Using HPE-Provided Resources to Integrate HPE
Support into Internal Incident Management

1%t John Gann
NERSC

2" Daniel Gens
NERSC

3" Elizabeth Bautista
NERSC

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Berkeley, CA
jgann@1bl.gov

Abstract—High Performance Computing (HPC) has a demand
for streamlining incident management workflows while keeping
information synchronized between internal tickets and vendor
support cases. Before HPE acquired Cray, NERSC developed an
integration process between their ServiceNow incident manage-
ment platform and the Crayport platform. This is now obsolete
once HPE purchased Cray and NERSC staff had no choice but to
manually input information each time a new incident was opened
or required updating. Further, this manual entry needed to be
done in both ServiceNow and HPE’s platforms.

This paper presents a novel integration between ServiceNow,
a leading IT service management tool, and Hewlett Packard
Enterprise’s (HPE) support portal. This approach ensures a
synchronized and efficient workflow between the two platforms,
enhances visibility and tracking of issues, leads to quicker
resolutions and improved service levels, and creates an automated
method to update incidents. We will detail the development
journey, the technical challenges we overcame (including some
ServiceNow-specific security concerns), and the operational bene-
fits of this integration. Readers of this paper will gain insights into
the strategic planning and technical considerations required for
such integrations, making them well-equipped to handle similar
transitions and integrations in their respective organizations.

Index Terms—HPE Support Incident Management ServiceNow

I. INTRODUCTION

The National Energy Research Scientific Computing Center
(NERSC) is the premier scientific non-classified computing
facility funded by the U.S. Department of Energy (DOE)
Office of Science. As a source of high-performance computing
and data analysis capabilities, NERSC serves over 10,000
scientists worldwide and has more than 900 research projects
spanning various scientific disciplines. NERSC’s current sys-
tem is Perlmutter, an HPE Cray Shasta system comprised of
3,072 CPU-only and 1,792 GPU-accelerated nodes.

On such a large-scale system with many complex com-
ponents, many technical issues regularly need diagnosing
and remediation, particularly immediately after installation or
significant upgrades. Managing, documenting, and responding
to these issues quickly and efficiently is key to making this
system highly available to NERSC users. Resolving these
issues promptly requires close collaboration between NERSC
staff and HPE support personnel. In our current environment,
NERSC engineers collaborate with onsite HPE support staff,
submitting an average of 75 hardware support requests each

Berkeley, CA
dygens@1bl.gov

Berkeley, CA
ejbautista@lbl.gov

month. During outlier events, such as when new software has
been installed or system maintenances, this number can dra-
matically increase, making coordination especially challenging
and requiring service management tools that reduce the manual
overhead of communicating between the two organizations.

Several tools exist for tracking issues and incident manage-
ment in production IT environments, such Atlassian’s JIRA
[1], Zendesk [2], Salesforce Service Cloud [3], and Servi-
ceNow [4]. These tools play a crucial role in documenting
system and data center issues. They allow staff to consolidate
relevant monitoring information, narrative statements about
remediation steps, and inter-staff communication about an
incident. This last aspect is vital when managing HPC systems
where even relatively simple issues may require experts in
different domains to collaborate to solve an issue. However,
at NERSC, the effective use of a single platform for this
communication is stymied because NERSC and HPE use two
non-interoperable systems.

NERSC has used ServiceNow for more than a decade.
HPE uses an internally developed platform called the HPE
Digital Customer Experience, which is Salesforce-based. For
this reason, when an issue arises on NERSC HPC systems
that requires support from HPE personnel, it is necessary to
input the information into both systems manually. This can
potentially cause errors where both platforms do not have the
same information.

A. Integration with CrayPort

Before HPE acquired Cray, NERSC internally developed a
software integration between the ServiceNow incident man-
agement platform and Crayport [5]. This integration allowed
us to open Cray cases directly from ServiceNow and, more
importantly, synchronized service notes between the two plat-
forms in near real-time, so there was timely, robust, and error-
free communication between NERSC and Cray stakeholders.

Shortly after HPE’s acquisition of Cray Inc. Crayport was
retired, and NERSC’s existing integration was no longer func-
tional. Following that, engineers had to open cases in HPE’s
Digital Customer Experience (DCE) and manually copy and
paste any pertinent information between DCE and NERSC’s
ServiceNow instance. While the administrative overhead of
having to do a formerly automated task by hand is significant,

it is notable that because of differences between CrayPort and
HPE DCE, managing HPE cases manually had a higher ad-
ministrative burden than opening Cray cases manually before
an integration was even implemented.

This paper addresses the design of a similar integration
that works with HPE’s case management system. For various
technical, security, and administrative reasons, designing such
an integration involved overcoming several challenges that
were not encountered when designing and deploying the
previous integration with CrayPort. This paper documents
these challenges and the solutions used and explores potential
alternative solutions where they may be edifying.

II. SUMMARY OF THE INTEGRATION

This integration allows users to open, update, and close HPE
cases directly from ServiceNow, in a part of the interface
where information relevant to the case is readily available
and programmatically accessible. The dialog box to open a
case is accessible from the ServiceNow form, which accesses
an individual incident record. When a case is opened, it is
automatically paired with this record, and relevant information
from the incident record is used to populate case data, reduc-
ing both administrative overhead and the number of errors
introduced by copying the information over manually. Once a
case has been opened, updates to the corresponding Incident
record are reflected in the case, and vice versa, ensuring that
all parties from NERSC and HPE are working with the same
information.

A. User Interface Basics

From the Incident record view in ServiceNow, there is a
button at the top of the page to open an HPE case. When
this button is clicked a dialog box (Figure 1) appears, with
fields that allow you to specify which HPE-provided system
the case refers to, the priority of the case, the title of a the case,
and the description of why the case was opened. The field
to specify the HPE system is restricted to HPE systems for
which NERSC’s ServiceNow instance has an existing record.
The field for the priority of the case is a dropdown that allows
the user to select "Normal,” “Critical Degraded,” or “Critical.
Down”. Both the title and description fields are free text fields.
The fields for the system and title are pre-populated from
the corresponding data in the incident record. There is also
a field that specifies which ServiceNow Incident record the
case will be paired with, which is also pre-populated from the
Incident record, but unlike the system and title fields, cannot
be changed by the user.

Once this information is filled in to the user’s satisfaction, it
can be submitted to HPE with the submit button at the bottom
of the dialog box.

Once a case has been opened, updates to the case made by
HPE are reflected in the ServiceNow case record as narrative
entries in the ”Additional Comments” field, and updates to the
case can be made by making a narrative entry in ServiceNow.

New HPE Case

‘ @® NOTE: System, Priority, Title and Description cannot be changed after HPE case submission) ¢ ‘

> System | Perimutter Qo Parent INC0219183 ©

Priority | Normal v
%k Title | Perimutter - login09 Kill task failed °ll®

% Description

Submit

Related Links

Force to Update Set

Fig. 1. Dialog Box within ServiceNow for Opening an HPE Case

B. Timeliness of Synchronization

Updates made by HPE are reflected in the corresponding
ServiceNow incident record in near real-time, while opening
cases and updating information from ServiceNow might take a
bit longer. The nature of this delay is discussed in the section
of this paper dealing with the integration’s limitations. In prac-
tice, these delays are not substantial enough to significantly
impede workflow, although they can impact the smoothness
of interacting with the user interface.

III. INTERNAL STRUCTURE OF THE APPLICATION
A. The Three Component Parts

There are three component parts to the integration. Nat-
urally, ServiceNow is one of these parts since it is used at
NERSC for internal incident management. To interface with
HPE case management, we use the HPE-provided Global Ser-
vice Event Management(GSEM) platform. Additionally, since
there are some instances where it was necessary to mediate
the interaction between these two platforms, an intermediate
API runs in NERSC’s data center that helps facilitate outbound
requests to GSEM.

1) ServiceNow: ServiceNow offers several facilities that
enable the integration to function smoothly. First, within the
interface to update a record (or, in our case, a “ticket”), there
exist scripts that are triggered by changes in the form for the
record. These scripts can run on both the front end (triggering
changes to other fields in the form) or on the back end, which
can perform a variety of functions, including making changes
to the database underlying the records, making a request to
an external API, or most things that could be expected of
server-side programming. Additionally, ServiceNow provides
the ability to script RESTful APIs, where an HTTP endpoint
is exposed to the world. When receiving a JSON payload
with proper authentication, the contents of the payload can be
used in a back-end script whose running is triggered by the

payload’s receipt. Each of these features —front-end scripts,
back-end scripts, and scripted REST APIs — is used by our
integration to provide an easy-to-use user interface and facil-
itate communication between the integration’s components.

a) Front-end scripts: Front-end scripts in ServiceNow
enable client-side form actions, such as enabling a field when
another has been filled out with a specific value. These scripts
are used in the integration to prevent the user from performing
nonsensical or undesirable actions, such as updating a closed
case or closing a case without closure notes. They also provide
helpful messages and notes that guide users as they fill out the
case creation dialogue.

b) Back-end scripts: The ServiceNow server-side scripts
used by the integration fall into three main categories.

First, there are business rules that run when records—such
as cases or incidents— are displayed, inserted, or deleted
or when a table of records is queried. These are used by
the integration to handle the “bookkeeping” of ServiceNow
records, such as generating appropriate serial numbers for
external reference.

c) Scripted REST APIs: The integration uses scripted
REST APIS to accommodate inbound information about
changes to case information. GSEM can be configured to
send such information using a user-supplied endpoint, and our
integration uses this facility to receive information about case
creation, updates, and closure.

2) Global Service Event Management: One uses the HPE
DCE to open cases manually, but an alternate facility exists
for creating and manipulating HPE cases programmatically.
The HPE documentation introduces the Global Service Event
Management (GSEM) system, which is designed to automate
the transfer of calls between different Call Handling Systems
(CHS) without human interaction. GSEM is designed for both
internal (HPE to HPE) and external (Customers to HPE, HPE
to Partners) communications. This system uses the Service
Incident Exchange Standard (SIS), which provides a compre-
hensive framework for the GSEM process. SIS covers the data
flow, call states, and the structure and content of the data
exchanged in these communications. The act of passing a call
within the SIS framework is referred to as a ”Service Request,”
while the interactions between a Requester (the entity initiating
the call) and a Provider (the entity receiving the call) are
termed “Transactions.” These transactions are designed to
communicate information or change the state of the Service
Requests, promoting a dynamic and efficient response system.
SIS and GSEM aim to streamline communication between
service requesters and providers, enhancing efficiency in high-
volume service environments and reducing manual errors in
service incident management. The documentation emphasizes
practical application and benefits. It offers guidance for inte-
grating GSEM and SIS into existing frameworks, improving
service incident management. It is beneficial for sites and users
looking to understand or integrate the GSEM’s operational
framework.

3) Intermediate API: While it is obvious that any inte-
gration between local incident management and HPE case

management must necessarily include both of those systems as
components, there is also a third component to the integration.
NERSC'’s data center hosts a server running a simple API that
performs minimal translation of outbound communications
from ServiceNow and relays them to GSEM. This intermediate
software was necessary for various reasons, including secu-
rity requirements, the need for a more robust programming
environment than ServiceNow provides, and the enhanced
observability that comes with a locally running service.

Security considerations were the main driver of needing this
intermediate API. HPE requires host-specific certificates to
interact with GSEM and does not permit certificates with a
wildcard host. Because ServiceNow is a distributed Software-
as-a-Service platform, no guarantees can be made as to what
specific ServiceNow server will be making the call to GSEM.
Therefore, even though ServiceNow allows for the installation
of certificates for the purposes of interacting with external
APIs, a certificate that GSEM will consistently accept cannot
be embedded. Other incident management platforms that can
make guarantees as to what host is making outbound API
calls may not have this restriction. Nevertheless, to provide
a consistent host for interacting with GSEM, all API calls
that would originate from ServiceNow to GSEM are instead
generated by the server hosting the intermediate APL.

Secondary to the security considerations, a more robust
programming environment was needed than ServiceNow could
provide. ServiceNow is a full-featured incident management
platform, and its programming environment exists to support
that. However, due to the platform’s distributed cloud nature
and the fact that at the time of the integration’s development,
ServiceNow only supported ECMAScript 5 [11], attempting to
write software on the platform that extends beyond moderate
complexity incident management tasks was often challenging
due to the lack of such facilities as advanced flow control,
easy ability to import third-party libraries, and synchronization
primitives. While a simpler version of the integration could
have been written without the use of the intermediate server,
it would have lacked such essential features as retry logic,
robust error handling, and sensible default behavior.

Finally, mediating the outbound data flows with an in-
termediate server allowed us greater visibility during key
points of the development process, including during debug-
ging, unit and integration testing, and security reviews. Due
to the many levels of abstraction present in the ServiceNow
platform, debugging things as straightforward as API calls and
responses can be unnecessarily complex as any log data must
be interpreted keeping the distributed, parallel nature of the
platform in mind. Having outbound requests mediated by a
simple service consisting of a few hundred lines of Python
made debugging much more transparent.

The intermediate API is secured by two means. First, it is
only accessible within NERSC’s internal network. ServiceNow
can access it via privileged communication through a Ser-
viceNow Management, Instrumentation, and Discovery(MID)
server that resides on the internal network. Secondly, it is
protected with a username and password pair over HTTPS.

B. Data Flows

These three parts work together to make the integration
function. There are two main categories of data flows that
happen in different circumstances. When a data update is
initiated in ServiceNow, this is referred to as an outbound
data flow. Conversely, when a data update is initiated by HPE
and the data needs to be integrated into ServiceNow, this is
referred to as an inbound data flow. It is generally intuitive
when each is applicable, with one notable exception: When a
case is created in ServiceNow.

1) Case Creation Data Flows: When a case is opened from
ServiceNow, there is an outbound data flow informing HPE
via GSEM. When this happens, scripting on ServiceNow also
creates a placeholder record for the HPE case. Since the case
creation process takes some time, there is not an immediate
HTTP response. Instead, after some time, there is an inbound
data flow that contains the case ID and other information,
which is then integrated into the temporary case record.

2) Outbound Data Flows: Data that is flowing from the
ServiceNow platform to HPE is mediated by the intermediate
API. Examples of an outbound data flow are the initial step of
case creation, ServiceNow-initiated case updates, and case clo-
sure. Each of these three actions has a corresponding endpoint
on the intermediate API. These endpoints receive limited data
from ServiceNow and transform it into the payload needed by
GSEM. As an example, for case creation, the following pieces
of information are sent:

e Incident Record Identifier: The corresponding incident
record identifier used by ServiceNow. For example:
INC0098453

o Case Severity: The severity of the case, as selected from
the dropdown menu in the dialogue box

e Originator’s First Name: The first name of the Servi-
ceNow user opening the case.

o Originator’s Last Name: The last name of the Servi-
ceNow user opening the case.

o System Serial Number: The HPE-assigned serial number
for the hardware asset the case concerns.

e Case Tracking Number: The corresponding incident
record identifier prepended to a one-up serial number of
the ServiceNow case record.

o Case Title: The title of the case, as supplied by the user
in the case creation dialogue box.

e Case Description: The long-form case description sup-
plied by the user in the case creation dialogue box.

The intermediate API supplements this information with
static values, values generated at the moment of transmission
(such as the submission time), or values found via lookup
tables using the information provided by ServiceNow as keys
(such as the contract number corresponding to a specific hard-
ware asset). An example of the entire JSON object constructed
from these values can be found in Appendix A. This JSON
blob represents the minimum amount of information that can
be used to open a case with GSEM, and this was not a fact that
could be derived from existing documentation. While many of

the fields in the JSON blob are self-explanatory, the keys in the
"AGREEMENT” block are worth examining. “Contract ID”
references a contract number associated with a specific HPE
system. The number to use may not be obvious, as it does
not appear in contexts outside of GSEM, and this information
needs to be gleaned from a site’s GSEM point of contact. The
”AgreementType” field is a combination of the same system
serial number used in HPE DCE (SN) combined with whatever
identifier is being used for the case locally(LN).

3) Inbound Data Flows: Data about HPE cases flowing
from HPE to NERSC’s ServiceNow instance are not mediated
by the intermediate API. This is because security requirements
do not necessitate it, and the logic for handling these inbound
payloads is reasonably straightforward. It is easily handled
by the logic that can be embedded in a Scripted REST API
endpoint. Alternative designs confer some benefits, which will
be discussed, but ultimately, the simplicity of exposing a
Scripted REST API endpoint to HPE won out on the basis
of maintainability.

a) Alternate Design Using the GSEM Queue: During
development, an alternate design that did not make such
extensive use of ServiceNow’s Scripted REST APIs was ex-
plored. GSEM also offers a queue-based API where outbound
messages can be actively fetched and acknowledged when
appropriately processed. This alternate design has the server
running the intermediate API also actively fetching things
from the GSEM queue, processing them, and passing them to
ServiceNow either through a single, universal Scripted Rest
API, ServiceNow’s built-in APIs, or through ServiceNow’s
Management, Instrumentation, and Discovery platform. This
design did offer the advantages of consolidating more of our
logic in one place and greater observability of the processing
of inbound data flows. However, the cumbersomeness of
the multi-step acknowledgment process for queue messages
made the integration’s code more complex than was desirable.
The Scripted REST API implementation performs this same
acknowledgment much more simply by responding to inbound
payloads with an appropriate HTTP response code after the
payload’s data has been integrated, but for sites implementing
integrations on platforms that do not have such a robust
facility for handling inbound HTTP data, using the queue-
based systems may be a viable alternative.

IV. LIMITATIONS OF THE INTEGRATION
A. Not a Near Real Time Sync

Due to constraints introduced by the nature of the GSEM
API, this integration has many limitations. These limitations
are expected to be present in any similar integration that
leverages GSEM. One such limitation is that the initial opening
of cases is not near real-time and takes approximately five
minutes, with an additional five minutes required for the case
to populate in HPE DCE. This delay is introduced by the
GSEM back-end as the process to verify entitlement and
look up assets in the remote database is time-consuming. In
practice, this delay does not significantly impede case man-
agement activities, although the lag in back-end responsiveness

does have some implications for the smoothness of the user
experience.

B. Unable to Manage Cases in HPE DCE

Another limitation is that cases are not synchronized be-
tween GSEM and HPE DCE. Case updates made via the
integration (using GSEM) will be visible to HPE engineers
and support staff but will not be present in their corresponding
cases in DCE. Therefore, if an organization wishes to use an
integration to keep HPE service support information in its local
incident management platform, it should expect to forgo using
HPE DCE for case management. This is an inconvenience, and
HPE support has been consulted to inquire whether support for
synchronization between the two platforms would be added.
However, it appears there are no plans to do so in the
immediate future.

C. HPE User Metadata is not Available

When a case is updated with a comment, metadata contain-
ing user information is not included in the incoming GSEM
payload; this means that case comments are not attributable to
individual HPE staff in ServiceNow. Moreover, this missing
user information makes it impossible to determine the assignee
for a case without logging in to the HPE DCE portal. This
can complicate workflows when trying to identify the person
of contact or the team working on a specific case and makes
it harder to discern between information provided by local
versus remote HPE staff.

V. NAVIGATING THE HPE DCE API

HPE provides access to comprehensive documentation, in-
cluding a general summary and an in-depth overview of the
GSEM system, focusing on automated call transfers between
Call Handling Systems (CHS). In the case of our integration,
these are ServiceNow and HPE DCE. The documentation
explains how GSEM facilitates both internal (HPE to HPE)
and external (Customers to HPE, HPE to Partners) communi-
cations. It introduces the Service Incident Exchange Standard
(SIS) that establishes the framework for GSEM calls, including
the model for the GSEM process, data flow, the various states
of a call, and the structure and content of the data involved.
This standard streamlines the transmission of service requests,
provides and enforces process standardization, reduces errors,
and improves efficiency. While the API documentation is
available for review as soon as integration development is
initiated, sites must complete the API Authorization process
before accessing the API itself, including through the HPE-
provided API simulator called the Dev Console.

A. API Authorization

In order to use the GSEM API, sites are required to
complete the API authorization process designed to guarantee
secure and controlled access. This process is mandatory for
both development and production environments. While it is
permissible to maintain the same authorization configura-
tion across these environments, each environment requires

its authorization to be submitted independently. Only after
completing this authorization process can access to the API be
granted, whether one is using the API simulator or connecting
directly to the API. This ensures that all interactions with the
API adhere to established security protocols. A significant part
of this is registering the SSL certificates that will be used.

a) SSL Certificate Registration: The only authentication
method accepted by HPE for the GSEM API is SSL (Secure
Sockets Layer) certificate authentication.

To register the certificate, sites must submit an approved
SSL certificate in PKCS#7 (.p7b) format for registration and
access [7]. Upon request, HPE will provide a list of trusted
CAs used in the certificate review process. A mapping request
can be submitted to the HPE Security Gateway by the GSEM
Project Manager if the certificate is issued by certificate
authority not on the trusted CA list [8]. This team has regular
change freezes during which they’re unable to register new
certificates from CAs that aren’t on the trusted list, so this
process might take several weeks [9].

b) Administrative Setup and Tool Review: Once the
certificate registration is complete, the GSEM Project Manager
will provide configuration details for the environment that is
being set up, such as an authorized agent key. The Project
Manager will also provide training on using the API simulator,
and a review of the GSEM documentation upon request [8].

Additionally, developers will have to obtain the list of con-
tract numbers and match them to the associated serial numbers
for that organization’s HPE systems, most likely through the
general HPE point-of-contact or the HPE representative for
the site.

B. Working with the Test and Development Environment

a) Dev Console API Simulator: GSEM integration de-
velopment is facilitated by the HPE-provided API simulator
called the Dev Console which mimics the behavior of the real
APL It is a web tool that allows one to make API requests
to the development environment, and the GSEM engine will
provide a response. Dev Console also expects the user to
interact with the request queue, acknowledging the messages
or clearing the queue as needed. The assigned GSEM Project
Manager will provide training and a walkthrough of the Dev
Console functionality.

Dev Console allows for a direct connection to the GSEM
engine without involving the site’s back- or front-end services,
and so can be used to triage any pipeline issues. Additionally,
users can simulate the Provider functionality, which would
enable them to test and explore without involving the GSEM
system. This can be especially useful during the development
and testing phases for several reasons:

« Development Efficiency. Developers can continue work-
ing on an application even if the actual front end or back
end isn’t ready or available. This is particularly useful in
large teams where different components are developed in
parallel.

o Testing. The Dev Console helps developers create con-
sistent, controlled, and predictable responses, enabling

thorough testing of the application. They can simulate
various scenarios, including failures, slow responses, and - Requester Sample
edge cases, which might be difficult or impractical to test Agent Key *
through the full integration pipeline.

o Isolation for Debugging. Having a direct connection TR T gwavee Fowes N
to the GSEM engine is invaluable for troubleshooting Remote Agent Name [., RSC_Train_P v]
the integration. Dev Console makes it possible to isolate ,

equester ID * a

integration-pipeline versus API-use issues by allowing the
transmission of API requests directly from the browser, Contract ID *
thus making it easier to pinpoint the source of problems.

1234567890

Last Name * upia

b) Dev Console Authentication: In order to authenticate
with the Dev Console interface, the HPE Secure Gateway
expects a PFX (.p12) certificate to be installed in your Google
Chrome browser. This certificate bundle has to match the
approved SSL certificate provided to the HPE GSEM team
during the SSL Certificate Registration process. [12] Severity * | Medium v

Phone *
Statement Title = | Title - Test Case

Statement Description * = Description - Test Case

¢) Dev Console Interface Overview: The Dev Console JSON
interface introduces a way for developers to easily act as Message"”
the Requester, the Provider, or both, effectively taking over e
different components of the data flow. Acting as Requester or
Provider is called a Requester or a Provider loop, and acting
as both Requester and Provider is known as “loopback”. e, A

Using the Requester loop, developers are able to submit, v

receive, and respond to requests. The loop can be started
with the ”Start” button. Submitting a Service Request requires | owiimmiiton | | syt L e 7
provide mandatory field information, as illustrated in Fig. 2. ~Requester Sample Output
Note that the Remote Agent Name selection will depend on No new message available(2024-05-02 22:41:12)
whether requests are intended to go into the GSEM queue | view output | [Acknowledge message | ACCEPT PROBLEM- GET -Success - (2024-05-
and to SFDC, or into the Provider queue in the Dev Console.
Once all mandatory fields are populated, the ’Generate JSON”
button will provide the payload that can submitted to the queue
using the ”Submit” button. If working with SFDC remote
agent, submitting will send the Service Request payload to
the GSEM backend in the development environment where
it will be processed in the same way as other requests that
did not originate from the Dev Console interface. The GSEM
engine or the Provider loop will send a response back to the
requester queue with the ”Acknowledge message” button.

SERVICE REQUEST - submitted successfully - (2024-05-02 22:40:43
PROBLEM RESOLUTION- PATCH - Su%esy 2024-05-0222:40:34)
View Output | [Acknowledge message | PROBLEM RESOLUTION- GET -Success - 20:

Fig. 2. Running the Requester loop in Dev Console

Running the Provider loop is mostly automated and does
not require manually sending requests, and once it’s started
it will automatically respond to any pending requests in the
queue that can be sent from Dev Console or sent from the
integration, as illustrated in Fig. 4. "Mocking” the provider
functionality is particularly useful since site developers would
not able to access SFDC in the development or production
environment, and so would not be able to send case updates
on behalf of HPE.

Running the loopback where developers are acting as both
requester and provides full control over data flow and allows
them to explore the API and the GSEM documentation. A
loopback working session is illustrated in Fig 4.

C. The Service Incident Exchange (SIS) framework

The SIS framework is a key component of the GSEM
system. It standardizes the automated exchange of service

~ Provider Loop

Agent Key

Start Clear

— Provider Loop Output

No new message available(2024-05-02 22:41:06)

Message dropped from the queue

PROBLEM RESOLUTION transmitted successfully!
ACCEPT PROBLEM transmitted successfully!

Response Time = 2024-05-02 22:13:58,2024-05-02 16:43:58
Request Severity = MEDIUM

Problem Title = Title - Test Case

Problem Description = Description - Test Case

Fig. 3. Running the Provider loop in Dev Console

Provider Loop

Provider Loop Output

Message dropped from the queue

1234567890

PROBLEM RESOLUTION &

Copy

PROBLEM RESOLUTION- PATCH
[AGKroWedge messagaT] PROBLEM RESOLUTION. GET -Success Hoets0224027)

View OUtpUt | ACCEPT PROBLEM: PATCH - Success(20260502 22.40:13)

ess(2024-0502224034)

Fig. 4. Loopback session in Dev Console

incidents between different Call Handling Systems. By pro-
viding detailed models for process flow, data exchange, call
states, and data structures, SIS ensures consistent and efficient
communication between the integration and the GSEM engine.

Within the SIS framework, the act of transferring a call is
referred to as a “’Service Request”, while the interactions be-
tween a Requester (the entity initiating the call) and a Provider
(the entity receiving the call) are termed “Transactions”. These
transactions are designed to change the state of the Service
Requests according to a defined process flow from initiation
to resolution.

A key feature of SIS within GSEM is its data structure
and flow management. By standardizing the way calls are
passed, updated, and closed, it allows for a more systematic
and error-free operation. This is particularly crucial in high-
volume service environments where the speed and accuracy
of service request handling can significantly impact customer
satisfaction and operational efficiency.

In practical terms, the integration of SIS into GSEM means
that when a service incident occurs, the Requester, which
could be an internal service desk or an external client, uses
the system to send out a call. This call is formatted and
transmitted based on SIS guidelines, ensuring that it is received
and understood correctly by the Provider, which could be
another department within HPE or an external partner. The
Provider then uses the same standards to update the call status,
communicate resolutions, or request further information. This
symmetry in communication, facilitated by SIS, ensures that
all parties have a clear understanding of the service request
and its status at all times.

The advantages of using GSEM powered by SIS include
improved resolution times due to efficient communication
channels, reduced waiting times for service calls, minimal er-
rors due to standardized data structures, and overall improved
service quality.

D. Limitations of Existing Documentation

The existing GSEM documentation is detailed and compre-
hensive, however it does not cover some broader sections that
could inform system design decisions.

a) GSEM to Salesforce Field Mapping: While the GSEM
documentation includes a complete mapping for the Service
Request object passed between Requester and Provider, it does
not go over the mapping from GSEM Service Request object
to a Salesforce (SFDC) record that’s referred to as the HPE
case. The site’s onsite and offsite HPE contacts, aside from
teams specifically related to GSEM engine functionality, will
not have access to the GSEM engine records; instead, HPE
uses an SFDC instance for case work and tracking. Knowing
the mapping from GSEM Data Field names to SFDC field
names would help developers ensure that the SFDC record
includes all necessary information.

Certain fields that are not mandatory for the GSEM API will
be required in order for an SME to work on the case or even for
the SFDC case record to appear complete. Once the integration
project begins, sites will have an opportunity to work with
the GSEM Project Manager to determine and document field
mappings from the site’s CHS to GSEM to SFDC. However,
when submitting test cases, case records in SFDC can only
be evaluated and verified for completeness by your site’s
general HPE contact, not the GSEM team. Submitting a case
through GSEM that SFDC deems incomplete could result in
entitlement issues for this case, delaying case resolution, so it
is recommended to confirm case visibility with onsite teams.

b) Trigger Events: GSEM has webhook-like function-
ality where certain predefined events trigger a case update
message. For example, an SFDC case status change event
would trigger a case update message that contains the new case
status. These events, as well as the expected payload fields
and content of the message, could be incorporated into the
integration design process. This information was not available
for review in the GSEM documentation, and was shared with
us by the HPE GSEM team during the development process.
It is recommended to request this information early in the
process.

VI. JoINT HPE/NERSC DEVELOPMENT AND PROJECT
MANAGEMENT

Organizations that are considering developing an integration
with the GSEM system should begin by contacting their
site’s HPE point of contact. HPE will assign a GSEM Case
Exchange Project Management (PM) and Subject Matter Ex-
pert (SME) to provide assistance throughout the integration
project. Developers should expect to work closely with the
HPE GSEM team on all HPE-facing aspects of the integration
as the information and experience working with other sites
will help inform integration design. The team will also provide
guidance through all the steps of the administrative procedure
and towards obtaining production release approval.

A. Working with the HPE GSEM Team

As outlined above, the assigned HPE GSEM team will
extend support with the following:

e Dev Console training. After completing the API au-
thorization process and installing the SSL certificate per
HPE requirements, developers can gain access to Dev
Console API Simulator with help from the GSEM team.
The team will assist with any connectivity issues, and will
provide an overview of the Dev Console API simulator,
including a demo walkthrough of the tool’s functionality
upon request.

o Support and troubleshooting. The GSEM team can
work closely with the site’s development team throughout
the integration lifecycle and can help validate GSEM
connectivity or any other GSEM functionality, trou-
bleshoot any issues during the development, and can
give additional overviews of Dev Console and GSEM
documentation.

e Testing. The GSEM SME will handle any real-time
tests of the integration during development and prior to
production release. Developers will not have access to the
HPE’s SFDC instance, so it is not possible to simulate any
SFDC case workflow for testing without the help of the
HPE GSEM team. Any incremental end-to-end testing
will need to be scheduled with the team in advance,
depending on their availability.

¢ IT Certification. Before moving to the production phase,
any integration with the GSEM system needs to pass the
HPE IT certification. This ensures that the integration
complies with HPE’s standards and is ready for the
production GSEM API environment.

o Future work. If developers are looking to add new
functionality after the initial production release, they
should be able to receive support from the HPE GSEM
team that was assigned previously. Depending on the
extent of these changes, the updated integration might
have to be reviewed for IT certification, especially if call
handling changes are introduced.

This process helps develop a supportive and productive
partnership with HPE GSEM team throughout design, imple-
mentation, testing, and production stages, while facilitating a
secure and compliant integration.

B. HPE Release Approval

Once the integration is ready for production, and the initial
functionality testing is complete, the GSEM Project Manager
will discuss and arrange the scheduling for the HPE IT certifi-
cation, which is a review process with the HPE IT certification
team that usually lasts approximately 1.5 hours. This meeting
involves the HPE GSEM team, the IT certification team, and
the developers responsible for the integration.

The HPE IT certification process focuses on preserving the
performance and functionality of the GSEM IT infrastructure.
Although this certification step is not documented in GSEM
documentation or other related materials, it is mandatory

before moving to a production environment. This process
guarantees that the new integration will not disrupt the existing
functions or compromise the system integrity of the GSEM
platform and that it is compatible and reliable within the larger
HPE ecosystem.

The certification process is designed to cover all function-
ality included in the integration. Participants are required to
complete a series of tests and evaluations, each aimed at
different aspects of the integration, including but not limited to
system compatibility, data integrity, and operational resilience.
These evaluations are conducted in a controlled environment
to simulate various operational scenarios and potential system
disruptions.

The certification components are as follows:

1) System compatibility and general functionality test-
ing. During this stage, participants are expected to
demonstrate all aspects of the integration and ensure
all functionality is working as expected. This testing
includes handling extremely long strings and strings with
special characters.

2) Operational resilience. In the event of an outage,
participants must demonstrate the operational resilience
of the integration by confirming that the system can
resume operations without or with minimal intervention.

3) Data integrity testing. In the event of an outage, the
integration must preserve data integrity and message
order, and continue to process or send messages from the
queue in the correct order after the outage is resolved.

While the first two components are relatively straightfor-
ward, the data integrity testing process has some notable
details. The most significant crucial component of this process
is the establishment and verification of a message queuing and
retrigger mechanism. By requiring these mechanisms to be
in place, HPE aims to safeguard against data loss, preserve
data integrity and message order, and ensure continuous,
uninterrupted service.

There are two main scenarios used to test the message
queueing and retrigger mechanism:

o GSEM is offline, or the network is down. The IT certifica-
tion team will bring the test GSEM endpoint offline and
examine the behavior during and after this outage. GSEM
system design provides a message acknowledgement
mechanism, and the integration should retry the most
recent message until the endpoint is back online and able
to acknowledge sent messages. The integration should
then continue to send messages from the integration
queue and process responses in the order in which they
were received.

o Integration server or integration endpoint is offline. In-
tegration developers will bring the test endpoint offline
and examine the behavior. GSEM will continue sending
messages to the queue, and once the integration is back
online, these messages should be processed in the order
they were received.

The IT certification process allows for multiple attempts.
This approach provides developers with the flexibility to trou-
bleshoot and adjust their architecture based on the feedback
and results from each certification attempt. It encourages a
cycle of continuous improvement and learning, ensuring that
by the time it is signed off, the integration is fully optimized
and meets all of HPE’s standards.

Ultimately, the HPE IT certification process for GSEM
integration is not just a procedural formality but a critical step
in ensuring that new integrations enhance the overall system’s
functionality without compromising its integrity. By adhering
to this standard, HPE ensures that all integrated systems are
reliable, efficient, and capable of withstanding the challenges
of a dynamic IT environment.

C. Legal Considerations

One of the prerequisites for using GSEM in production
is signing a GSEM EULA (End-User License Agreement).
Developers should be aware that the GSEM EULA is compre-
hensive and may contain unexpected provisions or a process
that conflicts with the existing contract. Developers working on
the integration should discuss this process with their assigned
HPE lead early in the development process to ensure that using
GSEM is compatible with their contract, and to be mindful of
potential delays or roadblocks caused by the EULA approval
process.

In the case of NERSC, we had to include GSEM integration
as part of an additional” contract renewal. A challenge was
around the language of the usage of the software. It resulted
in a lengthy negotiation process between HPE and NERSC
that took several months for both sides to agree and finalize
the contract.

VII. POST-DEPLOYMENT EXPERIENCE

After deploying the integration to production, our internal
staff users, as well as the onsite HPE team, began reporting
issues with submitting or interacting with new cases. These
issues were triaged and resolved by HPE after an initial delay
caused by not being able to find the right point-of-contact for
remediation.

A. User and Organization Management

In the HPE DCE system, organizations include members
who are authorized to submit cases. Each organization is
linked to specific contract numbers derived from HPC system
serial numbers. When a case is submitted, the associated
contract number is verified against the organization’s record
to confirm system ownership. Incorrect contract numbers lead
to case rejection during entitlement verification or submis-
sion under a “test” organization. Additionally, incorrect user-
organization membership can lead to case rejection or case
visibility issues.

B. Ensure End-User Visibility for Support Engineers

The HPE GSEM team’s permissions and visibility settings
differ from those of the onsite HPE engineers who actually

manage the cases, leading to some false assurances that
permissions are configured correctly during testing with the
HPE GSEM team. To effectively address issues, HPE support
engineers need to receive case numbers and have visibility of
the support cases in the system. Visibility issues in SFDC often
cause delays in resolving these issues. In order to prevent such
delays, it is recommended that developers establish a review
process before production deployment to ensure all support
engineers have end-user visibility, which can be verified by
submitting various test cases.

VIII. FUTURE WORK

There are many opportunities to improve upon the inte-
gration presented in this paper, including some refinements
to the application that would remediate the issues discovered
post-deployment and some new features that would enhance
functionality and ease of use.

A. Remediation for ongoing issues

There are some ongoing issues with the integration that,
while not impacting the functionality, do sometimes result in
delays or confusion.

o Incomplete case information. Cases come in with wrong
or incomplete information, while the payload is sent with
correct data. There have only been a handful of these
instances, and we are working with the HPE point-of-
contact to troubleshoot this issue.

o Case visibility issues. We came across some problems
regarding inconsistent case visibility, wherein certain
NERSC staff could access a case in HPE DCE while
others could not. This issue is probably linked to vary-
ing permission levels within HPE DCE, and efforts are
underway to address it.

o Case data differs depending on the submission
method. In some situations where very similar submis-
sions were made through GSEM as through HPE DCE,
GSEM cases would be stripped of user contact info,
would sometimes have additional populated fields that
were not requested and would end up with wrong data.
This issue has been difficult to isolate and might be
resolved as there has not been any new occurrences for
several months.

B. Planned features

1) Support for Attachments: Both HPE cases and Servi-
ceNow Incident records support attachments, but the integra-
tion does not currently sync attachment data between the two.
A cursory examination of the relevant APIs suggests that im-
plementing this should be possible. Adding this functionality
would allow the easy sharing of log information, photographs
of visible hardware faults, and other data that does not easily
fit into short narrative fields.

2) Onsite Task Tracking: Currently, one of the most com-
mon case updates made from the HPE side are updates about
tasks that onsite HPE staff are performing. These updates
are made automatically and, like other updates, show up as
comments in the ServiceNow Incident record corresponding
to the case. However, since these updates are made pro-
grammatically, they are not particularly human-friendly and
are challenging to read. It would be possible to process this
information into its own record type, which could be subor-
dinated to the relevant ServiceNow Incident record, making
the information easier to work with and keeping the narrative
fields more focused on actionable information.

3) Part Order Tracking: In addition to onsite task tracking,
updates concerning part order tracking are also common and
similarly pollute what would otherwise be a human-friendly
narrative text field. Introducing a new record type that can exist
in a parent-child relationship to the relevant Incident record
would be helpful to enhance readability, consolidate informa-
tion about parts shipments in one place, and enhance the ability
to track and interact with that information programmatically
after it has been ingested into ServiceNow.

ACKNOWLEDGMENTS

This manuscript has been authored by an author at Lawrence
Berkeley National Laboratory under Contract No. DE-ACO02-
05CH11231 with the U.S. Department of Energy. The U.S.
Government retains, and the publisher, by accepting the article
for publication, acknowledges, that the U.S. Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript,
or allow others to do so, for U.S. Government purposes.

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] https://jira.atlassian.com/. Accessed 12 Apr. 2024.

[2] https://www.zendesk.com/. Accessed 12 Apr. 2024.

[3] https://www.salesforce.com/products/service-cloud/overview/. Accessed
12 Apr. 2024.

[4] https://www.servicenow.com/. Accessed 12 Apr. 2024.

[5] D. Gens, O. James, E. Bautista, and M. Abdelbaky, “The Art of
Conversation with CrayPort (Bidirectional Record Management),” in
Cray Users Group 2019 Proceedings, 2019

[6] https://docs.oracle.com/cd/E13211_01/wle/security/publicke.htm.
Accessed 27 Apr. 2024

[7] https://api-uns-sgw.ext.hpe.com/gw/hpit/gsd/gsemhlp/apiauth.html. Ac-
cessed 27 Apr. 2024

[8] D. Carreiro, private communication, Jan. 2022

[9]1 N. Gupta, private communication, Apr. 2024

[10] https://www.w3.0org/TR/WCAG20/#a. Accessed 2 May. 2024

[11] https://www.servicenow.com/community/developer-advocate-blog/learn-
ecmascript-2021-with-earl-duque/ba-p/2804911. Accessed 3 May,
2024

[12] D. Carreiro, private communication, Feb. 2022

APPENDIX A
SAMPLE JSON BLOB FOR GSEM
{
"TransactionName *: *SERVICE REQUEST’ ,

’RemoteAgentName ’: ’SFDC_Train_REST_P042° ,
’RemoteAgentType *: *CUSTOMER’ ,
*eCPControl *: {

>ECPVersion’: ’1.0°

}
>SERVICE_INCIDENT * :
>RequesterID ’: *INCO0097539°,
>RequesterSeverity *: 'MAJOR’,
’ResponseTime ’: ’2024-04-29 04:52:40°,
>SERVICE_REQUESTER " : {
"ORGANIZATION : {
>OrganizationName ’: 'NERSC’,

"ADDRESS’: {
>GeoAddressl ’: ’1 Cyclotron Rd’,
>City ’: ’Berkeley ’,

"Region’: 'CA’,
"PostalCode *: ’94720°,
>Country ’: *US’

"PERSON": {
>FirstName ’: ’John’,
*LastName ’: ’“Gann’ ,
"ADDRESS": {

"LOCATION’ : [

"Type ’: ’PRIMARY_VOICE’ ,
ID’: ’5104866821°

}

{

"Type ’: "EMAIL’ ,

’ID’: ’jgann@Ilbl.gov’

]
}

> AGREEMENT” :
>ContractID *: °CN=2155240525",
>AgreementType *: *SN=5UF044F7CY ;LN=INC0097539_3"

s

s

"PROBLEM” : {
"EXPRESSION: {

>Relation ’: "AND’ ,

"STATEMENT” : [
{
>StatementRole *: *DESCRIPTION’ ,
>StatementText :
>The are issues on the high speed
network that we suspect are caused
by faulty hardware.’

bl

{

>StatementRole : ’TITLE’ ,
>StatementText *:
"HSN issues caused by possible
hardware fault.’
}

]

}

I
"ACTIVITY *: [

>ParameterList ’: ’Problem:Add’,
>ActionLog ’: *Alternate Contact’,
>LocalDate ’: ’2024-04-29 04:52:40°,
>NameValuePairList *: {
>eCPExtMessage_eCPExtControl_Version’: ’1.0°,
’eCPExtMessage_ EXT_SERVICE_INCIDENT_SERVICE
_REQUESTERALTERNATE_PERSON_FirstName ’ :
"NERSC” ,
>eCPExtMessage_ EXT_SERVICE_INCIDENT_SERVICE
_REQUESTERALTERNATE_PERSON_LastName ’ :
>Operations ’,
>eCPExtMessage_ EXT_SERVICE_INCIDENT
_SERVICEREQUESTERALTERNATE_PERSON_ADDRESS
_LOCATION_PRIMARY_VOICE" :
’5104866821°,
>eCPExtMessage_ EXT_SERVICE_INCIDENT
_SERVICEREQUESTERALTERNATE_PERSON_ADDRESS
_LOCATION_EMAIL " :
’operator@nersc.gov’

}

