
Proactive Precision: Enhancing High-Performance
Computing with Early Job Failure Detection

1st Dipanwita Mallick
Hewlett Packard Enterprise

Seattle, United States of America
dipanwita.mallick@hpe.com

2nd Siddhi Potdar
Hewlett Packard Enterprise

Fort Collins, United States of America
siddhi.potdar@hpe.com

3rd Saptashwa Mitra
Hewlett Packard Enterprise

Fort Collins, United States of America
saptashwa.mitra@hpe.com

4th Charlie Vollmer
Hewlett Packard Enterprise

Fort Collins, United States of America
charlie.vollmer@hpe.com

5th Nithin Singh Mohan
Hewlett Packard Enterprise

Fort Collins, United States of America
nithin-singh.mohan@hpe.com

Abstract—In the realm of high-performance computing (HPC),
the efficient allocation and utilization of computational resources
are paramount. A significant challenge in this domain is the
early detection of job failures, which, if unaddressed, can lead to
considerable inefficiencies and increased operational costs. This
study introduces an innovative approach to preemptively identify
potential job failures within HPC environments by leveraging an
adaptive machine learning model. Utilizing the Slurm workload
manager as a basis for our investigation, we analyze over
300,000 job records from a 1027-node internal HPC system. Our
methodology encompasses a comprehensive preprocessing of job
data, including an in-depth analysis of historical job information
and resource usage, to train a predictive model capable of dis-
tinguishing between successful and failed job submissions with a
high degree of accuracy. To address the inherent challenge of class
imbalance within our dataset—characterized by a predominance
of successful job submissions—we employ advanced strategies
such as active learning and oversampling techniques. The result
is a robust model that not only accurately predicts job failures
within two minutes of job submission but also offers insights
and suggestions for effective system adjustments and resource
reallocation to enhance overall system efficiency. Additionally, we
suggest ways to integrate our work within a Jupyter notebook
environment, making our predictive model and post-prediction
analytics capabilities accessible to a broad range of users within
the HPC community. Through a comprehensive evaluation,
including precision, recall, F1 score, and the receiver operating
characteristic (ROC) curve, our model demonstrates good perfor-
mance, with an area under the curve (AUC) of 0.99, indicating a
near-perfect capability in predicting job outcomes. This research
aims at improving HPC job scheduling and management by
utilizing descriptive and predictive analytics to understand the
data and forecast potential outcomes, subsequently leveraging
prescriptive analytics to suggest optimal methods for adjusting
resource allocations.

Index Terms—class imbalance, adaptive modeling, active learn-
ing, Jupyter notebook integration, job scheduling, resource opti-
mization, high-performance computing

I. INTRODUCTION

High-Performance Computing (HPC) has become an indis-
pensable tool across many scientific, engineering, and business
domains, enabling complex and computationally intensive
tasks to be performed with unprecedented speed and efficiency.

At the core of HPC’s success is the effective scheduling
and management of computing jobs, which are often subject
to stringent performance and time constraints. Despite the
advanced capabilities of HPC systems, job failures remain
a significant challenge, affecting system efficiency, resource
utilization, and the timely completion of computational tasks.
These failures can arise from many factors, including hardware
malfunctions, software bugs, system overload, or misconfigu-
rations, leading to wasted resources and delays. The ability
to quickly detect and respond to these failures is critical, yet
traditional methods often fall short, lacking the foresight and
adaptability needed to preemptively address potential issues.

The primary challenge this research addresses is the proac-
tive detection of job failures within HPC environments. Tra-
ditional approaches to job management and scheduling within
HPC systems have been reactive, with failures often identified
only after they occur, resulting in significant resource wastage
and operational inefficiencies. This research aims to transform
the approach from reactive to proactive by utilizing sophis-
ticated machine learning techniques to predict job failures
within two minutes of job launch. By harnessing descriptive
and predictive analytics, this study aims to deeply understand
job data and accurately forecast outcomes, thus enabling the
preemptive adjustment of resource allocations. Furthermore,
leveraging prescriptive analytics allows for the recommenda-
tion of optimal resource adjustments, enhancing overall system
performance. The objectives of this research are twofold: to
develop an adaptive machine learning model capable of early
job failure prediction within HPC systems, and to create a user-
friendly interface that facilitates the application of this model
within existing workflows. In summary, we aim to achieve
following objectives:

• The combination of supervised and unsupervised learning
to enhance prediction accuracy and gain deeper insights
into job failures.

• The development of a user-centric interface and imple-
mentation of a pipeline for viewing results in real-time,



providing actionable feedback to HPC administrators and
users.

• The application of an oversampling methodology to ef-
fectively handle the significant class imbalance present
in job failure data, ensuring more reliable and accurate
predictions.

• The adoption of a continuous retraining mechanism for
the predictive model, ensuring its adaptability and ongo-
ing improvement in response to new data and evolving
system dynamics.

• The provision of post-prediction insights that allow for a
deeper understanding of the causes of failure, facilitated
by analyzing historical data and the model’s interpretation
of features and their importance.

By addressing these aspects, our research not only advances
the field of HPC job management but also sets a new bench-
mark for predictive analytics in high-performance computing
environments, significantly improving upon existing method-
ologies and tools.

In the rest of the paper, starting with a literature review in
Section II, it assesses existing HPC solutions, machine learn-
ing’s impact on efficiency and reliability, and identifies current
research gaps. Section IV and V details the data collection
and preprocessing efforts, including feature analysis crucial
for the predictive model discussed in Section IX, where we
elaborate on model development, training, and the integration
of learning techniques. Section XI introduces a user-focused
interface, designed for ease of use within a Jupyter note-
book environment, enhancing user interaction and decision-
making. A comprehensive performance evaluation in Section
X assesses the model’s effectiveness, followed by Section XII,
which outlines future research directions, including advanced
machine learning techniques and potential for scalability. The
paper concludes in Section XIII, summarizing the study’s
contributions to HPC job management and efficiency.

II. LITERATURE REVIEW

Job failure prediction in HPC systems is a critical research
area that aims to improve system efficiency and utilization.
Prior studies have embarked on this journey, employing vari-
ous machine learning strategies to enhance the accuracy and
efficiency of the systems.

In 2021, team [1] developed a framework to predict job
failure in HPC systems at two different points: job submit-state
and job start-state. The predictive models are developed using
decision-tree induction techniques, and the performance of the
models is evaluated using two workload logs from different
HPC systems. The study aims to improve the efficiency of
the systems at the job level by providing users with guiding
tools to make efficient decisions when submitting jobs. The
models can help users effectively manage their job submis-
sions, ultimately enhancing the efficiency of the systems. The
results show that the predictive models built from decision
tree algorithms exhibit high accuracy in various test cases,
although issues related to imbalance ratios between majority
and minority classes are identified. Overall, the paper presents

a comprehensive approach to addressing job failure prediction
in the systems and evaluates the effectiveness of the proposed
models.

In 2023, team [2] published a paper that highlights strate-
gies to optimize HPC system management by predicting
job failures at submit-time. The authors study job failure
prediction using machine learning algorithms, combined with
Natural Language Processing (NLP) tools to represent jobs.
The novelty of their approach lies in working in an online
fashion in a real system, as opposed to using random splits
of historical data. The study is based on a dataset from the
Marconi100 HPC system hosted at the HPC center CINECA
in Italy.

In 2022, team [3] proposed a new job failure prediction
method for supercomputers based on enhancing semantic
information about job applications. Prior works rely heavily
on real-time monitoring of job performance metrics, which
is difficult to implement. Instead, this paper analyzes over
472K jobs on a production supercomputer to extract names,
submission paths, and cluster jobs into related applications.
This application-aware modeling with semantics about rela-
tionships between jobs allows effective failure prediction with
lower overheads. Experiments using decision trees and random
forests demonstrate significant gains - final accuracy reaches
88.16% with 95.23% specificity and 88.24% sensitivity. The
job application semantic enhancement provides 5-6% better
performance over baseline models using time and resources
alone. Thus, this technique can generalize across users, job
types, and system architectures.

In 2021, team [4] also introduced an innovative framework
that leverages machine learning, utilizing novel features like
job running path and retry count, which reflect the job’s appli-
cation type and user behavior, respectively. The study demon-
strates that incorporating these features significantly enhances
the prediction accuracy, outperforming existing methods by
about 4% in comprehensive evaluation, achieving over 89%
accuracy in identifying job failures.

In 2023, researchers in the [5] conducted an extensive
analysis of scheduler logs from a production-level HPC sys-
tem. They provided a comprehensive statistical and machine
learning examination of job failures, benefiting from a rich
dataset that allowed for in-depth feature analysis to pinpoint
crucial predictors of job outcomes. The comparison across six
machine learning models revealed that tree-based approaches
excelled in predicting job failures, showcasing superior accu-
racy and computational efficiency, thereby pushing forward the
capabilities in predictive modeling within HPC environments.

In the literature review, we observed several key method-
ologies for enhancing the reliability and efficiency of the HPC
systems through job failure prediction. Each study underscores
the criticality of leveraging job submission data attributes,
such as job ID, user ID, and resource requests, in conjunc-
tion with advanced machine learning algorithms to anticipate
failures. This collective body of work validates its approaches
through the analysis of authentic datasets from HPC facilities,
rigorously assessing model performance to ensure real-world

2



applicability and operational timeliness. However, there are
also several notable challenges mentioned in the paper: bal-
ancing prediction precision against computational demands,
curating optimal feature sets without resorting to overly broad
or sensitive data, ensuring model adaptability across diverse
HPC environments, and achieving predictions in real or near-
real time to facilitate preemptive action.

By addressing a few of these challenges, our research
proposes enhancements in several critical areas. We aim to
develop real-time predictive analytics to offer immediate,
actionable insights for preempting job failures. Furthermore,
we plan to enhance model training through job profile analysis,
leveraging historical data on job performances to refine pre-
diction precision. Incorporating Explainable AI (XAI) stands
as another cornerstone of our approach, aiming to demystify
the prediction process and foster trust among users and admin-
istrators by clarifying the logic behind predictive outcomes.

III. WORKFLOW MODEL

Fig. 1. Diagram showcasing the process flow for job prediction and inference.

The workflow(fig.1) for job prediction in HPC environments
[6] operates in two distinct modes: real-time inference and
offline training. In the real-time inference mode, users submit
jobs to the Slurm Workload Manager, which triggers the
predictive model to assess the likelihood of job success or
failure. This immediate analysis allows users to make informed
decisions, such as whether to adjust job configurations and
resubmit to avoid potential failures, based on the real-time pre-
diction results provided post-submission. In the offline mode,
our model focuses on continuous improvement by regularly
incorporating new data from the Slurm workload manager.
This approach not only increases the model’s accuracy but
also ensures its adaptability to new patterns and trends in the
data.

IV. DATA COLLECTION AND DATA LABELING

This section will provide details on how the job data was
collected from the 1027-node internal HPC system using the
Slurm workload manager. The preprocessing steps taken to
prepare the raw data for analysis will then be described,
including handling missing values through deletion or impu-
tation, normalizing numerical features, encoding categorical
variables, and extracting new features as needed. Useful vi-
sualizations and statistics on the data will also be presented.
Additionally, exploratory analysis like job profile segmenta-
tion using clustering algorithms will be discussed to discern
patterns and commonalities in job behaviors. This provides a
foundation for the downstream predictive modeling. Finally,
the methodology for selecting the most relevant input features
through statistical correlation analysis and predictive model-
based feature importance techniques will be outlined. This
subset of features serves as input into the job failure prediction
models to improve efficiency and performance.

A. Dataset

The dataset for this research was collected from a 1027-node
internal HPC system running the Slurm workload manager
for cluster management and job scheduling. Slurm is widely
used in HPC environments and provides capabilities such as
scalability, fault-tolerance, and ease of configuration.

The data encompasses over 300,000 job records spanning
user jobs across various teams and workloads on the system
from October 2022 to September 2023. The jobs data was
gathered using Slurm’s accounting interface sacct, which ex-
poses rich information on each job across over 100 data fields.
While most features were directly obtained from Slurm, some
additional features were derived by processing certain raw
fields:

• CPU, Memory, Nodes: Derived by splitting the Alloc-
TRES field.

• CPUTime: Calculated using Elapsed time * CPU count.
The key fields extracted into the dataset include:

• User ID: Uniquely identifies the user submitting the job.
• Job Name: Free-form name assigned to the job.
• State: Job status indicating whether the job was success-

fully concluded or not.
• CPU: Number of CPU cores allocated.
• Memory: Amount of memory allocated.
• Nodes: Count of nodes allocated.
• CPU Time: Total CPU time used by the job.
• Submit Time: Job submission timestamp.
• Start Time: Job start execution timestamp.
• End Time: Job completion timestamp.
• GID: Group ID of the user.

These fields were selectively chosen based on their potential
influence on job outcomes and failure prediction capabilities
based on research into prior work. The total feature set pro-
vides detailed resource allocation, usage, and runtime insights
on each job. In the subsequent data preprocessing phase,
additional engineered features are extracted from this raw set

3



to better expose patterns from the data. The final output is a
refined, analysis-ready dataset feeding into the later machine
learning modeling and evaluation for predictive analytics.

B. Labeling and Problem Framing

The raw job data from Slurm contains a variety of comple-
tion status labels across different failure modes and outcomes.
After examining the distribution of these labels, we found
that completed jobs constitute about 92% of the data, while
the remaining labels represent specific, relatively infrequent
failure cases. Some examples of the low-frequency labels
include BOOT FAIL, NODE FAIL, OUT OF MEMORY,
PREEMPTED, etc. With limited data samples for each in-
dividual failure type, modeling them independently would be
statistically ineffective.

Therefore, we frame the job failure prediction task as a
binary classification problem. The jobs are labeled as either
Completed (1) or Failed (0). The failed class consolidates all
failure outcomes like BOOT FAIL, NODE FAIL, etc., into
a single category representing jobs that did not successfully
complete. This simplifies the classification modeling while
addressing the substantial class imbalance between successful
and unsuccessful jobs. It also matches the end objective of
identifying jobs likely to fail rather than diagnosing the exact
failure mode, which has little added utility. The encoding of
the raw status labels into this binary representation is done pro-
grammatically using a LabelEncoder. As seen in figure(fig.2),
the resultant distribution has approximately 92% Completed
and 8% Failed jobs - still imbalanced but significantly more
manageable compared to modeling separate failure types.

Fig. 2. The figure illustrates the imbalance present in the data label
distribution.

Framing the prediction as a binary classification allows
applying more effective modeling techniques. It also elegantly
transforms the raw multi-class formulation with skewed la-
bels into a cleaner problem statement focused singularly on
predicting if jobs will fail or succeed.

V. PREPROCESSING

In this research, we undertook a comprehensive approach
to refine and enhance the data collected from HPC job logs,
aiming to boost the predictive accuracy of our machine learn-
ing models. The process began by cleaning the dataset, where
we removed any records that were incomplete to maintain the
quality of our inputs. Alongside that, we focused our attention
on individual job records by filtering out job steps and omitting
columns like JobName and ExitCode, which did not contribute
to our predictive goals.

During the feature engineering phase, we introduced new
attributes to gain further insights. We calculated the run time
of jobs by measuring the interval between their start and
end times, which helped us understand how long jobs were
running. Similarly, we determined wait time to quantify the
delay between when a job was submitted and when it started,
giving us an indication of the system’s queuing time. We also
extracted temporal features from the job submission times,
such as the day of the week and month of submission, among
others. This detail helped us investigate whether the timing of
job submissions could affect their outcomes. To prepare for
future analyses, we excluded jobs that ran for less than two
minutes, and categorized users based on their activity levels.
The exclusion of jobs that ran for less than 2 minutes serves
to diminish noise within the dataset, ensuring that our focus
remains squarely on computational tasks that meaningfully
engage HPC resources. Such jobs are more likely to exhibit
discernible patterns related to failures or successes, thus en-
hancing the overall reliability and quality of our analysis.
Furthermore, this criterion aligns with our forward-looking
objective to integrate more complex and indicative metrics
into our model, particularly those relevant to longer-running
jobs. By concentrating on these jobs, we position our research
to offer more accurate and operationally relevant predictions,
catering specifically to the substantive computational activities
within HPC systems.

To gain a deeper understanding of job behaviors, we applied
unsupervised clustering methods like K-Means and Gaussian
Mixture Models(GMM), which allowed us to group job pro-
files. This step added an interpretive layer to our dataset.

This detailed process of data cleaning and feature engi-
neering transformed the raw dataset into a more informative
and refined form, setting a solid foundation for the next stage
of our research—applying classification models to predict the
outcomes of new job submissions with greater accuracy.

VI. EXPLORATORY DATA ANALYSIS

Under the umbrella of exploratory data analysis, performing
clustering on job data emerges as a pivotal step toward
unraveling the underlying patterns and groupings within HPC
systems. This exercise’s main purpose is to categorize jobs into
distinct clusters based on their characteristics and performance
metrics. This categorization aids in identifying similarities and
differences among jobs, potentially uncovering factors that
contribute to job success or failure.

4



We chose GMM for clustering because of its adaptability
to clusters of varying sizes and configurations. Contrary to K-
Means, which presupposes the clusters to be spherical, GMM
can handle ellipsoidal shapes. This characteristic makes it a
better fit for the intricate data patterns frequently observed in
HPC job logs. GMM is built on the premise that data points
emerge from a combination of several Gaussian distributions,
each corresponding to a cluster. It computes the likelihood of
each data point’s association with the clusters, enabling a more
nuanced classification.

Fig. 3. Elbow plot showing the relationship between the number of clusters
(K) and the distortion (within-cluster sum of squares). The elbow point,
located around K=3, indicates the optimal number of clusters for the given
dataset, balancing the trade-off between the number of clusters and the
compactness of the clusters.

To determine the optimum number of clusters, we employed
the elbow method(fig.3), which is a common technique used to
determine the optimal number of clusters (K) in a dataset when
using clustering algorithms like K-means. It helps to balance
the trade-off between the number of clusters and the within-
cluster sum of squares (WCSS), also known as distortion. As
shown, the elbow point is located around K=3. This suggests
that choosing 3 clusters would be a good choice for the given
dataset. The clustering outcomes offer a multifaceted view
of job executions, highlighting patterns that were previously
obscured. By discerning the nuances of job types, durations,
user activities, and system states, we can effectively refine our
predictive models.

Fig. 4. Job profiles based on resource usage, run time and wait time.

Fig.4 shows distinct patterns in terms of CPU and memory
usage, as well as run and wait times. Cluster 0 represents a
group of jobs that use minimal CPU and memory resources
on average and have the lowest mean wait and run time. This
cluster could be indicative of lightweight or low-priority jobs.
On the other hand, cluster 1 is characterized by significantly
higher resource usage, with the highest mean CPU and mem-
ory utilization. The run time mean, and standard deviation are

also the highest among the clusters, suggesting these jobs are
long-running, resource-intensive tasks. The wait time has a
high mean and standard deviation, which could indicate these
jobs may have higher priority or they require specific resources
that are less available. Finally, jobs in cluster 2 have moderate
CPU and memory usage, run times, and wait times when
compared to the other two clusters. The standard deviation
for run time is high, suggesting variability in the job lengths
within this cluster.

Fig. 5. Job profiles based on job duration.

Fig.5 illustrates the job duration profiles of the three
clusters. Cluster 0 consists entirely of short-duration jobs,
suggesting simple, low-complexity tasks. Cluster 1 exhibits
a diverse mix of job durations, indicating a general-purpose
cluster handling various tasks. Cluster 2 primarily contains
short-duration jobs, with some medium-duration tasks, sitting
between the profiles of Clusters 0 and 1.

Fig. 6. Job profiles based on user activity.

Fig.6 shows the user activity levels across the three clusters.
Cluster 0 has only one infrequent user, suggesting under
utilization or specific use cases. Cluster 1 is the most active,
with a balanced mix of frequent, infrequent, and new users,
indicating a diverse user base. Cluster 2 has a smaller but
balanced distribution of user activity, showing less activity
than Cluster 1 but still a healthy mix of user engagement.

Fig. 7. Job profiles based on job status.

Fig.7 presents the distribution of job states ('Completed'
or 'Failed') across the three clusters. Cluster 0 and cluster

5



2 are dominated by state 'Completed' jobs, indicating high
success rates. In contrast, cluster 1 shows a more balanced
distribution between the two states, with a significant number
of state 'Failed' jobs, suggesting a higher occurrence of failures
compared to the other clusters.

Fig. 8. Job profiles based on job size and type.

Fig.8 illustrates the distribution of job types (balanced,
compute-intensive, or memory-intensive) across the three clus-
ters. Cluster 0 and cluster 2 are composed almost exclusively
of balanced jobs, suggesting they are optimized for standard
workloads with even resource requirements. Cluster 1, while
primarily handling balanced jobs, also accommodates a small
number of compute-intensive and memory-intensive jobs, in-
dicating a more diverse job mix compared to the other clusters.
Based on extensive clustering analysis performed, we can
glean several interesting characteristics about the clusters. The
key findings can be summarized as follows:

• Cluster 0 is likely used for lightweight, low-complexity
jobs that consistently succeed and are handled by users
who infrequently utilize the system.

• Cluster 1 is a versatile and highly active cluster handling a
range of job types and durations, used by a diverse group
of users from regular to first-time users, and experiences
a significant number of job failures.

• Cluster 2, while less active than Cluster 1, is utilized for
a healthy mix of short and medium-duration jobs, has
a high success rate, and like Cluster 0, is optimized for
balanced jobs but has some memory-intensive tasks.

Next, we will look at the correlation map to understand
the intricate interplay of features and how they potentially
influence job outcomes.

The plot in fig.9 offers a visual exploration of the intercon-
nectedness of user behavior, job duration, resource utilization,
and temporal submission patterns, unveiling the subtle and
sometimes unexpected drivers of job success or failure. Our
analysis revealed that user behavior(as denoted by user id)
exhibited a negative correlation with job state (r = -0.33),
suggesting that some users have distinct patterns that affect
job performance. The moderate negative correlation (r = -
0.25) between job duration and job state reveals an intriguing
relationship between the runtime of a job and its probability
of success or failure. This correlation suggests that longer job
durations are associated with a higher likelihood of job failure,
while shorter-running jobs tend to have a higher success rate.
Temporal features like submission month and week of the year
demonstrated negative correlations (r = -0.29 and r = -0.28,

Fig. 9. A heatmap visualization of feature correlations with job state.

respectively) with job state, implying that job performance
might be cyclically influenced by systemic or external factors.
In terms of resource usage, the almost perfect correlation (r
= 1.00) between CPU and memory usage underscores that
resource-intensive jobs demand high levels of both CPU and
memory. However, when considering the job state factor,
there is a noticeable negative correlation with both CPU
and memory usage (r=-0.12), implying that jobs with higher
resource demands do not necessarily correspond with higher
success rates. This finding challenges the common assumption
that more resources directly lead to better outcomes. Instead, it
suggests that the relationship between resource allocation and
job success is more complex and warrants the development of
advanced models for a deeper understanding of how resource
dynamics affect job states in HPC environments. Additional
noteworthy correlations include:

• Temporal Submission Patterns: The strong correlations
within temporal features such as submit month and week
of the year, and their relationship with quarters, reflect a
potential link to organizational workflows and planning
periods, which could inform system usage forecasting and
capacity planning.

• User-Cluster Allocation: The high positive correla-
tion(r=0.77) between user IDs and cluster assignments
indicates a meaningful relationship where certain user
IDs are systematically associated with specific clusters,
possibly reflecting organizational strategies, user or job
characteristics, or resource allocation policies.

These multifaceted correlations elucidate a complex archi-
tecture of job executions within the HPC system. Incorporating
these insights into our predictive modeling will not only bolster
the accuracy of job outcome forecasts but also equip system
administrators with the data-driven knowledge necessary for

6



informed decision-making.

VII. FINAL LIST OF FEATURES FOR MODELING

In the process of constructing a predictive model, the
selection of features is a crucial step that directly impacts
the model’s performance. There are certain features that our
analysis suggests are indispensable:

• User ID: Reflects user-specific patterns that may influence
job outcomes.

• Run Time: Indicates the job duration, which could be
predictive of job success or failure.

• CPU and Memory Usage: Despite their perfect cor-
relation suggesting redundancy, these features are key
indicators of job resource intensity.

• Temporal Submission Features: Including submit month,
submit day of week, submit week of year, and sub-
mit quarter, as they may capture cyclical patterns in job
success rates.

Conversely, there are features whose contributions may appear
marginal or redundant, yet we opt to retain them in the
initial modeling phase. This comprehensive approach allows
the machine learning model to evaluate each feature’s impact
through techniques such as feature importance. The features
in question include:

• Node and GID: They might capture infrastructure-specific
influences on job performance.

• CPUtime: While it may be correlated with run time, it
could offer additional granularity.

As we proceed, the model will dictate the relevance of each
feature through empirical results. It is through this iterative
process of model training and evaluation that we will discern
whether the exclusion of certain features enhances model
accuracy. By maintaining a full set of features initially, we
leave no stone unturned, ensuring our model has the broadest
possible basis to learn from.

VIII. EVALUATION METRICS

When evaluating the performance of our job failure predic-
tion model, it is essential to look beyond accuracy measures,
especially when dealing with imbalanced class distributions.
In our case, the minority class represents job failures, which
are of interest. Relying solely on accuracy can be misleading,
as it may overlook the model’s ability to effectively identify
these critical failure events.

To overcome this challenge and ensure a thorough evalua-
tion, we employ three key metrics: precision, recall, and the
F1 score. These metrics provide a more nuanced assessment of
the model’s capability to accurately predict job failures while
considering the potential impact of false positives and false
negatives.

Precision, also referred to as the positive predictive value,
indicates the proportion of correctly predicted job failures
(true positives) among all instances predicted as failures. It
is calculated as follows:

Precision =
True Positives

True Positives+ False Positives
(1)

Recall, also known as sensitivity or true positive rate, mea-
sures the proportion of actual job failures that are successfully
identified by the model. It is calculated using the following
formula:

Recall =
True Positives

True Positives+ False Negatives
(2)

On one hand, a model with high precision but low recall
may be too conservative, missing many actual failures. On
the other hand, a model with high recall but low precision
may correctly identify most failures but also generate a high
number of false alarms.

To find a balance between precision and recall, we utilize
the F1 score, which is the harmonic mean of these two metrics.
The F1 score is calculated as follows:

F1 Score = 2× Precision×Recall

Precision+Recall
(3)

The F1 score ranges from 0 to 1, with 1 representing perfect
precision and recall. By considering both metrics, the F1 score
offers a comprehensive measure of the model’s performance,
accounting for the trade-off between false positives and false
negatives.

By emphasizing these metrics, we ensure a rigorous and
accurate evaluation of our model’s performance, considering
the challenges posed by class imbalance. This comprehensive
assessment enables us to make well-informed decisions re-
garding model selection, hyperparameter tuning, and potential
enhancements to improve the model’s ability to predict job
failures effectively.

IX. ADVANCED PREDICTION MODELING

In our study, we explored various supervised machine learn-
ing algorithms to tackle the job failure prediction task. Among
these techniques, XGBoost emerged as the best performer
in terms of accuracy and efficiency. XGBoost, an optimized
gradient boosting framework, combines multiple weak learners
to create a strong predictive model. We chose XGBoost for
several reasons:

• Ability to handle imbalanced datasets: XGBoost pro-
vides hyperparameters such as scale pos weight that can
effectively handle class imbalance by assigning higher
weights to the minority class.

• Robustness to outliers: XGBoost’s decision tree-based
architecture makes it inherently robust to outliers, as it
focuses on splitting criteria rather than being influenced
by extreme values.

• Efficiency and scalability: XGBoost is known for its
fast training speed and ability to handle large datasets
efficiently, making it suitable for our HPC job failure
prediction task.

• Feature importance ranking: XGBoost provides a built-
in feature importance ranking, allowing us to identify the
most influential features contributing to job failures.

By fusing supervised learning (XGBoost) with unsupervised
learning (GMM), we aimed to enrich our data analysis and

7



TABLE I
COMPARISON OF MODEL PERFORMANCE

Model Precision (0/1) Recall (0/1) F1 Score (0/1) Accuracy
XGBoost 0.59/1.00 0.98/0.94 0.73/0.97 0.94

XGBoost + Random oversampling 0.06/0.91 0.31/0.58 0.10/0.71 0.56
XGBoost + SMOTE oversampling 0.03/0.91 0.10/0.76 0.05/0.72 0.70

XGBoost + Active learning 0.78/0.98 0.87/0.97 0.82/0.97 0.97

Evaluation results of different models on the test data, showing precision, recall, and F1-score for each job outcome class (0: Failed, 1: Completed). For
instance, the precision for the XGBoost model with active learning on test data is 0.78 for class 0 and 0.98 for class 1.

capture underlying patterns in job characteristics. This ap-
proach allowed us to identify distinct job profiles and leverage
this information to improve the accuracy of our job failure
predictions.

To address the challenge of class imbalance in our dataset,
where the majority of jobs belonged to the completed class,
while job failures were relatively rare, we aim to bolster our
model with oversampling techniques. We explored random
oversampling and SMOTE (Synthetic Minority Over-sampling
Technique) but our experiments with these oversampling meth-
ods did not yield satisfactory results.

Thus, we explore more advanced oversampling strategies.
Active learning is such a process which involves an iterative
process that intelligently selects the most informative data
points for labeling, rather than relying on random sampling.
By focusing on the most informative samples, active learning
allows us to build robust models with smaller datasets while
improving generalization performance.

The key advantages of employing active learning in our job
failure prediction task are therefore as follows:

• Efficient use of labeling resources: Active learning
reduces the number of labeled examples required to
achieve good performance by strategically selecting the
most informative samples.

• Improved generalization: By iteratively training the
model on carefully selected data points, active learning
helps the model learn from diverse and representative
samples, enhancing its ability to generalize well to unseen
data.

• Handling class imbalance: Active learning can effec-
tively address class imbalance by focusing on informative
samples from both majority and minority classes, leading
to a more balanced and effective learning process.

• Adaptability to changing workloads: Active learning
allows the model to adapt to evolving workloads and
system characteristics by continuously incorporating new
informative samples into the training process.

In our implementation of active learning, we calculated the
top N samples based on uncertainty and region density. These
samples were considered the most informative and were fed
into the XGBoost classifier for training. We evaluated the
model’s performance using a validation set and repeated this
process for a fixed number of iterations. The best-performing
model obtained during this iterative process was then used to
make predictions on the final test set.

Our experimental results demonstrated that active learning
significantly improved the precision, recall, and F1 scores of
our job failure prediction model as shown in Table I. Moreover,
the active learning process converged quickly, requiring only
a few iterations to achieve optimal performance.

X. COMPREHENSIVE PERFORMANCE EVALUATION

After the training and validation phases, the model was
evaluated on a reserved test dataset, and segregated from
the entire dataset to avoid any data leakage. The application
of our active learning resulted in an improvement of model
performance, effectively rectifying the data imbalances present
and making the model more robust. This improvement is
reflected in Table I.

The table shows results of different models on the test set.
Comparing the model results on train set and test set, we
observe all models perform extremely well on train set and
not as well on the test set. In machine learning, we try to
strike a balance between the discussed scores for a particular
model on both train and test sets. This ensures the model is not
overfitting, or underfitting. Considering a real-world scenario,
we need the model to be adaptable to changes in data. Active
learning fulfils this requirement as we can see in the results
table. The precision and recall metrics for both classes have
shown improvement and are more closely aligned with each
other when utilizing active learning. This indicates a reduction
in bias, either towards a particular class or a specific type of
error, as compared to scenarios without active learning.

In fig.10 the curve demonstrates the trade-off between the
True Positive Rate (sensitivity) and the False Positive Rate
(1-specificity) across different thresholds. The area under the
curve (AUC) is 0.99, indicating that the model has a near-
perfect measure of separability with a high capability to
distinguish between the classes. The closer the AUC is to 1,
the better the model is at predicting 'Failed' and 'Completed'
classes with minimal error.

The exploration of the confidence score, in tandem with
other evaluation metrics, offers a deeper dive into understand-
ing model confidence. The fig.11 shows the distribution plot
for both the classes on the test data. For the 'Completed' class,
we see a concentrated cluster of high confidence scores near
the upper end of the scale, signifying a strong conviction from
the model about its predictions of job completion. However,
for the 'Failed' class, while there is a presence of high
confidence scores, the distribution suggests a broader range of

8



Fig. 10. ROC curve (AUC = 0.99) demonstrating the job failure prediction
model’s near-perfect discrimination ability between ’Failed’ and ’Completed’
classes.

Fig. 11. Distribution plots for the 'Failed' and 'Completed' classes offering a
visual examination of the model’s predictions.

confidence, indicating room for improvement in the model’s
certainty when predicting failures.

The model in use has a preset threshold of 0.5 for its
predictions. This means that predictions with a confidence
score above this threshold are classified as 'Completed', and
those below as 'Failed'. Adjusting this threshold can alter the
model’s sensitivity to predicting one class over another. The
selection of an optimal threshold is case-dependent; it should
be tailored to the unique needs and error tolerance of the
specific application. By fine-tuning the threshold, we can strike
a balance that maintains the model’s accuracy and enhances
the trust in its predictions, especially when it is applied to
new, unseen data in real-world situations. Such calibration is
crucial to ensure that the model provides actionable insights
and assists in informed decision-making processes.

XI. USER-FOCUSED INTERFACE

Our predictive modeling and data preprocessing libraries
are designed to be highly versatile and easily integrated into
various environments, enabling users to gain real-time insights
into job performance and make data-driven decisions. The

modular nature of our libraries allows for seamless integration
into interactive dashboards, Jupyter notebooks for exploratory
data analysis, or existing machine learning workflows for
specialized tasks. In this section, we demonstrate two primary
use cases:

• Functioning User Interface (UI) for Real-time Job Ana-
lytics: We showcase a user-friendly and interactive dash-
board that harnesses the power of our predictive models to
provide real-time visibility into job performance and pre-
dictions. The dashboard features intuitive visualizations,
allowing users to monitor job progress, identify potential
issues, and make informed decisions to optimize resource
allocation and minimize failures. Through a typical user
journey, we highlight how the dashboard empowers users
to proactively manage their job submissions and improve
overall system efficiency.

• Jupyter Notebook Integration for Extensibility: In addi-
tion to the dashboard, we demonstrate how our libraries
can be seamlessly integrated into Jupyter notebooks,
providing users with a flexible and interactive environ-
ment for conducting further exploratory data analysis
(EDA). This integration showcases the extensibility of
our libraries, enabling users to adapt and customize the
analysis to suit their specific requirements and uncover
additional insights.

A. Functioning User Interface (UI) for Real-time Job Analyt-
ics

Fig.12 shows the 'Job Prediction Dashboard' that integrates
raw data, real-time predictions, feature insights, and job pro-
files, creating a comprehensive and actionable view of job
performance. Let’s walk through a typical user journey to
understand how the dashboard empowers users to monitor,
analyze, and optimize their job submissions.

Upon opening the dashboard, users can see an overview
table presenting a comprehensive list of jobs, and the predicted
outcome (Complete/Fail) with a confidence score. This real-
time snapshot allows users to quickly assess the current state
of the system and anticipate potential job failures.

The dashboard provides two primary modes of interaction.
In the overview mode, users can explore the entire landscape
of running jobs, gaining a high-level perspective of the sys-
tem’s performance. Alternatively, the specific job search mode
enables users to dive deep into the details of a particular job
by searching for its unique identifier. This targeted approach
allows users to focus on jobs of special interest and investigate
the factors influencing their predicted outcomes. Selecting a
job from the table triggers an update in the 'Insights into
Feature Contributions' section, revealing a ranked list of job
attributes that most significantly impact the prediction. This
explainable interface sheds light on the model’s decision-
making process, helping users understand why a particular
job might be prone to failure. The 'Job Profiles' section adds
another layer of interpretability by allowing users to under-
stand their selected job in relation to broader job archetypes.
By identifying the job profile that aligns with their job’s

9



Fig. 12. Interactive dashboard showcasing real-time job failure predictions facilitating immediate analysis and decision-making.

characteristics, users can compare its attributes to the typical
behavior of similar jobs, gaining insights into complexity,
resource usage, and user frequency patterns.

When a job is predicted to fail with high confidence, users
can leverage the insights from feature contributions, feature
importance and job profiles to pinpoint the root causes. For
example, a job with an unusually long wait time compared to
its assigned job profile might be flagged as a potential failure
risk. Armed with this knowledge, users can take proactive
measures to mitigate failure risks. The real-time nature of the
dashboard allows users to make informed decisions on the fly.
They can choose to let the job continue running or cancel
it proactively based on the prediction results and confidence
scores. If a job is deemed likely to fail, users can investigate
the contributing factors and make necessary adjustments, such
as modifying resource requests or rectifying errors in the job
script. Upon resubmission, the dashboard dynamically updates
its predictions, providing instant feedback on the effectiveness
of the modifications.

Over time, users can track the evolution of their job failure
rates and analyze trends to identify recurring patterns. By
correlating job features and job profiles with failure propensity,
users can continuously optimize their job submission strate-
gies, leading to enhanced system performance and reduced
wastage of computational resources.

B. Jupyter Notebook Integration for Extensibility

In addition to the user-friendly dashboard, our predictive
modeling and data preprocessing libraries seamlessly integrate
with Jupyter notebooks, offering an immersive and interactive
environment for EDA and collaborative insights.

The integration of our libraries with Jupyter notebooks also
enhances the reproducibility and transparency of the analysis.
By encapsulating the entire workflow, from data preprocessing
to model training and evaluation, within a notebook, users
can ensure that their results are fully reproducible. This is
particularly important in the context of job failure prediction,
where the ability to replicate and validate findings is crucial
for building trust and confidence in the predictive models.

The following figures depict a user journey for interacting
with a job failure prediction system. The workflow consists
of five main steps, guiding users through the process of
loading data, preprocessing it, applying a pretrained model,
and obtaining insights into specific jobs.

As shown in fig.13 and fig.14, the user begins by loading
the dataset required for prediction. Next, they prepare the data
using preprocessing techniques to ensure its suitability for the
machine learning model. The user then loads the pretrained
model, which has been developed and optimized for job failure
prediction. With the model ready, the user can initiate the
prediction process on the new data, identifying potential job
failures(fig.15). The final step, 'Get insights into your job',
allows users to dive deeper into the factors influencing the

10



Fig. 13. An interactive workflow in Jupyter notebook environment consists
of five main steps, guiding users through the process of loading data,
preprocessing it, applying a pretrained model, and obtaining insights into
specific jobs.

Fig. 14. This figure demonstrates the ability to explore job data prior to
executing the prediction model, allowing for data exploration within the
Jupyter notebook.

Fig. 15. This figure illustrates the model’s identification of probable job
failures within the dataset.

Fig. 16. This SHAP plot clarifies how individual features contribute to the
model’s reasoning behind each job’s likelihood of failure or success, detailing
the factors influencing its predictions.

prediction for a specific job. Fig.16 demonstrates this step-in
detail. By entering a job ID, such as 436277, the user can
retrieve comprehensive insights about that job. Furthermore,
the system presents a SHAP (Shapley Additive Explanations)
plot, often referred to as a waterfall plot, which provides
valuable insights into the prediction for a particular instance,
highlighting the key contributing factors that influence the
prediction result. The SHAP plot visualizes the positive and
negative impacts of each feature on the prediction, allowing
users to understand which job characteristics are driving the
model’s decision.

The high SHAP value for the 'user id' feature, combined
with its top ranking in the feature importance list(fig.12),
strongly suggests that the user’s historical job performance and
behavior have a substantial impact on job success. Moreover,
the high SHAP values for 'CPU' and 'CPU time' indicate
that for this particular job, the amount of CPU allocated and

the duration of CPU time taken are key contributing factors
to its successful outcome as predicted by the model. These
features have a significant positive impact, suggesting that they
are crucial in the model’s consideration of what influences
success for this job instance. Similarly, the negative value for
'node' and 'cluster' suggests that the number of nodes allocated
and job profile characteristics of this jobs have a minor
positive impact on job success. Gathering these insights, along
with an understanding of feature importance and the actual
values these features hold, can yield valuable revelations. Such
comprehensive knowledge enables the initiation of proactive
measures. These measures can improve the launch process
of jobs, effectively helping to avoid potential failures and
promoting a higher success rate in future job executions.

11



XII. FUTURE WORK

Building upon the current success of our job failure predic-
tion model and user interface, we have identified several key
areas for future research and development to further enhance
the capabilities and impact of our system.

Firstly, we plan to explore and incorporate advanced ma-
chine learning techniques and algorithms to improve the accu-
racy and efficiency of our predictive model. This may include
investigating deep learning architectures and transfer learning
approaches to leverage knowledge from related domains. By
staying at the forefront of machine learning research, we aim
to continuously refine our model’s performance and adapt to
the evolving needs of HPC workloads.

To further enhance the predictive capabilities of our model,
expanding the range and diversity of data sources is crucial.
We intend to integrate data from system logs, network perfor-
mance metrics, and application-specific telemetry to provide
a more comprehensive view of the factors influencing job
failures. By incorporating these additional data points, we
can capture subtle patterns and dependencies that may not
be apparent from job characteristics alone, enabling more
accurate and nuanced predictions.

As HPC systems continue to grow and become more
complex, scalability and adaptability become critical consider-
ations. We plan to conduct extensive testing and evaluation of
our model’s performance across a range of HPC system scales,
from small research clusters to large-scale supercomputers.
By analyzing the model’s behavior and resource consumption
under different workload conditions, we can identify potential
bottlenecks and optimize its performance for seamless inte-
gration into diverse HPC infrastructures.

In addition to the technical advancements, we also recognize
the importance of continuously improving the user experience.
While our current user interface provides a solid foundation
for interacting with the job failure prediction system, we aim
to gather feedback from the user community to identify areas
for enhancement. This may include incorporating customizable
dashboards, advanced filtering options, and personalized rec-
ommendations. By considering user preferences and domain-
specific requirements, we can create a more intuitive and
tailored user experience that helps users to effectively leverage
the insights provided by our system.

By focusing on these key areas of advanced techniques,
additional data sources, scalability, and user interface enhance-
ments, we aim to drive the future development of our job
failure prediction system. Through continuous innovation, we
strive to empower HPC users with proactive insights and
tools to optimize their workflows, minimize job failures, and
maximize the efficiency of their computing resources.

XIII. CONCLUSION

In conclusion, our research aimed to address the critical
challenge of early job failure detection in HPC systems. By
leveraging the Slurm workload manager and a comprehensive
dataset from a 1027-node HPC system, we developed a
predictive model capable of predicting job failures within two

minutes of submission. Our methodology involved rigorous
data preprocessing, feature engineering, and the application
of both supervised and unsupervised learning techniques. We
addressed the class imbalance problem prevalent in HPC job
data by employing active learning and oversampling strategies,
significantly enhancing the model’s predictive performance.
The evaluation of our model using precision, recall, and F1
score metrics demonstrated its high effectiveness in accurately
identifying potential job failures. The integration of our pre-
dictive framework into Jupyter notebook environment and an
interactive dashboard for real-time insights ensures accessi-
bility and ease of use for HPC practitioners. The insights
generated by our model enable proactive decision-making,
resource optimization, and improved system efficiency. Our
work lays the foundation for future advancements in HPC job
management, including the incorporation of additional data
sources and the development of intelligent job submission rec-
ommendation systems. By empowering HPC stakeholders with
predictive insights, our research contributes to the overall goal
of minimizing downtime, maximizing resource utilization, and
enhancing the productivity of HPC systems.

XIV. ACKNOWLEDGMENTS

We would like to express our sincere gratitude to the Jupyter
community for their invaluable contributions and resources
that have greatly facilitated our research. The Jupyter notebook
environment has been an essential tool in our work, provid-
ing a seamless and interactive platform for data exploration,
analysis, and model development.

We also extend our appreciation to the Dash Plotly com-
munity for their exceptional work in creating a powerful and
intuitive framework for building interactive dashboards. The
extensive documentation and examples provided by the Dash
Plotly community have been crucial in our development of the
user interface and visualization components of our job failure
prediction system. Their dedication to creating a user-friendly
and feature-rich library has greatly enhanced the usability and
visual appeal of our dashboard.

Additionally, we would like to acknowledge the Slurm
Workload Manager community for their significant contribu-
tions to the field of high-performance computing. The Slurm
Workload Manager has been a critical component in our
research, providing a robust and scalable framework for job
scheduling and resource management.

Furthermore, we would like to express our gratitude to
the Python community for their extensive contributions to
the field of data science and machine learning. The ideation
and implementation of our job failure prediction system have
been primarily carried out using the Python programming
language. The rich ecosystem of libraries, frameworks, and
tools provided by the Python community has been crucial
in our development process. From data manipulation and
preprocessing to model training and evaluation, Python has
been an integral part of our workflow. We are thankful for
the dedicated efforts of the Python community in creating and
maintaining these valuable resources.

12



We are particularly grateful to the scikit-learn community
for their role in the development of our predictive models.
Scikit-learn has offered us a comprehensive suite of simple
and efficient tools for data mining and data analysis, which
are accessible to everybody and reusable in various contexts.
The library’s consistent and easy-to-use interface has signifi-
cantly streamlined our machine learning pipeline, from model
selection and training to evaluation.

Moreover, we would like to recognize the open-source
community as a whole for their tireless efforts in developing
and maintaining the numerous libraries, frameworks, and tools
that have been integral to our research. The availability of these
resources has accelerated our progress and enabled us to focus
on the core aspects of our work.

Lastly, we would like to thank our colleagues and col-
laborators for their valuable insights, feedback, and support
throughout this research endeavor. Their contributions have
been essential in shaping and refining our approach to job fail-
ure prediction in high-performance computing environments.

Without the collective efforts and resources provided by
the Jupyter community, Dash Plotly community, scikit-learn,
Slurm Workload Manager community, and our colleagues, this
work would not have been possible. We deeply appreciate the
guidance and help received throughout the development and
writing phases of this project.

REFERENCES

[1] Anupong Banjongkan, Watthana Pongsena, Nittaya Kerdprasop, and Kit-
tisak Kerdprasop, “A Study of Job Failure Prediction at Job Submit-State
and Job Start-State in High-Performance Computing System: Using De-
cision Tree Algorithms,” *Journal of Advances in Information Technol-
ogy*, Vol. 12, No. 2, pp. 84-92, May 2021. doi: 10.12720/jait.12.2.84-92

[2] Francesco Antici, Andrea Borghesi, and Zeynep Kiziltan, “Online Job
Failure Prediction in an HPC System,” *Journal of Advances in In-
formation Technology*, Vol. 12, No. 2, pp. 84-92, May 2021. doi:
10.12720/jait.12.2.84-92

[3] Haotong Zhang, Gang Xian, Wenxiang Yang, and Jie Yu, “A
Study of Job Failure Prediction on Supercomputers with Applica-
tion Semantic Enhancement,” *Journal of Computing Science and
Engineering*, Vol. 16, No. 4, pp. 222-232, December 2022. doi:
10.5626/JCSE.2022.16.4.222

[4] Longfang Zhou, Xiaorong Zhang, Wenxiang Yang, Yongguo Han, Fang
Wang, Yadong Wu, and Jie Yu, “Predicting Job Failure on Supercom-
puters with Job Path and User Behavior,” *Journal of Advances in
Information Technology*, Vol. 12, No. 2, pp. 84-92, May 2021. doi:
10.12720/jait.12.2.84-92

[5] Ju-Won Park, Xin Huang, and Chul-Ho Lee, “Analyzing and predicting
job failures from HPC system log,” *Journal of Supercomputing*, Vol.
80, pp. 435-462, 2024. doi: 10.1007/s11227-023-05482-y

[6] Tanash M, Dunn B, Andresen D, Hsu W, Yang H, Okanlawon A.
Improving HPC System Performance by Predicting Job Resources via
Supervised Machine Learning. PEARC19 (2019). 2019 Jul;2019:69.
doi: 10.1145/3332186.3333041. Epub 2019 Jul 28. PMID: 35308798;
PMCID: PMC8932944.

13


