
Enhancing HPC Service Management on Alps using
FirecREST API
J.P. Dorsch, A. Fink, E. Koutsaniti, R. Sarmiento
CSCS - Swiss National Supercomputing Centre
ETH-Zürich

May 5-9, 2024
CUG 2024
Perth, WA, Australia

Motivation

Motivation

CUG-24 // Enhancing HPC Service Management using FirecREST API 3

● As HPC evolves there is an increasing need from the user community on creating and
accessing sophisticated services on HPC

● Use cases such as CI/CD Pipelines, Workflow Orchestrators, Interactive Computing, Web
Portals, and Regression Testing are just few examples of those requirements

● These needs create a challenge on the HPC infrastructure in terms of scaling the support
for such diverse number of services

● Using RESTful API technology interfacing HPC resources (like FirecREST API) can
facilitate the integration, support, and maintenance of complex services for HPC
infrastructure

Introducing FirecREST

FirecREST in a nutshell

● FirecREST is an open-source web-enabled API to
HPC resources developed by CSCS

CUG-24 // Enhancing HPC Service Management using FirecREST API 5

FirecREST in a nutshell

● FirecREST is an open-source web-enabled API to
HPC resources developed by CSCS

● Presents standard programming interface
○ Based on RESTAPI concept
○ Independent of programming language (HTTP)
○ Translates web requests into HPC business logic
○ Parses back HPC results into web-friendly format

CUG-24 // Enhancing HPC Service Management using FirecREST API 6

FirecREST in a nutshell

● FirecREST is an open-source web-enabled API to
HPC resources developed by CSCS

● Presents standard programming interface

● Provides web interface for classic HPC
○ Creation of web applications over HPC
○ Enables support for multiple devices

CUG-24 // Enhancing HPC Service Management using FirecREST API 7

FirecREST in a nutshell

● FirecREST is an open-source web-enabled API to
HPC resources developed by CSCS

● Presents standard programming interface

● Provides web interface for classic HPC

● Allows modular design to support different workflows
and HPC systems
○ Abstracts HPC resources into components and objects

CUG-24 // Enhancing HPC Service Management using FirecREST API 8

FirecREST features

● FirecREST is an open-source web-enabled API to
HPC resources developed by CSCS

● Presents standard programming interface

● Provides web interface for classic HPC

● Allows modular design to support different workflows
and HPC systems

● Integrates with authentication and authorization
layers
○ Relies on standard IAM solutions for authentication

CUG-24 // Enhancing HPC Service Management using FirecREST API 9

The FirecREST API

● OpenAPI documentation: https://firecrest-api.cscs.ch

CUG-24 // Enhancing HPC Service Management using FirecREST API 10

https://firecrest-api.cscs.ch

FirecREST IAM layer

● IAM relies on JWT from an IdP
supporting Open ID Connect
(OIDC)/OAuth2 standard

● FirecREST users (or clients) need to
register their applications on the IdP

● A key pair is obtained and used to
obtain JWT to access FirecREST

● Client ID and Secret can be used as
secrets in an application for fetching
JWT access token automatically,
enabling robot-to-API communication

CUG-24 // Enhancing HPC Service Management using FirecREST API 11

(0.b) Configure API Keys
on the App

user

(3) Command Exec

FirecREST

system1

system2

system3

HPC Infra

curl -X GET https://firecrest_url/
-H "X-Machine-Name: system1"
-H "Authorization: Bearer <JWT>"

(2) Access FirecREST with JWT

(1) Request JWT Access Token
using API Keys (ID & Secret)

Identity
Provider

App

(0.a) Register application
and request API Keys

Client ID
Client Secret

https://datatracker.ietf.org/doc/html/rfc7519
https://openid.net/developers/how-connect-works/

pyFirecREST Library

● pyFirecREST is a Python library that
simplify the usage of the FirecREST for
scripting

● Includes transparent integration with
OIDC/OAuth2 for JWT Access Token

● Enhances response time using AsyncIO
interface (Async pyFirecREST)

● Facilitates integration with several tools
that exposes APIs or SDK via Python or
scripting languages

CUG-24 // Enhancing HPC Service Management using FirecREST API 12

https://pyfirecrest.readthedocs.io/en/stable/
https://docs.python.org/3/library/asyncio.html
https://pyfirecrest.readthedocs.io/en/stable/tutorial_async.html

Use Cases

Use Cases

● Continuous Integration (CI) Pipelines

o CI pipelines are used to facilitate testing and integration of scientific software releases
across programming environments and hardware systems

o Challenges to setup a CI Pipeline in HPC are mostly related to SSH connection
§ Access with valid credentials
§ Cloning source code repository in target machine's node
§ Keep alive the connection during pipeline execution
§ Providing constant output from commands

o With the help of FirecREST users and sysadmins can
§ Use the same approach for different technologies (GitLab CI, GitHub Actions, Jenkins CI, etc)
§ Thanks to the abstraction layer, test the software for different architectures and software stack
§ Solve authentication and connectivity issues

CUG-24 // Enhancing HPC Service Management using FirecREST API 14

https://docs.gitlab.com/ee/ci/
https://github.com/features/actions
https://www.jenkins.io/

Use Cases

● Continuous Integration (CI) Pipelines
o ci/ci_script.py

CUG-24 // Enhancing HPC Service Management using FirecREST API 15

importing PyFirecREST
import firecrest as f7t

Setup variables of the client
CLIENT_ID = os.environ.get("FIRECREST_CLIENT_ID")
CLIENT_SECRET = os.environ.get("FIRECREST_CLIENT_SECRET")
FIRECREST_URL = os.environ.get("FIRECREST_URL")
AUTH_TOKEN_URL = os.environ.get("AUTH_TOKEN_URL")

Auth Object definition
idp = f7t.ClientCredentialsAuth(CLIENT_ID, CLIENT_SECRET, AUTH_TOKEN_URL)

FirecREST client defintion
client = f7t.Firecrest(firecrest_url=FIRECREST_URL, authorization=idp)

Check System Status via pyFirecREST
system_state = client.system(system_name)

if system_state["status"] == "available":
 # Submit job via pyFirecREST
 job = client.submit(system_name, "submission_script.sh")

 print(f"Submitted job: {job['jobid']}")

 print(f"\nSTDOUT in {job['job_file_out']}")
 stdout_content = client.head(system_name, job['job_file_out'], lines=100)
 print(stdout_content)

 print(f"\nSTDERR in {job['job_file_err']}")
 stderr_content = client.head(system_name, job['job_file_err'], lines=100)
 print(stderr_content)

 # Poll job status via pyFirecREST
 poll_result = client.poll(system_name, jobs=[job["jobid"]])
 if poll_result[0]["state"] != "COMPLETED":
 print(f"Job was not successful, status: {poll_result[0]['state']}")
 exit(1)

else:
 print("System {system_name} is not available")
 exit(1)

FirecREST credentials
from environment

Importing pyFirecREST

Creating
FirecREST
object

System check and
job submission

Printing job output

Job polling and
result check

Use Cases

● Continuous Integration (CI) Pipelines
o .github/workflows/ci.yml

CUG-24 // Enhancing HPC Service Management using FirecREST API 16

name: CI
on:
 push:
 branches: ["main"]
 pull_request:
 branches: ["main"]

jobs:
 test_mycluster:
 runs-on: ubuntu-latest
 strategy:
 matrix:
 system_name: ["mycluster"]

 steps:
 - uses: actions/checkout@v3

 - name: setup python
 uses: actions/setup-python@v4
 with:
 python-version: '3.7'

 - name: install python packages
 run: |
 python -m pip install --upgrade pip
 pip install pyfirecrest==2.1.0

 - name: Run testing script
 env:
 FIRECREST_CLIENT_ID: ${{ secrets.F7T_CLIENT_ID }}
 FIRECREST_CLIENT_SECRET: ${{ secrets.F7T_CLIENT_SECRET }}
 FIRECREST_URL: ${{ secrets.F7T_URL }}
 AUTH_TOKEN_URL: ${{ secrets.F7T_TOKEN_URL }}
 run: ci/ci_script.py --system=${{ matrix.system_name }} --branch=${{ github.ref_name }}
 --repo=${{ github.server_url }}/${{ github.repository }}.git --account=ci_user

pyFirecREST
installation

Environment setup

Use Cases

● Continuous Integration (CI) Pipelines

CUG-24 // Enhancing HPC Service Management using FirecREST API 17

user

(4) DispatchFirecREST

system1

system2

HPC Infra

Public Git

(1) Push lib/app
code

Identity
Provider

(3) Execute pipeline

(2) Get JWT Access

Use Cases

● Continuous Integration (CI) Pipelines
o CICD-Ext Service

CUG-24 // Enhancing HPC Service Management using FirecREST API 18

user

FirecREST

system1

system2

CSCS

(4) Mirror

CI/CD Ext
Middleware

(3) Get JWT AccessPublic Git

(2) Trigger
webhook

(1) Push lib/app
code

Identity
Provider

(5) GitLab Runner Execution

GitLab
Runner

(6) Dispatch

Use Cases

● Interactive Computing

o JupyterHub (JH) it's a multi-user hub that enables launching Jupyter Notebooks from a web
browser to compute nodes

o JH is usually used for interactive computing for PoC of code, dataset exploration, and
educational/training purposes

o In HPC Clusters, JH is commonly paired with the batchspawner package to submit jobs in
compute nodes.

o The batchspawner configuration requires sysadmins to install and configure the WLM
daemon in JH host and configure the key sharing between daemon and controller

o This complicates the deployment of JH and restrict the systems that can operate with this
tool

CUG-24 // Enhancing HPC Service Management using FirecREST API 19

https://jupyter.org/hub
https://github.com/jupyterhub/batchspawner

Use Cases

● Interactive Computing
o With pyFirecREST, and taking advantage of the Spawner base class, a customized

FirecREST Spawner (FirecRESTSpawnerBase) has been created
o Spawner base class needs start(), poll(), and stop() methods to be implemented

CUG-24 // Enhancing HPC Service Management using FirecREST API 20

import firecrest as f7t
from jupyterhub.spawner import Spawner

class FirecRESTSpawnerBase(Spawner):
 # Start Jupyter notebook
 def start(self):
 self.job = client.submit(self.host, script_str=script)

 # Polling Jupyter notebook status
 def poll(self, jobid):
 self.job = client.poll(self.host,jobid)

 # Stop Jupyter notebook
 def stop(self, jobid):
 client.cancel(self.host, self.job_id)

Use Cases

● Interactive Computing

CUG-24 // Enhancing HPC Service Management using FirecREST API 21

Use Cases

● Interactive Computing

o Reduces the requirement on the HPC
infrastructure side in terms of
administration, machine provisioning,
networking, etc.

o The “recipe” can be replicated for
several HPC systems by changing
the configuration to a different system

o Integration with IAM allows the same
OIDC client for JH and FirecREST

CUG-24 // Enhancing HPC Service Management using FirecREST API 22

(1) Access to JH

user

(4) Submit Job

FirecREST

(5) Launching notebook

system1

system2

system3

CSCS

curl -X GET https://firecrest_url/compute/jobs
-H "X-Machine-Name: system1"

(3) Use firecrest_spawner

(2) Request JWT access

jupyter-system1.cscs.ch

jupyter-system2.cscs.ch

jupyter-system3.cscs.ch

OIDC-OAuth2
Service

Compute

Node

Use Cases

● Regression Testing

o ReFrame is a framework for regression testing on HPC system

o It allows periodic testing of scientific software ensuring performance and integrity

o The pipeline of ReFrame for each test presents the following stages: (1) setup, (2) compile,
(3) run, (4) sanity, (5) performance, and (6) cleanup

o ReFrame needs to be installed and executed in the HPC system in which the software is
being tested.

o With FirecREST it is possible to run a ReFrame test from a laptop or any public cloud
provider, thus de-attaching the operation of the service from the HPC provider

CUG-24 // Enhancing HPC Service Management using FirecREST API 23

https://reframe-hpc.readthedocs.io/en/stable/

Use Cases

● Regression Testing
o ReFrame provides a Python class for schedulers. We can use pyFirecREST to adapt a

"firecrest-scheduler" scheduler by extending the SlurmJobScheduler class

CUG-24 // Enhancing HPC Service Management using FirecREST API 24

from reframe.core.schedulers.slurm import SlurmJobScheduler 1
import firecrest as f7t 2
 3
@register_scheduler('firecrest-scheduler') 4
class FirecrestJobScheduler(SlurmJobScheduler): 5
 6
 def __init__(self, *args, **kwargs): 7
 (...) 8
 # Setup the FirecREST Client 9
 self.client = f7t.Firecrest(firecrest_url=firecrest_url, 10
 authorization=f7t.ClientCredentialsAuth(CLIENT_ID, CLIENT_SECRET, TOKEN_URL)) 11
 12
 def submit(self, job): 13
 # Job Submission 14
 submission_result = self.client.submit(self._system_name, os.path.join(job._remotedir, job.script_filename)) 15
 16
 def poll(self, *jobs): 17
 # Update the status of the jobs 18
 poll_results = self.client.poll(19
 self._system_name, [job.jobid for job in jobs] 20
) 21
 22
 def cancel(self, job): 23
 # Cancel a job 24
 self.client.cancel(job.system_name, job.jobid) 25
 job._is_cancelling = True 26
 27

Use Cases

● Regression Testing
o ReFrame requires of a configuration file, where the "firecrest-scheduler" among other

settings, must be set

CUG-24 // Enhancing HPC Service Management using FirecREST API 25

site_configuration = {
 'systems': [
 {
 'name': 'mycluster',
 'descr': 'My HPC Cluster',
 'modules_system': 'lmod',
 'partitions': [
 {
 'name': 'nvgpu',
 'scheduler': 'firecrest-scheduler', ### <-- registered scheduler
 'environs': [
 'builtin',
 'PrgEnv-cray',
 'PrgEnv-gnu',
 'PrgEnv-nvhpc',
 'PrgEnv-nvidia'
],
 },
 {
 'name': 'amdgpu',
 'scheduler': 'firecrest-scheduler', ### <-- registered scheduler
 'time_limit': '10m',
 'environs': [
 'builtin',
 'PrgEnv-cray',
 'PrgEnv-gnu'
],
 },
]
 },
],
 ...
}

Use Cases

● Regression Testing
o Finally, this is set on a CI Pipeline and it can be executed by a Runner from any server

CUG-24 // Enhancing HPC Service Management using FirecREST API 26

image: python:3.9
stages:
 - setup
 - run

clone_repos:
 stage: setup
 script:
 - git clone -b develop https://github.com/reframe-hpc/reframe.git ## reframe suite
 - git clone -b alps https://github.com/eth-cscs/cscs-reframe-tests.git. ## test repository
 artifacts:
 paths:
 - reframe/
 - cscs-reframe-tests/
 expire_in: 5 days

bootstrap_and_run:
 image: python:3.12
 stage: run
 variables:
 FIRECREST_URL: "https://firecrest.cscs.ch/" ## <-- configuring FirecREST-scheduler
 AUTH_TOKEN_URL: "https://auth.cscs.ch/auth/realms/firecrest-clients/protocol/openid-connect/token" ## IdP Token URI
 FIRECREST_SYSTEM: "mycluster" ## <-- HPC system to test
 script:
 - pip install pyfirecrest==2.2.1 ## <-- installing pyFirecREST
 - ./bin/reframe --version
 - ./bin/reframe -C ../cscs-reframe-tests/config/cscs.py -c ../cscs-reframe-tests/checks/ -r -Sbuild_locally=0 --
mode=production -vvv --max-retries=2
 artifacts:
 paths:
 - /builds/ci-user/reframe-firecrest-scheduler-test/reframe/reframe.log
 - ~/.reframe/reports/run-report-{sessionid}.json

Use Cases

● Regression Testing

CUG-24 // Enhancing HPC Service Management using FirecREST API 27

Use Cases

● Workflow Orchestrator

o Apache AirFlow (AF) offers a framework for defining workflows, particularly on the Machine
Learning (ML) domain

o AF doesn’t provide a native HPC integration for WLM

o The workaround on integration with HPC systems is to use custom commands for job
submission and monitoring.

o FirecREST can be integrated in AF using the Operator API

o The integration with FirecREST allows writing Directed Acyclic Graphs (DAGs) that could
include tasks that run on HPC facilities

CUG-24 // Enhancing HPC Service Management using FirecREST API 28

https://airflow.apache.org/docs/apache-airflow/stable/index.html

Use Cases

● Workflow Orchestrator

CUG-24 // Enhancing HPC Service Management using FirecREST API 29

import firecrest as f7t
from airflow.models.baseoperator import BaseOperator
from airflow import AirflowException

setting up the FirecREST Base Operator for AirFlow

class FirecRESTBaseOperator(BaseOperator):
 (...)
 # FirecREST client object
 client = f7t.Firecrest(firecrest_url=firecrest_url,
 authorization = f7t.ClientCredentialsAuth(CLIENT_ID, CLIENT_SECRET, TOKEN_URL))

class FirecRESTSubmitOperator(FirecRESTBaseOperator):
 """Airflow Operator to submit a job via FirecREST"""

 def __init__(self, system: str, script: str, **kwargs) -> None:
 super().__init__(**kwargs)
 self.system = system
 self.script = script

 def execute(self, context):
 (...)
 while True:
 if self.client.poll_active(self.system, [job['jobid']]) == []:
 break
 time.sleep(10)
 job_info = self.client.poll(self.system, [job['jobid']])
 if job_info[0]['state'] != 'COMPLETED':
 raise AirflowException(f"Job state: {job_info[0]['state']}")
 return job

Use Cases

● Workflow Orchestrator
o DAG example (firecrest-airflow-dag.py)

1. Detect that a new structure has been produced

2. Upload the structure and its pseudopotential
to the HPC Cluster

3. Submit a job to the HPC Cluster to compute
the properties

4. Download the output of the calculation

5. Log the relevant values

6. Delete the file with the structure

CUG-24 // Enhancing HPC Service Management using FirecREST API 30

from airflow import DAG

from airflow.operators.bash import BashOperator
from airflow.sensors.filesystem import FileSensor

from firecrest_airflow_operators import (FirecRESTSubmitOperator,
 FirecRESTUploadOperator,
 FirecRESTDownloadOperator)

with DAG(dag_id="firecrest_example", tags=["firecrest-executor"]) as dag:

 wait_for_file = FileSensor(task_id="wait-for-file", ...)

 upload_in = FirecRESTUploadOperator(task_id="upload-in", ...)

 upload_pp = FirecRESTUploadOperator(task_id="upload-pp", ...)

 submit_task = FirecRESTSubmitOperator(task_id="job-submit", ...)

 download_task = FirecRESTDownloadOperator(task_id="download-out", ...)

 log_results = BashOperator(task_id="log-results", ...)

 remove_struct = BashOperator(task_id="remove-struct", ...)

Use Cases

● Workflow Orchestrator

CUG-24 // Enhancing HPC Service Management using FirecREST API 31

Conclusions

Conclusions

● FirecREST facilitates the integration of
complex services for HPC, which allows
the scientific and academic communities
to deploy their own services

● Reduces the intervention of the HPC
staff in terms of maintenance and
support for users and their workflows

● Provides a standard service management
layer for HPC and allows workflow
execution across supercomputing facilities

33CUG-24 // Enhancing HPC Service Management using FirecREST API

● More on FirecREST

○ API Reference: firecrest-api.cscs.ch

○ FirecREST product page at CSCS: products.cscs.ch/firecrest

○ FirecREST public repository: github.com/eth-cscs/firecrest

○ FirecREST Docs (use cases): firecrest.readthedocs.io

○ pyFirecREST and CLI Docs: pyfirecrest.readthedocs.io

Conclusions

34CUG-24 // Enhancing HPC Service Management using FirecREST API

https://firecrest-api.cscs.ch/
https://products.cscs.ch/firecrest/
https://github.com/eth-cscs/firecrest
https://firecrest.readthedocs.io
https://pyfirecrest.readthedocs.io

Thank you for your attention.

