
CADDY: Scalable Summarizations over Voluminous
Telemetry Data for Efficient Monitoring

Saptashwa Mitra, Scott Ragland, Vanessa Zambrano, Dipanwita Mallick, Charlie Vollmer, Lance Kelley,
Nithin Singh Mohan

HPC and Slingshot Business Unit, Hewlett Packard Enterprise
{saptashwa.mitra, scott.ragland, vanessa.zambrano, dipanwita.mallick, charlie.vollmer, lance.kei.kelley,

nithin-singh.mohan}@hpe.com

Abstract—In the rapidly evolving landscape of High-
Performance Computing (HPC), the efficient management and
analysis of telemetry data is pivotal for ensuring system
robustness and performance optimization. As HPC systems
scale in complexity and capability, traditional data processing
methodologies struggle to meet the demands of rapid real-
time analytics and large-scale data management. This paper
introduces an innovative framework, Caddy, which employs
a novel approach to HPC telemetry storage and interactive
analysis. Built on the foundation of HPE’s Slingshot interconnect
and the Fabric AIOps (FAIO) system, Caddy aims to address
the critical need for a memory-efficient, scalable, and real-
time analytical solution for seamless monitoring over large HPC
environments.

Fabric AIOps’ reliance on voluminous telemetry data
generated from Slingshot’s nodes and switches poses significant
challenges for traditional disk-based storage solutions and their
ability to efficiently parse, analyze, extract real-time insights,
identify potential bottlenecks, and ensure seamless operation.
Telemetry analytics, particularly in cases of aggregation
over large sections of the fabric, involves high disk I/O,
network transfers, and record processing. Their interactivity
and consistency are further impeded by constantly streaming
telemetry and multiple simultaneous analytical queries.

In-memory analytics can offer significant speed-up over
disk-based approaches and enable significantly accelerated
aggregation computations, but limited memory capacity at scale
remains a critical hurdle for traditional caching. This paper
explores Caddy, a novel in-memory storage and summarization
framework, emphasizing its ability to generate and accurately
apply dynamic updates to low-dimensional representations of
telemetry data as well as provide quick data access during query
evaluations. Caddy facilitates instant insights, minimizes memory
footprint, and retains accuracy in analytical processes, even under
intense HPC demands.

System benchmarks over Caddy demonstrate that a Caddy-
enabled FAIO live mode reduces query latency of a single-frame
by ∼2x for a switch-level telemetry aggregation. Caddy also
reduced the memory footprint of in-memory telemetry drastically
– for instance, Bins with temporal sizes of 10, 15, and 30 mins,
the compression factors achieved were ∼425x, 600x, and 1200x,
respectively,

I. INTRODUCTION

High-Performance Computing (HPC) environments
are data-intensive systems, characterized by high-speed
interconnects for rapid large-scale data communication
between compute nodes. To ensure system health and
performance, such as, detailed telemetry data is collected
from these interconnects, monitoring metrics like link

utilization, packet latencies, and error rates. In exascale HPC
clusters with thousands of nodes and switche, and constant
communication, complex interconnect fabrics, with each
channel generating a continuous stream of data, the telemetry
volume can rapidly grow to the order of petabytes over a
short period of time.

This telemetry data, containing detailed information about
the state of the interconnect fabric, can play a critical role in
ensuring optimal performance of the system by facilitating
efficient monitoring, debugging, and enabling adaptive
resource management. By leveraging advanced analytics
techniques on this high-volume and high-velocity telemetry
data, HPC users and system administrators can pinpoint
performance bottlenecks, expedite diagnostic processes, and
implement adaptive resource management strategies.

The Slingshot interconnect [15] is an essential component of
HPE supercomputer systems, offering comprehensive network
performance, monitoring capabilities with real-time data
analysis. Fabric AIOps is the analytical framework built
upon Slingshot’s monitoring APIs that empowers system
administrators and researchers with visibility into network
performance, job execution efficiency, and communication
patterns. Fabric AIOps’ aims to simplify and optimize access
to Slingshot telemetry data through APIs, enabling users
to seamlessly explore and analyze network performance for
enhanced system monitoring and in-depth analysis for long-
term system maintenance.

However, while frameworks exist to manage the entire
telemetry data lifecycle – from collection and storage – the
storage layer itself presents a significant bottleneck to the
extraction of fast analytics and utilization of this underlying
data for extraction of meaningful insights regarding the
fabric in a scalable manner. Disk-based persistent storage
systems introduce I/O overhead that hinders the responsiveness
of real-time analytics needed for effective HPC telemetry
management. This latency is further exacerbated by the fact
that analysis over large time ranges for fabrics of exascale
systems entails processing massive amount of datapoints. This
lag leads to reduced responsiveness of the user interface that
can hamper the usability of the product [16].

In-memory computing offers a transformative approach by
enabling significantly faster data access and manipulation
compared to disk-based storage. For large datasets, distributed



in-memory systems have demonstrated significantly improved
query latency (in the order of 100x) compared to distributed
disk-based storage systems [3]. However, a key challenge
lies in scaling these in-memory storages to accommodate
voluminous, ever-growing datasets, as they’re ultimately
limited by the individual memory capacity of the host node(s).

A. Challenges

Rapid ingestion and analytics over high-volume telemetry,
especially over large temporal ranges, for the identification
of patterns or diagnostics over the fabric entails several
challenges:

1) Data volume: Telemetry data collected at high-
frequency over exascale network fabrics is voluminous.
Inefficient storage systems do not scale well and
would entail significant latency for analytical queries in
identifying relevant data segments and processing them
to extract requested metrics.

2) Limited Memory Capacity: Due to the sheer number
of data sources in exascale HPC systems, the amount
of generated telemetry data over which we can perform
rapid summarizations is limited by the capacity of the
machine’s in-memory storage. Our in-memory store, if
not optimized, would drastically reduce the amount of
recent telemetry data we can perform rapid explorations
over. Additionally, with constantly streaming telemetry
measurements being ingested into the live mode,
supporting the fast retrievals over recent telemetry
requires implementation of an efficient eviction scheme
for in-memory data objects.

3) Serving Concurrent Queries Over Varying
Granularities: Users may request aggregations
and summarizations at diverse scopes, i.e., over
arbitrary temporal and telemetry bounds. The telemetry
bounds can be based on specific segments of the
fabric, identifier by their group/switch/port numbers.
Redundant evaluations over data segments for these user
queries are common and if not specifically handled, can
significantly balloon the utilization of resources in our
system and increase lag.

B. Research Questions

In order to enable sysadmins to summarize and aggregate
over telemetry data at scale over an in-memory data store,
the following are specific research questions that we neeed to
explore:
RQ-1: How can we scale with increases in data volumes from
continuously streaming telemetry data generation?
RQ-2: How can we ensure that our optimized data model (for
more efficient in-memory storage) does not compromise on
accuracy of aggregation results in the face of continuously
streaming data?
RQ-3: How do we efficiently orchestrate in-memory storage
of high-velocity data to ensure that the most recent telemetry
data is always resident in our distributed in-memory storage?

RQ-4: How can we preserve interactivity of response for
summarizations across arbitrary scopes?

C. Overview of Approach

In this paper, we propose an optimized in-memory data
store, Caddy, built on top of Fabric AIOps’ live mode, which
is a lightweight Ray-based [17] in-memory store. Caddy is
specifically designed to significantly boost the live mode’s
storage capacity as well as improve query times over the
in-memory telemetry data. Live mode is an auxilliary data-
storage mode in FAIO that allows analytics over 10 minutes
of the most recent telemetry data in an interactive manner.
Overall, by enabling the storage of a significantly larger
segment of the recent fabric telemetry in-memory and faster
evaluations through its novel data model, Caddy enables
users and sysadmins to extract real-time insights. We allow
viewing of the fabric over a diverse range of temporal and
fabric resolutions through a playback feature of a sequence of
aggregated snapshots of telemetry statistics.

Caddy’s data model is designed to cater specifically to
the requirements of HPC telemetry data collected over large
interconnect fabrics, taking into consideration the relationships
between the fabric components of the HPC system. The
following highlights some of the key aspects Caddy aims to
address:

High-Throughput Data Ingestion: Telemetry data is
generated at high velocity, particularly in large-scale HPC
deployments. Our in-memory data store is designed to
efficiently ingest this data stream, minimizing memory-
footprint and ensuring accurate, real-time capture of critical
information and patterns.

Efficient Data Management and Accuracy: We optimize
the telemetry data management to go beyond simply storing
of compressed data and incorporate statistical methods for
efficient data organization, indexing, and compaction of
telemetry without compromising on their accuracy. We ensure
efficient utilization of memory resources while facilitating
rapid data retrieval for analytical queries through a metadata-
driven indexing scheme.

Scalability: Interconnects, specifically in case of exascale
systems are enourmous in scale, both in terms of size
and complexity. Our in-memory data store is designed to
scale seamlessly to accommodate growing data volumes and
evolving HPC needs. This scalability is achieved through a
configurable compression scheme that breaks up the overall
data domain into equal smaller sub-domains and maintaining
aggregate statistics with constant memory footprint. We also
allow for configurable sliding time window over which
telemetry data is housed in-memory depending on the scale
of the fabric.

Fast Data Retrieval and Analysis: Caddy amplifies
FAIO’s ability to retrieve and analyze telemetry data rapidly.
Our in-memory storage allows for significantly faster data
access compared to traditional storage solutions through
implementation of a hierarchical indexing scheme, enabling



real-time analysis and fostering a more responsive monitoring
of the HPC environment.

Integration with Existing Workflows: Caddy is well-
designed to integrate effortlessly with existing FAIO
workflows. Our solution is designed to seamlessly interact with
existing telemetry data management frameworks and analysis
of FAIO, minimizing disruption to established workflows.

By reducing reliance on persistent storage, our solution
simplifies system administration and maintenance tasks. In
conclusion, this paper proposes a novel in-memory data
store specifically designed for telemetry data management in
large-scale HPC environments. Our solution aims to address
the limitations of traditional in-memory storage solutions by
leveraging knowledge of the fabric topology in the design
of the data model for better indexing of data objects.
By optimizing data ingestion, retrieval, and analysis, our
in-memory data store has the potential to revolutionize
the way telemetry data is utilized for diagnostics within
HPC workflows, ultimately leading to a more performant,
responsive, and efficient HPC ecosystem.

Our benchmarks demonstrate that a live mode enabled with
our Caddy framework reduces query latency of a single-
frame (a small scale telemetry-query) by 2x for a switch-
level telemetry aggregation, showing the efficiency of Caddy’s
storage and indexing scheme. Caddy also reduced the memory
footprint of in-memory telemetry drastically. For Bins with
temporal sizes of 10, 15, and 30 mins, the compression factor
for our in-memory storage were ∼425x, 600x, and 1200x,
respectively, showing that adopting this framework for the
storage of telemetry can be greatly beneficial for diagnosing an
interconnect’s fabric over long ranges of times (in the order of
days) in an interactive manner. Additionally, our maintenance
of framework shows only a 32.5% overhead in ingestion speed
of telemetry into our in-memory storage.

D. Paper Contributions

The following outline the contributions of Caddy to the
functionality of FAIO’s live mode:

1) An optimized, scalable in-memory framework that
supports continuous assimilation of streaming telemetry
data, targeted I/O, and cache-residency schemes to
minimize redundant processing in a multi-user system.
This replaces the current live mode in-memory storage
framework of FAIO.

2) Interactive summarizations over varying data
granularities for the users to be able to view the
facric at varying resolutions for easy exploration and
diagnosis of the fabric.

3) Efficient evaluation schemes over our distributed cache
to alleviate disk access and avoid re-computation costs.

4) A configurable framework to support any number of
telemetry counters/variables collected from the fabric.
We allow aggregations over attributes over any requested
subsection of the fabric and time range.

Translational Impacts: In its current state, Fabric AIOps,
due to the rate of generation of telemetry data, combined

with the size of the fabric of some of the HPC systems
that it serves, is restricted by the incoming data volume and
can accomodate only a small window of latest telemetry in-
memory for its live mode analytics (10 minutes, traditionally).
Through Caddy’s optimized storage model and it’s leveraging
of statistical methods to ensure accurate representation of in-
memory aggregates over its underlying telemetry, we aim to
alleviate this limitation of FAIO’s live mode and bringing up
the live mode’s storage capacity to the order of a few days’
worth of telemetry in-memory. We also take into consideration
that our in-memory enhancements has minimal maintenance
overhead and does not have a serious adverse effect of the rate
of data ingestion for our system.

E. Paper Organization

The remainder of this paper is organized as follows. Section
II outlines background and related works, followed by Section
III that briefly describes tha various components of the FAIO
architecture and outlines where Caddy fits in. Section IV
describes the Caddy data model and the construction and
the hierarchical accumulation of Caddy data units. Section
V details our experimental setups, performance benchmarks,
and analysis of the results. Finally, Section VI outlines our
conclusions, followed by possible future scopes in Section VII.

II. BACKGROUND AND RELATED WORK

Caddy addresses the usecase of an HPC system
administrator tasked with ensuring the health of a complex,
interconnected fabric, like the Slingshot interconnect.
Diagnosing potential issues, failures, or bottlenecks often
requires revisiting historical telemetry data for a significant
temporal window, such as the preceding few hours or even
days. Traditional storage solutions would involve retrieving
and analyzing large telemetry datasets from disk-based
database storage delaying critical troubleshooting efforts.
Caddy provides an optimized data model that supports a
high-fidelity fabric telemetry playback feature for expedited
HPC troubleshooting. By storing compressed fabric telemetry
data in RAM, near-instantaneous retrieval of historical
information becomes possible at varying resolutions. This
translates to a user interface (UI) enabling seamless rewinding
of fabric activity over a desired timeframe for the system
administrators to browse the network behavior. This swift
access to historical data facilitates expedited diagnoses and
more efficient troubleshooting within the HPC environment.
Fig.1 shows a snapshot of Caddy’s UI that allows sysadmins
to view a series of snapshots of the fabric’s telemetry in
sliding windows of 10 mins in order to provide them with an
understanding of its status over the last 24 hours.

Scalable visual analytics [8], [9] of voluminous datasets
requires overcoming query latency bottlenecks. Prefetching or
pre-aggregation techniques that enable fast query execution
over voluminous datasets are a commonly used technique for
optimizing data analysis workloads when dealing with large
datasets and frequent queries that involve aggregations over
varying granularities. It offers an effective strategy to reduce



Fig. 1: Caddy User Interface: Visualization of telemetry in consecutive timeslices in an interactive mannes (telemetry
playback/rewind)

memory footprint and accelerate query execution on large
datasets by reducing computational overhead.

In the field of aggregated storage and analytics, tile
layers have commonly been used to facilitate multi-resolution
aggregate analytics [6]–[8]. These smaller units hold pre-
computed aggregations (SUM, COUNT, etc.) at varying levels
of granularity (spatial, temporal, etc.) [4], [5]. By organizing
these data units (tiles) in a hierarchical fashion, queries can
directly access these pre-aggregated segments based on the
requested granularity for faster retrieval, reducing memory
usage and query execution time. This also alleviates the need
for redundant processing the entire raw data. Additionally, the
data tile layer is configurable and can be optimized based
on common queries and access patterns, ensuring efficient
utilization of storage resources and accelerating insights
discovery [10].

Traditional approaches to storing raw data can become
I/O bound, hindering performance in HPC environments [19],
[20], especially in cases of data generated by exascale systems.
Several research efforts have demonstrated the advantages
of in-memory distributed storage for accelerating large-scale
analytics. This is particularly true in case of platforms
built for scalable analytics over High-Performance Computing
(HPC) environments [11]. Analytics frameworks supporting
in-memory persistence schemes [12] support direct fetch
of data-elements between successive operations and have
demonstrated speedups of upto 100 folds in terms of query
latency for queries compared to that of disk-based large-scale
analytical frameworks. Intuitively, this performance boost is
due to the reduced latency associated with in-memory data
access compared to disk I/O operations, highlighting the
potential of in-memory housing of telemetry for HPC analytics
workloads.

III. OVERVIEW OF ARCHITECTURE

FAIO is essentially a data analysis framework designed to
bridge the gap between raw telemetry data collection from the
Slingshot interconnect and extraction of actionable insights for
High-Performance Computing (HPC) systems [14]. It extends
the features of existing monitoring frameworks such as Cray
System Manager and HPE Performance Cluster Manager by
offering a more diverse and detailed analysis of the fabric
characteristics.

We outline the key components of the FAIO framework in
Fig.2 and give brief descriptions of each of these components
below.
ETL Layer: This layer acts as an adapter, fetching data
from the Slingshot telemetry APIs exposed by the existing
monitoring frameworks. It performs post-processing for raw
telemetry data into a standardized format for efficient storage
and querying over the FAIO system.
Analytics Data Store Layer: This layer is responsible
for combining and storing network fabric performance data
in a format optimized for analytics. This involves data
transformation and aggregation techniques for faster and
more efficient querying. FAIO offers two data storage modes
catering to distinct use cases. The historical mode utilizes
persistent on-disk storage solutions, such as TimescaleDB [21]
or OmnisciDB [22], optimized for long-term archival and
retrieval of network performance data. This mode caters to
long temporal callbacks, enabling analysis of historical trends,
for example, viewing detailed fabric telemetry aggregates and
patterns from months back. In contrast, the live mode employs
a lightweight in-memory storage for the most recent telemetry
data (typically a few minutes). This facilitates rapid analytics
on the current network state for live diagnostics.

Caddy enhances the FAIO’s live mode capabilities. Through



Fig. 2: Fabric AIOps Architecture

its integration with the live mode, Caddy optimizes the
data model for efficient storage and querying. By employing
hierarchical aggregation techniques, Caddy significantly
increases the live mode’s in-memory storage capacity to
support several days of data. This extended window facilitates
interactive diagnostics and analysis of fabric health and
behavior over a longer timeframe.
FAIO API Layer: This layer offers a set of Python calls
specifically designed for performing complex data analysis
tasks on the network performance data. These calls include
requests tasks like filtering, aggregation over the whole or
sections of the Slingshot fabric.
RESTful API Layer: This layer provides a RESTful
API (accessible through standard web requests) for the
user interface that allows users to interact with FAIO’s
functionalities. Users can request aggregations over different
time ranges or fabric subsection, visualize utilization of
resources for jobs and highlight the span of specific jobs over
the fabric, among others, through various interactive visual
representations for deeper insights.

To summarize, FAIO streamlines the process of extracting
meaningful insights from network performance data by
simplifying data acquisition, and optimizing storage for
faster analysis. It offers powerful analytical tools, and
provides a user-friendly interface for interaction allowing
researchers and system administrators to gain quicker and
deeper understanding of their HPC system’s network behavior,
leading to improved network monitoring and maintenance.

IV. CADDY DATA MODEL FOR SCALABLE ANALYTICS

Our primary goal is to enhance memory efficiency in
handling large-scale telemetry data of exascale systems,
ensuring that larger volumes of in-memory data can be
analyzed in real-time without sacrificing accuracy. This

improvement is crucial for system administrators who rely
on timely and precise data to monitor and manage high-
performance computing environments. Caddy optimizes the
Fabric AIOps’ live mode (Fig. 2), which is an auxiliary
distributed lightweight storage that allows real-time network
health monitoring over a small segment of the most recent
telemetry (10 minutes’ worth). The key feature of Caddy’s
novel design is its ability to rapidly compute and store
aggregates in an online manner at varying granularities during
data ingestion to serve multi-resolution analytical queries,
while maintaining a consistent memory-footprint for each data
aggregate, irrespective of data density.

A. Telemetry Bins
Caddy enables efficient management of high-volume,

high-velocity data by employing a tile layer [13] model
for in-memory aggregation. We summarize raw data into
compressed, hierarchical tiles at varying granularities. Caddy
groups and aggregates incoming telemetry data into discrete
bounds based on their telemetry and temporal metadata.
Instead of storing individual telemetry data-points, we group
all data-points over a sub-domain and represent them with
a single set of values. This reduces redundancy and storage
requirements significantly by keeping the data size for
each sub-region constant, irrespective of the volume of the
underlying telemetry. This approach is critical for handling
massive data streams from the Slingshot interconnect fabric
because traditional methods would quickly overwhelm storage
systems and slow down analytics. By pre-aggregating data,
Caddy ensures economical storage and enables faster queries
for real-time insights.

A Caddy Bin serves as the unit of data aggregation
and analysis. These Bins are crucial to encapsulating
aggregated values over any configurable set of telemetry
measurements (counters). Each Bin represents aggregate



Fig. 3: Caddy Data Model: Hierarchical Organization of Bins

analytics over telemetry data for any configurable range
of telemetry (Rf ) and temporal resolution (Rt) of all
incoming telemetry events in a stream that fall with the
bounds of the Bin. Telemetry resolutions can be at the
level of either Group, Switch, or Port while temporal
resolution can be Monthly, Daily, or Hourly. The aggregate
statistics supported by our system currently include mean,
median, variance, skewness, and kurtosis for each of the
following 4 counters: rxBW, txBW, rxCongestion, and
txCongestion. The bounds of each Bin is denoted by
the tuple {time range, group id, switch id, port range},
which can be adjusted based on the resolution represented by
the Bin which also determines its position in the hierarchy.
All events are tagged to their specific Bin based on their
metadata and used to update the aggregated contents of that
Bin. Bins’ aggregate statistics can be updated in an online
fashion and kept memory efficient through the use of Welford’s
online algorithm [18]. Additionally, Bins can be efficiently and
accurately merged based on the same algorithm.

For distributed, multi-node storage, Caddy allows
for configurable partioning of the in-memory store
partitioned seamlessly across multiple nodes. In our
current implementation, partitioning of the in-memory graph
is done at the group-level of the fabric, where each node is
designated data belonging to a proportionate range of groups
in the fabric. In case of systems with uneven distribution of
groups, switches, and ports, users can choose to configure
their own distribution of Caddy based on their metadata.

B. Memory-Efficient Online Aggregates

Caddy achieves efficiency and scalability of the Bins’
contents through dynamic merging and updates of aggregate
statistics in the Bins using Welford’s algorithm which
offers a computationally efficient (single-pass) approach for
incrementally updating the aggregate statistics as new data
arrives. This method enables real-time updates and analysis
without the need to recompute the aggregates over the

entire data points, significantly reducing both computational
complexity and memory footprint. While the core algorithm
maintains only three variables (mean, m 2, and n) for mean
and variance calculations, it can be extended to support higher-
order moments like skewness and kurtosis (as shown in
Algorithm 1.

Additionally, Welford’s algorithm can be extended to allow
for a set of Bins to be merged to create a Bin (of the same
memory-footprint) that represents their cumulative domain.
Welford’s algorithm is particularly beneficial in our use-case
where maintenance of real-time telemetry data can quickly
overwhelm the limited memory capacity of the RAM. It keeps
track of the evolving aggregates, allowing for continuous
updates as new data arrives.

Bins are the key to data compression and efficient data
storage in Caddy. As shown in Algorithm 1, we can maintain
aggregates upto the 4th order or moment by maintaining
and updating simply 5 variables in-memory. This shows
that for a set of supported telemetry counters, each Bin,
irrespective of its temporal and fabric domain, has a constant
memory footprint, keeping our in-memory storage at a stable
value despite variations in volume of incoming telemetry.
Additionally, by leveraging online updates, our data model
can efficiently accommodate data updates over evolving
input streams without compromising analytical accuracy, since
Welford’s algorithm has been demonstrably proven to be
accurate for calculating aggregate statistics. This gives Caddy a
robust and scalable solution for data management and analysis.

Utilizing Bins, coupled with Welford online statistics,
allows us to achieve two key functionalities: (1) rapidly
identifying subregions (Bins) that require creation or
modification based on incoming data, and (2) perform
efficient, decentralized updates across our computing cluster
- overlapping partitions can easily be merged during query
evaluations. Merging of Bins may be required either if - (a) a
higher-level (lower-resolution) Bin is required to be generated
from the contents of lower level Bins in case of dynamic
generation of a Bin hierarchy (explained below) , or (b) in
case of a distributed setting where partitioned Caddy Bins
have overlapping bounds - in such scenarios, in certain corner-
cases, aggregate results with overlapping Bin, identified by
their matching metadata, would need to be merged to get
accurate results.

Each Bin contains 2 main information: (a) telemetry and
temporal metadata, used for identification and validation
during telemetry queries, and (b) Welford’s summary statistics,
which represents the aggregate data queried for diagnostics
over the domain represented by the Bin. These summary
statistics for matching Bins is the main information returned
to a client program in response to an analytical query. The
metadata information also helps the Bins be aware of their
immediate position in the hierarchical graph structure, as
explained later.



Algorithm 1 Welford’s Online Algorithm: Online updates to
aggregates for every new entry

Initialize:
m1 ← 0 (mean)
m2 ← 0 (variance)
m3 ← 0 (skewness)
m4 ← 0 (kurtosis)
n ← 0 (number of samples seen)
for each new data point x do
n← n+ 1
δ ← x−m1
m1← m1 + δ/n
m2← m2 + δ ∗ (x−m1)
δ2← δ ∗ δ
m3← m3 + δ2 ∗ (x−m1)− 3 ∗m2 ∗ δ/n
δ3← δ2 ∗ δ
m4← m4+δ3∗(x−m1)−6∗m2∗δ2/n+4∗m3∗δ/n2

end for

C. Hierarchical Bins

We design the structure of Caddy to make it condusive to
interactive analytical queries. To facilitate this, we organize it
as a hierarchical organization of Bins (Fig. 3), similar to the
concept of hierarchical data tiles [2], in descending order of
their resolution, i.e., coarsest resolution at the topmost level.
Bins are logically organized as a multi-relational property
graph with each level grouping Bins of a particular telemetry
and temporal resolution. The hierarchy is constructed using
Bin metadata in the following order time range, group id,
switch id, port range}, as shown in Fig. 3. This hierarchical
organization of bins based on the ordering of Bins’ key
metadata is configurable. This simple mapping between the
Bins’ granularity and the level of the hierarchical graph makes
it easy to rapidly identify the set of Bins required to compute
the results of a query and then filter from them based on query
parameters.

Although Caddy is logically designed as a tree, we
physically organize it as a set of hashmaps with each Bin
maintaining sufficient metadata to identify its neighborhood.
We circumvent the need to maintain actual links between Bins
and its neighborhood and with the Bins that lie above or
below it in the hierarchical layout of Caddy (parent and child
Bins, respectively), which could compund the overall size of
the in-memory framework in the case of a large interconnect
fabric. We acomplish this by designing and maintaining each
Bin’s metadata such that it can be easily used to identify the
metadata of any Bin in its neighborhood. Unlike traditional
tree-based systems, Caddy avoids costly traversals leveraging
this metadata information in each Bin for discovery of its
immediate neighborhood in the logical graph which further
reduces its memory requirement. Each Bin holds the entire key
range info and can easily identify (O(1) time) its immediate
neighbors/parents/children in the telemetry/temporal space.
For instance, we can easily summarize, from Fig. 3, that

the parent of a Bin represented by the tuple {2023 − 12 −
21, G8, S15, P99} is {2023− 12− 21, G8, S15, }.

Due to this easy inference of Bins and their hierarchical
relationships, Caddy allows for conditional persistence of
low-resolution (higher-granularity) Bins, i.e., except for the
leaf-level Bins, none of the higher-level Bins need to be
constructed during data ingestion, minimizing the overhead
to ingestion throughput of the framework. This is because, in
case of limited memory capacity of the host nodes, simply
maintaining lower-granularity Bins allows for the dynamic
computation of higher-granularity Bins on the fly during query
evaluations since lower level Bins can be quickly merged to
contruct higher-level ones. It is to be noted that merging of the
Bins leverages Welford’s algorithm, which unlike traditional
calculations, and avoids expensive re-computation of the mean
and variance from scratch, leading to significantly faster
updates. This rapid merging allows Caddy to be optionally
configured to selectively decide whether to persist lower-
resolution (higher-level) Bins in-memory, leading to greater
flexibility in terms of usage based on the fabric over which
it is being used. Additionally, during a cold start, Bins
can be retroactively constructed using historical data from a
persistent storage (TimescaleDB in case of FAIO) and then
populated/updated with live data and purged periodically based
on staleness to maintain the last N hours of most recent
telemetry aggregates in-memory.

D. Data Ingestion and Population over Caddy

As mentioned before, FAIO’s live mode works in a
distributed fashion with each node handling a portion of the
overall telemetry data aggregation, partitioned by its group
ID. Each node has its own partitioned Caddy graph handing
data for its share of groups to ensure data locality. To keep
the telemetry ingestion process seamless, leaf-level Bins are
generated/updated during data ingestion, whereas the non-leaf
Bins may be evaluated lazily during query evaluations. As
mentioned above, we can selectively determine which level of
non-leaf Bins get constructed during data ingestion and which
get constructed on-the-fly during query evaluation.

Additionally, to ensure accuracy of results and avoid
redundant reevaluation of non-leaf Bins, Caddy maintains a
hierarchical bitmap that represents the consistency of Bins in
that level. Since identification of a leaf-level bin’s hierarchy
is a simple operation, during ingestion/update, we go up the
bitmap hierarchy to mark the Bins that have become stale in
anticipation for future query. Ideally, due to the time-series
nature of telemetry data, only a negligible section of a non-
leaf Bins will become stale over time. It is to be noted that in
cases where the full hierarchy of Bins is updated during data
ingestion, there is no need to maintain the bitmap, since all
Bins in Caddy would be up-to-date on ingestion.

E. Query Evaluation

Fig. 4 demonstrates the general structure of a telemetry
query to be evaluated by the Fabric AIOps back-end against
a visualization request from its front-end UI. The Rf and Rt



Fig. 4: Structure of a FAIO telemetry aggregation query over
a fabric sub-sectiion

query parameters represent the fabric and temporal resolution
at which telemetry is requested by the user, respectively.
TelemetryQuery and TemporalQuery represent query
filters that allow users to specify time ranges, as well as the
cross-section of the fabric over which users’ request telemetry
aggregates.

During evaluation, Rf and Rt are used to identify the
Caddy level from which Bins are to be queried - this helps
us rapidly isolate the subset of Bins for each analytical
evaluation. In cases of selective population of Caddy levels,
we would look at the lower levels for candidate Bins to be
used to construct the requested higher level (lower granularity)
Bins. In the next step, once the relevant Caddy level is
identified, the TelemetryQuery and TemporalQuery are
used to filter Bins with metadata that match the query. Finally,
Bins from individual Ray actors (partitioned Caddy datastores)
are combined into a set of frames based on their timestamp
to construct the response to the analytical query. Optionally,
in case of overlap of Bins’ metadata between actors, they
can be rapidly merged using Welford’s algorithm, as detailed
previously.

F. Data Purging

In order to facilitate analytics over the most recent
telemetry in live mode for real-time analysis, Caddy prioritizes
maintaining the most recent Bins in case of a memory
overflow. This overflow can be configured as a preset limit
to either the total number of Bins that can be maintained in
Caddy or as the difference between the current timestamp to
the timestamp of its oldest entry. Crossing of this overflow
threshold would trigger a purging of the in-memory Bins.
Cady employs a targeted eviction scheme for its Bins that
strategically removes older Bins to make space for newer ones
containing the latest information to enable a sliding temporal
window of in-memory Bins.

The eviction utilizes the timestamp metadata associated with
each Bin to evaluate its relevance. Bins are purged based
on ascending order of their timestamp metadata, where the
topmost entries in the order would contain the Bins oldest data
within the in-memory storage. Additionally, once stale Bins
are identified at the temporal level, Caddy strategically purges

all its children Bins in a top-down fashion, leveraging the easy
identification of the subtree for each parent Bin purged by
matching for the prefix of their metadata. This ensures that
only is the oldest data removed within a timeframe, freeing
up valuable in-memory storage for the latest information. This
targeted eviction approach allows Caddy to maintain a fresh
and up-to-date in-memory representation of the data, crucial
for real-time analytics and insights, without much overhead to
its query analytics.

It is to be noted that this maintenance scheme is executed
parallely without halting ingestion or query evaluation over the
framework. Also, purging of stale bins in Caddy is executed
intermittently at configureble intervals.

V. SYSTEM EVALUATION

We benchmark our system based on telemetry data modeled
after telemetry from HPE’s Hotlum system. Hotlum is a high-
performance computing (HPC) system built on HPE Cray EX
hardware with 1024 nodes, each containing dual AMD EPYC
7763 processors and either 512 Gb or 1024 Gb of memory. The
system utilizes HPE Performance Cluster Manager 1.10 for
cluster management, COS 3.0 (based on SLES 15 SP5) as the
operating system, Slurm 23.02.6 as the workload manager, and
high-speed networking provided by Slingshot 11 with software
version 2.1.1. The following evaluations were performed on
an instance of FAIO deployed over a single node of a a high-
performance computing system equipped with Gen 10+ 128
AMD EPYC 7002 Series (XL225) processors with 196 GB
of memory. The fabric consists of 8 groups, each containing
8 switches, which in-turn contain 64 ports each. Overall, for
our benchmarks, our system ingested continuous telemetry at
the rate of 300K telemetry events recorded per minute, which
occured parallely to any analytical queries.

A. Caddy Telemetry Data Compression Evaluation

As mentioned previously, data compression in Caddy is
achieved through aggregating telemetry data into fixed-size
Bins. The temporal size of these Bins is configurable and
determined based on the underlying system and the users’
requirements on how fine-grained a view of the system
would suffice for the FAIO live mode. Here, we evaluate
the compression ratio achieved for different Bin sizes. As
expected, larger Bin sizes result in higher compression ratios
due to the ability to represent higher volume telemetry
within a single Bin of constant size and exploit temporal
redundancy in the data. We evaluated on three Bin sizes:
10 minutes, 15 minutes, and 30 minutes and compression
ratio increases linearly with Bin size, demonstrating the
effectiveness of Caddy in reducing data storage requirements.
This demonstrates that through aggregation of continously
streaming data into fixed-sized Bins, we can significantly boost
the storage capacity of the live mode in terms temporal range

B. Comparison of Fetch Times for Single-frame Snapshot

We also benchmark the improvement in latency of
evaluations of analytical queries over Caddy compared to



Fig. 5: Compression Factor vs Bin Size

TABLE I: Comparison of fetch times between live Mode and
Caddy-enabled live mode

Single Frame Fetch Time
Mode Time (ms)

Live Mode 355
Group Level 151Live Mode + Caddy Port Level 267.51

FAIO’s live mode over single snapshots of the fabric. Table
I shows a comparison between Caddy and traditional live
mode for average evaluation times for aggregate queries over
telemetry for the temporal window of 10 mins and varying
fabric resolution levels. Traditional live mode currently does
not support fabric-level aggregation - the 355 ms is the time
taken for fetching port-level aggregate statistics. With Caddy,
we demonstrate aggregateions at both group and port-level
(i.e. we aggregate the value of the counter rxCongestion
over each group/port). Due to Caddy’s ability to identify in-
memory data segments faster due to more efficient hierarchical
indexing, we can see improved query latency. Additionally,
it is to be noted that Caddy supports fetches over multiple
time-segments over a larger requested time-range in the form
of an array of snapshots of the fabric in a single query. So
the improvement in latency between the FAIO live mode
and Caddy is further amplified over larger time ranges. We
demonstrate the latencies of such queries below.

C. Large-scale Telemetry Query Analytics

To evaluate the performance of Caddy, we profiled our
system on a set of queries involving long temporal windows
for telemetry data. These queries simulate real-world scenarios
where users would request aggregated data over various
timeframes grouped into 10-minute intervals (which is the
highest-granularity for temporal Bins in our benchmarks). The
queries retrieve and aggregate this data for a user-specified

TABLE II: Comparison of data ingestion rates for FAIO with
and without Caddy

Time (s)
Live Mode + Caddy 1.007
Live Mode 0.7589

temporal window, and the results are presented as frames
within a carousel interface, as shown in Fig. 6.

Fig. 6 illustrates the change in query latency with increasing
temporal scope of the query. As expected, it shows a direct
correlation between the length of the queried time window
and the latency experienced. Queries encompassing longer
durations requires look-up into greater number of potential
candidate Bins and subsequent merging of selected Bins.
Based on these findings, we can infer that for optimal
user experience, the ideal temporal window size should not
exceed 3 hours. For queries exceeding this timeframe, a
pagination mechanism should be implemented, where queries
are executed when sections of the overall carousel view are
fetched based on the users’ actions to enhance interactivity.
This would allow users to navigate through the results in
smaller, more manageable chunks, reducing perceived latency
and improving overall responsiveness.

Fig. 6: Query Times vs Query Size

D. Ingestion Overhead
We profile the ingestion overhead of maintaining an in-

memory tree of aggregates, compared to our current live mode
strategy of maintaining recent telemetry in a arrays one for
teach telemetry measurement (counters). Table II demonstrates
the comparison of average ingestion time of FAIO’s live mode
with and without the Caddy in-memory framework. In this
experiment, we compare compare the latency of ingestion of
1 million telemetry data randomly generated for a time-period
representing 1 hour. We can see that population of in-memory
data with Caddy is slower compared to that of our current
live mode (32.5%). Given the improvements demonstrated in
the previous evaluations, we propose that is an acceptable
overhead for our in-memory store.

VI. CONCLUSION

Here we described, Caddy, our framework for interactive
aggregations over voluminous telemetry datasets generated



from exascale fabrics.
RQ-1: Caddy facilitates interactivity for large-scale queries
over the fabric. To achieve this, incoming high-velocity
telemetry are consolidated into Bins over configurable
temporal and telemetry ranges, leading to significant reduction
of the memory-footprint of the stored data. Our scheme
maintains enough information to generate aggregates upto
the 4th order of moment and avoids redundant computations
during data ingestion and enables reusablility of results.
RQ-2: Our compact Bins are supplemented with metadata
relating to their domain, enabling us to identify or merge
them data for generating interactive visualizations over varying
granularities. This supports efficient summarizations and
hierarchical aggregations of telemetry data across different
fabric or temporal scopes. We ensure accuracy of these
aggregate metrics by utiliaing Welford’s online algorithm,
which allows us to maintain accurate representations of the
underlying data in-memory at a constant memory footprint
per Bin.
RQ-3: Stale Bins are purged based on their temporal metadata.
We leverage the hierarchical nature of our data model to
rapidly identify Bins with stale metadata. Starting at the
temporal level, Bins can be sorted on their timestamps and
identified for purge based on whether their timestamps are
beyond the allowable threshold. We then use these shortlisted
Bins at the temporal level to easily identify their sub-trees for
elimination from Caddy to keep it up-to-date.
RQ-4: Maintaining summarizations at varying granularities
helps us minimize duplicate processing over Caddy. This
hierarchical structure facilitates easily identification of the
set of Bins relevant to a particular query based on the
requested resolutions and topology bounds. Additionally, we
utilize the metadata of each Bin to precisely locate its relative
position in the overall in-memory graph, allowing for rapid
identification or merging across tree levels during the time of
query evaluation.

VII. FUTURE WORK

We aim to further explore the scalability of Caddy in
larger, more diverse HPC settings. This includes testing
its performance and efficiency in exascale environments
with higher data volumes and varying computational loads.
Additionally, we plan to explore how integrating Caddy with
existing or emerging technologies in HPC ecosystems which
can create new opportunities for real-time data processing
and analysis, for instance, using the compact data Bins for
predictive models and checking for accuracy of results. These
explorations could significantly broaden Caddy’s utility and
influence within the field.

REFERENCES

[1] Welford, B. P. ”Note on a method for calculating corrected sums of
squares and products.” Technometrics 4.3 (1962): 419-420.

[2] Lins, Lauro, James T. Klosowski, and Carlos Scheidegger. ”Nanocubes
for real-time exploration of spatiotemporal datasets.” IEEE Transactions
on Visualization and Computer Graphics 19.12 (2013): 2456-2465.

[3] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and Stoica,
I., 2010. Spark: Cluster computing with working sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 10).

[4] Mitra, S., Khandelwal, P., Pallickara, S. and Pallickara, S.L.,
2019, September. Stash: Fast hierarchical aggregation queries for
effective visual spatiotemporal explorations. In 2019 IEEE International
Conference on Cluster Computing (CLUSTER) (pp. 1-11). IEEE.

[5] Liu, Z., Jiang, B. and Heer, J., 2013, June. imMens: Real-time visual
querying of big data. In Computer graphics forum (Vol. 32, No. 3pt4,
pp. 421-430). Oxford, UK: Blackwell Publishing Ltd.

[6] Lins, L., Klosowski, J.T. and Scheidegger, C., 2013. Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE Transactions on
Visualization and Computer Graphics, 19(12), pp.2456-2465.

[7] Pahins, C.A., Stephens, S.A., Scheidegger, C. and Comba, J.L., 2016.
Hashedcubes: Simple, low memory, real-time visual exploration of big
data. IEEE transactions on visualization and computer graphics, 23(1),
pp.671-680.

[8] Tao, W., Liu, X., Wang, Y., Battle, L., Demiralp, Ç., Chang, R. and
Stonebraker, M., 2019, June. Kyrix: Interactive pan/zoom visualizations
at scale. In Computer Graphics Forum (Vol. 38, No. 3, pp. 529-540).

[9] Batt, S., Grealis, T., Harmon, O. and Tomolonis, P., 2020. Learning
Tableau: A data visualization tool. The Journal of Economic Education,
51(3-4), pp.317-328.

[10] Li, R., Feng, W., Wu, H. and Huang, Q., 2017. A replication strategy
for a distributed high-speed caching system based on spatiotemporal
access patterns of geospatial data. Computers, Environment and Urban
Systems, 61, pp.163-171.

[11] Jain, A., Gupta, A., Gupta, A., Gedia, D., Pérez, L., Perigo, L.,
Gandotra, R. and Murthy, S., 2019. Trend-based networking driven by
big data telemetry for SDN and traditional networks. arXiv preprint
arXiv:1904.10449

[12] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly,
M., Franklin, M.J., Shenker, S. and Stoica, I., 2012. Resilient
distributed datasets: A Fault-Tolerant abstraction for In-Memory cluster
computing. In 9th USENIX symposium on networked systems design
and implementation (NSDI 12) (pp. 15-28).

[13] Battle, L., Chang, R. and Stonebraker, M., 2016, June. Dynamic
prefetching of data tiles for interactive visualization. In Proceedings of
the 2016 International Conference on Management of Data (pp. 1363-
1375).

[14] Srinivasan, M., Mallick, D., Maschhoff, K. and Ayyalasomayajula,
H., trellis—An Analytics Framework for Understanding Slingshot
Performance.

[15] Roweth, D., Faanes, G., Treger, J. and Terpstra, M., HPE Slingshot
Launched into Network Space.

[16] Nielsen, J., 2009. Powers of 10: Time scales in user experience.
Retrieved January, 5, p.2015.

[17] Karau, H. and Lublinsky, B., 2022. Scaling Python with Ray. ” O’Reilly
Media, Inc.”.

[18] Welford, B.P., 1962. Note on a method for calculating corrected sums
of squares and products. Technometrics, 4(3), pp.419-420.

[19] Weidner, O., Barker, A. and Atkinson, M., 2017, June. Seastar: a
comprehensive framework for telemetry data in HPC environments.
In Proceedings of the 7th International Workshop on Runtime and
Operating Systems for Supercomputers ROSS 2017 (pp. 1-8).

[20] Jha, S., Cui, S., Banerjee, S.S., Xu, T., Enos, J., Showerman, M.,
Kalbarczyk, Z.T. and Iyer, R.K., 2020, November. Live forensics for
HPC systems: A case study on distributed storage systems. In SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis (pp. 1-16). IEEE.

[21] Timescale. (2024). Timescale Docs. https://docs.timescale.com/
[Accessed: 2024-04-04]

[22] Omnisci. (2024). OmniSci Overview. https://docs.heavy.ai [Accessed:
2024-04-04]


