightly-integrated monitoring system
• Provides detailed telemetry information from multiple subsystems:

• Fabric
• Environmental
• Network
• Storage
• Operating systems (vmstat and iostat metrics)

• Feeds into a common message bus (Kafka), is persisted, and available via UI infrastructure
• SAT has user interfaces that integrate with the System Monitoring Framework

• SMA alarms and notifications subsystem monitors metric data
• Provides a way to notify administrators when select metric data is outside of normal operating values
• SMA includes some example alarms
• Can be extended with site defined alarms

SYSTEM MONITORING APPLICATION

19

SYSTEM MONITORING APPLICATION FRAMEWORK DIAGRAM

20

• Uses a distributed streaming platform to publish
and subscribe to streams of records

• Apache Kafka
• A distributed publish-subscribe messaging system
• Easy to scale horizontally
• Supports multiple subscribers and balances

consumers during failure
• Persists messages on disk
• Supports multiple client-side APIs for consumers

and producers
• Commonly referred to as the “Kafka Bus”

DATA INTEGRATION AND INFRASTRUCTURE LAYER
Data Integration
and Infrastructure

Ka
fk

a

Consumer

Metrics
Consumer

Job event
consumer

Producer

Producer

rsyslog

LDMS
aggregator
level - n

Store
plug-ins

21

• Store telemetry data from Cray defined
producers, collectors and aggregators
• It is possible for customers to develop their own

data collectors but the data they collect would not
be stored in the SMF data persistence databases
– Data from custom collectors can be streamed via the

Telemetry API

• Two main responsibilities:
• Time scale database (TSDB) optimized for handling

time series data
• Convert raw data into internal documents and store

them with full text search
• Two main technologies:

• Postgres for TSDB
• Elasticsearch search engine

• Administrators and users should NOT attempt to
read or update these databases directly

DATA PERSISTENCE LAYER
Data Persistence

Postgres

Elasticsearch

Logs

Events

Metrics

Jobs

22

• Provides limited end user access to data stored in the SMA
• Allows consumption of streaming data and data that was

persisted
• Creation of custom graphs and panels
• Generation of custom tables and search dialog boxes
• Email notification generation for alerts.

• LDMS, IO stat, and vmstat metrics via Grafana
• Log analysis via Kibana
• AuthN and AuthZ provided by API gateway and Keycloak
• Telemetry API used for access to streaming telemetry and

data stored in kafka

USER INTERFACE AND ACCESS LAYER
User Interface

and Access

AP
I G

at
ew

ay
Au

th
or

iza
tio

n
an

d
Au

th
en

tic
at

io
n

Telemetry
API

Grafana

Kibana

23

LOG AGGREGATION

Container Service

Container Service

Logging Sidecar

Base OS syslog

ClusterStor Logs

rsyslog Collector

rsyslog Aggregator

Kafka Transport Bus

ElasticSearch Telemetry API

Utility
Storage

Kibana

24

• Sidecar runs a logging agent
• Picks up logs from application containers in pod
• Can separate several logs streams from different

parts of the application

KUBERNETES CONTAINER SIDECAR

25

26

• Sma-kibana enables
• Viewing all logs from CNs, NCNs, and Kubernetes pods in Kibana
• Sorting and searching through log information from multiple sources to help troubleshoot issues

• View and analyze Shasta system logs in the web UI provided by the Kibana service
• Access sma-kibana

1. Determine the external domain name by running the following command on any NCN:
ncn-m001# kubectl get secret site-init -n loftsman \
-o jsonpath='{.data.customizations\.yaml}' | base64 -d | grep "external:"
external: SYSTEM_DOMAIN_NAME

2. Navigate to the following URL in a web browser:
https://sma-kibana.cmn.SYSTEM_DOMAIN_NAME/

3. Login by entering a valid username and password
4. Select the index for the type of logs desired (Shasta or ClusterStor) from the drop-down list to search that data

source
5. Refine the displayed results by entering Search terms, which can be simple or complex
6. Expand displayed log entries for more details
7. Click a field from the list of Available Fields to see a list of the most common entries in that field
8. Click the time range drop-down menu to select the time period for which logs are displayed

• https://www.elastic.co/kibana to further explore and analyze the system logs

SMA-KIBANA

https://www.elastic.co/kibana

SMA-KIBANA DISCOVER

27

28

SMA-KIBANA ALERTA DASHBOARD

SAT DASHBOARDS IN SMA-KIBANA
Dashboard Short Description Long Description

sat-aer AER corrected Corrected Advanced Error Reporting messages from PCI Express devices on each node

sat-aer AER fatal Fatal Advanced Error Reporting messages from PCI Express devices on each node

sat-atom ATOM failures Application Task Orchestration and Management tests are run on a node when a job finishes. Test failures are logged

sat-atom ATOM admindown ATOM test failures can result in nodes being marked admindown. An admindown node is not available for job launch

sat-heartbeat Heartbeat loss events Heartbeat loss event messages reported by the hbtd pods that monitor for heartbeats across nodes in the system

sat-kernel Kernel assertions The kernel software performs a failed assertion when some condition represents a serious fault. The node goes down

sat-kernel Kernel panics The kernel panics when something is seriously wrong. The node goes down

sat-kernel Lustre bugs (LBUGs) The Lustre software in the kernel stack performs a failed assertion when some condition related to file system logic
represents a serious fault. The node goes down

sat-kernel CPU stalls CPU stalls are serous conditions that can reduce node performance, and sometimes cause a node to go down. Technically
these are Read-Copy-Update stalls where software in the kernel stack holds onto memory for too long

sat-kernel Out of memory An Out Of Memory (OOM) condition has occurred. The kernel must kill a process to continue. The kernel will select an
expendable process when possible. If there is no expendable process the node usually goes down in some manner. Even if
there are expendable processes the job is likely to be impacted. OOM conditions are best avoided

sat-mce MCE Machine Check Exceptions (MCE) are errors detected at the processor level

sat-rasdaemon rasdaemon errors Errors from the rasdaemon service on nodes. The rasdaemon service is the Reliability, Availability, and Serviceability
Daemon, and it is intended to collect all hardware error events reported by the linux kernel, including PCI and MCE errors

sat-rasdaemon rasdaemon messages All messages from the rasdaemon service on nodes

29

• Developed by Sandia National Lab for
Blue Waters Cray XE/XK

• Distributed data collection, transport, and storage
tool

• Samplers run one or more sampling plugins that
periodically sample data on monitored nodes
• Defines a metric set (a collection of metrics)
• HA configuration supported

• Aggregators periodically collect data in a pull
fashion from samplers or other aggregators

• Storage plugins periodically write in database or
flat file (file per metric name or CSV file per
metric set)
• Incomplete or not updated metric set data is not

written to storage

LIGHTWEIGHT DISTRIBUTED METRIC SERVICE (LDMS)

Sampler

Sampler

Level 1
Aggregator

Level 2
Aggregator

Storage

Metric Set

30

LDMS

Compute Node
(LDMS Sampler)

Application and Non-
Compute Node

(LDMS Sampler)

Service Node
(L1 LDMS

Aggregator)

Service Node
(L1 LDMS

Aggregator)

Kafka Bus

Postgres

Visualization
L2 LDMS Aggregators

Containers

SMS

Kafka

Postgres Persister

Grafana, etc.

LDMS Samplers

VM
Stat

IO Stat Etc.

• LDMS on nodes is configured by a CFS layer for SMA

31

TELEMETRY API

Provides access to metrics
Accessible through a RESTful JSON interface
Authenticated using bearer tokens, and token must be included in all HTML requests to the API
Streams telemetry data to clients using Server-Side Events (SSE)

32

ncn# CLIENT_SECRET=`kubectl get secrets admin-client-auth -o jsonpath='{.data.client-secret}'| base64 -d`
ncn# TOKEN=$(curl -s -d grant_type=client_credentials -d client_id=admin-client \
-d client_secret=${CLIENT_SECRET} \
https://api-gw-service-nmn.local/keycloak/realms/shasta/protocol/openid-connect/token)
ncn# ACCESS_TOKEN=$(echo ${TOKEN} | jq -r .access_token)
ncn# curl -k -s -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/ping |jq
{
"api_version": "v1",
"timestamp": 1591990968

}
ncn# curl -k -s -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/stream | jq '' |head
{
"streams": [
{
"name": "cray-node",
"scale_factor": 4

},
{
"name": "cray-logs-clusterstor",
"scale_factor": 4

},

ACCESSING THE TELEMETRY API WITH CURL

33

ncn# curl -ks --compressed -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/stream/cray-node |head -3 \
| tail -1 | fold -80 | head -5
data: { "metrics": { "messages": [{"metric":{"name":"cray_storage.cray_vmstat.me
m_swpd","dimensions":{"product":"shasta","system":"compute","service":"ldms","co
mponent":"cray_vmstat","hostname":"nid001255","cname":"x1000c7s7b1n1","job_id":"
0"},"timestamp":1599767510102,"value":0},"meta":{"tenantId":"6305a7f186e74d849ad
3f00ade0242a9","region":"RegionOne"},"creation_time":3386706919782612992},{"metr
ncn# curl -ks --compressed -H "Authorization: Bearer ${ACCESS_TOKEN}" \
https://api-gw-service-nmn.local/apis/sma-telemetry-api/v1/stream/cray-node |head -3 \
| tail -1 | cut -c 7- | jq '' | head
{
"metrics": {
"messages": [
{
"metric": {
"name": "cray_storage.cray_vmstat.mem_cache",
"dimensions": {
"product": "shasta",
"system": "compute",
"service": "ldms",

READING FROM THE TELEMETRY API WITH CURL

To get output from telemetry stream the
--compressed option is needed

Telemetry stream output is one json
object per line of output.

Linux formatting tools are helpful

34

35

MessageId Topic Name Requires Collector Setup Telemetry Source(s) Storage

CrayTelemetry. Temperature cray-telemetry-temperature No cC, nC, sC, River Postgres

CrayTelemetry.Voltage Cray-telemetry-voltage No cC, nC, sC, River Postgres

CrayTelemetry.Power/Current cray-telemetry-power No cC, nC, sC, River Postgres

CrayTelemetry.Energy cray-telemetry-energy No cC, nC, River Postgres

CrayTelemetry.Fan/Rotational cray-telemetry-fan No cC, sC, River Postgres

CrayTelemetry.Pressure cray-telemetry-pressure No cC Postgres

CrayTelemetry.Humidity cray-telemetry-humidity No cC Postgres

CrayTelemetry.LiquidFlow cray-telemetry-liquidflow No cC Postgres

CrayFabricTelemetry.* cray-fabric-telemetry Yes Fabric Postgres

CrayFabricPerfTelemetry.* cray-fabric-perf-telemetry Yes FabricPerf Postgres

CrayFabricCriticalTelemetry.* cray-fabric-crit-telemetry Yes FabricCrit Postgres

Anything except the other
rows of this table

cray-dmtf-resource-event No Hardware events - No message ID
(Different format from all the other
metrics)

Postgres

CrayFabricHealth.* cray-fabric-health Yes FabricHealth Opensearch

PMDB DATA

36

{
"Context": "/",
"Events": [
{
"EventTimestamp": "2023-02-06T10:40:08.543Z",
"MessageId": "CrayFabricCriticalTelemetry.RoutingErrors",
"Oem": {
"Sensors": [
{
"Timestamp": "2023-02-06T10:40:08.532Z",
"Location": ,
"SensorType": ”Power",
"ParentalContext": ”SystemBoard",
"ParentalIndex": 2,
"PhysicalContext": ”NetworkingDevice",
"Index": 8,
"PhysicalSubContext": "Output",
"DeviceSpecificContext": "ieee",
"SubIndex": 0,
"Value": "0"

}
],
"TelemetrySource": "FabricCrit"

}
}

]
}

PMDB DATA FORMAT

37

• The HPE Cray EX system uses a Grafana web UI to provide system metric monitoring of:
• LDMS metrics
• Job and Lustre performance metrics for any attached and monitored ClusterStor storage systems
• HSN fabric performance, errors, congestion, and other statistics
• Power, temperature and other PMDB sensor data from node, cabinet, and switch controllers

• Access sma-grafana
1. Determine the external domain name by running the following command on any NCN:

ncn-m001# kubectl get secret site-init -n loftsman \
-o jsonpath='{.data.customizations\.yaml}' | base64 -d | grep "external:"
external: SYSTEM_DOMAIN_NAME

2. Navigate to the following URL in a web browser:
https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/

3. Login by entering a valid username and password
4. Select a dashboard from the Overview Details drop-down menu

SMA-GRAFANA

SMA-GRAFANA OVERVIEW DETAILS

38

SMA-GRAFANA DASHBOARDS
• About 20 included dashboards
• System CPU, I/O, Kernel, Memory,

Processes, Swap
• Cabinet Controller Sensors
• CDU Monitoring
• Fabric Telemetry
• Fabric Performance Telemetry
• Fabric Critical Telemetry
• Fabric Switch Hardware Telemetry
• Node Controller Sensors
• Overview Details
• Overview Device I/O Stats
• PDU Monitoring
• Redfish Events
• River Sensors
• Switch Controller Sensors
• System Monitoring Dashboard
• Cluster Health Check (Alerta alerts)

https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

Power used by River nodes

Click on xname to drill into that node

Select peak to see xname

39

40

SMA-GRAFANA SYSTEM MONITORING DASHBOARD

41

SMA-GRAFANA SWITCH CONTROLLER SENSORS

42

SMA-GRAFANA CABINET CONTROLLER SENSORS

43

SMA-GRAFANA NODE CONTROLLER SENSORS

44

CLUSTER HEALTH CHECK

The Monasca alarms and notifications subsystem of SMA monitors metric data on the kafka
telemetry bus and provides a way to notify users via email when select metric data is outside of
normal operating values.

The alarms rules engine subscribes to a metric topic in kafka and compares values against
thresholds.

Metric data is processed one reading at a time, but alarm transitions can be set to be triggered for
averages over time periods which can be defined within the alarm.

When the alarm-state changes, a state-transition is sent to notification engine.

MONASCA

45

Source: sma-monasca/templates/alarms-configmap.yaml

apiVersion: v1

kind: ConfigMap
metadata:

name: customer-alarms

labels:

app: customer-sma-monasca

component: "alarms"
data:

definitions.yml.j2: |

notifications:

- name: customerEmail

type: email
address: "user@customer.com"

alarm_definitions:

- name: "customerTestAlarm"

expression: "avg(cray_test.heartbeat) < 20"

description: "Customer Alarm test metrics topic"
severity: "MEDIUM"

match_by:

- "hostname"

alarm_actions:

- "customerEmail"
ok_actions:

- "customerEmail"

undetermined_actions:

- "customerEmail"

CONFIGURING MONASCA

46

Alarm and notification definitions are created in a configmap that should
be instantiated in the SMA namespace.

It is likely that administrators will want to create custom alarm definitions
so alarm notifications are sent when meaningful thresholds are crossed.

In order to define new alarms, create and save a text file named
customer-alarms-configmap.yaml with contents like those shown, and
initialize it as described in the HPE Cray EX System Monitoring
Application Administration Guide.pdf.

System administrators can use the Monasca alarm-list , alarm-definition-list , and notification-list
commands to view the state of defined alarms, the definitions of all SMA alarms on a HPE Cray EX system,
and the list of all defined SMA notifications, respectively. These commands, however, all have to be issued
through Kubectl since SMA runs Monasca in Kubernetes pods.
List defined alarms:
kubectl -n sma exec -it sma-monasca-agent-p9vcb -c collector -- sh –c 'monasca alarm-definition-list'
+-------------------------------+--------------------------------------+---+-------------+-----------------+
| name | id | expression | match_by | actions_enabled |
+-------------------------------+--------------------------------------+---+-------------+-----------------+
lustreTestAlarm	28c5d704-deb9-4a99-a6b0-e74a42ad34e6	avg(cray_test.lustre_test) < 20	hostname	True
SMA Alarm Test 1	3e00a3c6-655f-410e-8bf9-137b9edde23d	last(cray_test.other_test) > 20	hostname	True
SMA ClusterStor Metric Health	6b046908-a8b7-486a-8fb2-1dfbecab9743	min(cray_storage.link_rate{device=MDT0000}) < 0 times 5	system_name	True
vmstatTestAlarm	9b05bef3-f732-4617-a79f-9bc8a164b92b	avg(cray_test.vmstat_test) < 20	hostname	True
SMA OST Free Files	9b81138f-3da6-4253-a3ad-ac78e2c4ae6f	avg(cray_storage.free_files_perc, 900) < 5.0	system_name	True
			device	

| SMA OST Free Space | c4d5d9e2-dbec-447d-9695-069aed4960f4 | avg(cray_storage.free_space_perc, 900) < 5.0 | system_name | True |

| | | | device | |

| validation1Alarm | de216b43-52bf-4f35-a86f-1dc9b3655341 | last(kubelet.health_status) < 0 | hostname | True |

| metricsTestAlarm | f424ec27-291e-4b60-bba5-b020a510ae77 | avg(cray_test.other_test) < 20 | hostname | True |

+-------------------------------+--------------------------------------+---+-------------+-----------------+

List active alarms and their state:
kubectl -n sma exec -it sma-monasca-agent-p9vcb -c collector -- sh –c 'monasca alarm-list'

MONASCA CLI

47

Apache Kafka and Elasticsearch process alert information from Slingshot and make it available to the mon-alert
command.

The mon-alert command does the following:

• Looks for events in the data
• Analyzes each event
• Alerts the user regarding the event
• Stores the event in the alert dashboard
• Allows you to manage the life cycle of Slingshot alerts received by the cluster manager.

For an overview of the mon-alert command, enter the following:
ncn-w001# mon-alert –h

MON_ALERT

48

Display a summary of all alerts:
ncn-w001# mon-alert -s
Alert Status Count
------------ -----
Critical 0
Warnings 6288
Information 1
Open 6288
Acknowledged 0
Closed 2
Expired 0

MON_ALERT EXAMPLES

49

Display the most serious alerts:
ncn-w001# mon-alert top
http://localhost:8080 alerta 8.6.0 14:16:16 16/12/21
Sev Time Dupl. Customer Env. Service Resource Group Event Value Text
Warn 14:08:35 0 - x3000c0s12b1n1 disk rsyslog compu SpaceHal ERROR Disk space is half
Warn 14:07:12 0 - x3000c0s13b1n0 disk rsyslog compu SpaceFul ERROR Disk space is half
Warn 14:07:10 0 - x3000c0s14b1n0 disk rsyslog compu SpaceOk OK Disk space is ok

This command produces many lines of output. To return to the system prompt, press CTRL-c.

Display the information for a specific alert from the node(environment).
ncn-w001# mon-alert query -i 1d0d93c1
ID 1d0d93c1
STATUS open
SEVERITY warning
GROUP fabric
ENV http://10.33.0.170:8000/fabric/agents/x3000c0r21b0
SERVICE slingshot
RESOURCE http://10.33.0.170:8000/fabric/agents/x3000c0r21b0
EVENT crayfabrichealthtelemetry-configuration Telemetry error- Telemetry failure:

Service https://x3000c0r21b0/fabric/v1/switch/telemetry returned error 400
for PUT. Id 72954577 Message Unsupported Statistics value ["35535"] -critical

VALUE Telemetry
DESCRIPTION Telemetry failure: Service https://x3000c0r21b0/fabric/v1/switch/telemetry

returned error 400 for PUT. id 72954577 message Unsupported statistics value
["3635","35535"]

DUPL 0
LAST RECEIVED 2021/12/16 14:08:11

SLINGSHOT MONITORING

50

• The Fabric Manager collects event and metric data from the
Slingshot switch and generates fabric health events.

• While telemetry data can be accessed using the Fabric Telemetry
API, the Fabric Manager can also be configured to stream telemetry
data to an external collector such as the Hardware Management
Service (HMS) in HPE Cray EX system software which routes the
telemetry data to the Shasta Monitoring Application (SMA).

• The Fabric Manager exposes telemetry data via the REST API
endpoints. All telemetry data is cached in the fabric manager and
can be queried via odata queries.

• When Fabric Manager is configured as telemetry collector, the
Slingshot switches push critical and non-critical telemetry data to
persistent storage within the Fabric Manager.

• Configure the collector URI
ncn# fmctl update /switch-telemetry/settings collector.value=http://10.94.100.71:80
ncn# fmctl update /switch-telemetry/settings collector.value=http://istio-ingressgateway.hmnlb:80

• Set the periodicity for data collection
ncn# fmctl update /switch-telemetry/settings periodicity.value=10 (0-300)

• Set up telemetry collection – Sets collector URI
ncn# fmn-update-telemetry-config --collector https://api.hmnlb.shandy/apis/fabric-manager/telemetry-collector:80 –enable

• Enable optional telemetry
ncn# fmctl update /switch-telemetry/settings statistics.values=["3635", "1213", "2819", "2863", "4188", "PortErrors",
"HardErrors", "RoutingErrors"]

• Enable zero-valued metric streaming (Disabled by default)
ncn# fmctl get switches
ncn# for sw in <switch-names>; do echo $sw; ssh $sw fmctl update /switch-telemetry/metrics-collection
zeroValuedMetricsStreamingEnabled=true/false; done

SLINGSHOT MONITORING CONFIGURATION

51

Fabric Telemetry
• PortState Status, PortState Speed, LinkErrors
• Slingshot 2.0 no longer supports these metrics

Fabric Hardware Telemetry
• Current, power, temperature, voltage, etc.
• Available data varies with hardware.

Fabric Critical Telemetry
• Telemetry data generated by the switch agents associated with critical port errors.
• By default, the counters associated with port errors are not streamed.

– Enabled in the “enable optional telemetry” step on the previous slide.

Fabric Performance Telemetry
• Switch agents generate performance telemetry per port utilization/congestion.
• Congestion metrics are collected and posted based on a configurable periodic timer.

– Configured in the “set the periodicity for data collection” step on the previous slide.

SLINGSHOT DATA

52

SLINGSHOT DASHBOARDS

53

• Included Slingshot Dashboards:
• Bit Error Rate (BER)
• Congestion rx/tx BW (Receive/Transmit Bandwidth)
• Congestion rxCongestion
• Congestion rxPausePercent/txPausePercent
• Current
• HardErrors
• LinkErrors
• PortSpeed
• PortStatus
• Power
• RFC3635 IfHcInOctets/IfHcOutOctets
• RFC3635 RxBroadcastPkts/TxBroadcastPkts
• RFC3635 RxMulticastPkts/TxMulticastPkts
• RFC3635 RxPauseFrames/TxPauseFrames
• RFC3635 RxUcastPkts/TxUcastPkts
• Rotational
• RoutingErrors
• Temperature
• Voltage

https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

Use the Slingshot monitoring dashboards for monitoring, real-time
analytics, alerting, and visualization of Slingshot data. This includes
fabric, fabric hardware, fabric critical, and fabric performance
Telemetry data.

Dashboards provide aggregated metrics for all switches and also
offer filtration options at the port and port type levels.

SLINGSHOT HARDWARE TELEMETRY DASHBOARDS

54

• CraySwitchHardwareTelemetry dashboards include:
• Current
• Energy
• Power
• Rotational
• Temperature
• Voltage

https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

SLINGSHOT FABRIC AND PERFORMANCE TELEMETRY DASHBOARDS

55

CrayFabricTelemetry dashboards include:
• PortState Status
• PortState Speed
• LinkErrors
NOTE: Slingshot 2.0 no longer supports these metrics

CrayFabricPerformanceTelemetry dashboards include:
• Congestion rx/tx BW (Receive/Transmit Bandwidth)
• Congestion Receive/Transmit PausePercent
• RFC3635 rx/tx UcastPkts (Receive/Transmit Unicast Packets)
• RFC3635 rx/tx MulticastPkts (Receive/Transmit Multicast Packets)
• RFC3635 rx/tx BroadcastPkts (Receive/Transmit Broadcast Packets)
• RFC3635 rx/tx PauseFrames (Receive/Transmit Pause Frames)
• RFC3635 Receive/Transmit IfHCOutOctets (The average number of octets)

https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

SLINGSHOT CONGESTION RX/TX BW (RECEIVE/TRANSMIT BANDWIDTH)

56

This dashboard shows
the average receive
bandwidth and transmit
bandwidth values of a
selection of switches and
ports over a specified
period of time.

Multiple graph panels are
used to display switch-
level and port-level
averages.

SLINGSHOT FABRIC CRITICAL TELEMETRY DASHBOARDS

57

Cray Fabric Critical Telemetry is telemetry data generated by the switch agents associated with critical port errors.

CraySwitchHardwareTelemetry dashboards include:
• PortErrors
• RoutingErrors
• HardErrors

https://sma-grafana.cmn.SYSTEM_DOMAIN_NAME/dashboards

SLINGSHOT ROUTING ERRORS DASHBOARD

58

This dashboard shows
the number of
RoutingErrors that have
occurred in each switch
over a specified period of
time.

Multiple graph panels are
used to display port-level
RoutingErrors statistics.

matthew.silvia@hpe.com

THANK YOU

