Command Lines vs. Requested Resources: How
Well Do They Align?

Abhinav Thota
Research Technologies
Indiana University
Bloomington, IN, USA
athota@iu.edu

Ben Fulton
Research Technologies
Indiana University
Bloomington, IN, USA
befulton @iu.edu

Abstract—In the context of high-performance computing, a
significant proportion of users do not develop their own code
from scratch but rely on existing software packages and libraries.
Many of these packages provide a variety of methods for use
on multicore, multinode, or large-memory systems. We examine
a set of applications that users run on Indiana University su-
percomputers, and determine for those applications the software
parameter settings controlling CPU parallelism, GPU parallelism,
and memory usage. We then investigate the common ways users
employ these parameters and how effectively the users have
made use of available resources. By comparing the command
line parameters used (collected via XALT) to the Slurm resource
requests we, are able to determine how users take advantage of
the resources they request. This informs us on how to provide
better example usages for the software on our systems, and
informs future software development efforts, guiding the design
of more efficient, user-friendly, and adaptable tools that align
closely with the specific needs of the HPC community.

Index Terms—High Performance Computing, Monitoring

I. INTRODUCTION

The Research Technologies (RT) division at Indiana Uni-
versity (IU) operates batch-scheduled HPC systems for a
wide variety of researchers at the University, from highly
sophisticated faculty members running large-scale simulations,
to undergraduates unraveling the mysteries of the Linux oper-
ating system. From July 2022 through July 2023, three systems
were in operation: Carbonate, a 96-node cluster composed
of Lenovo nodes; Quartz, a 92-node cluster composed of
Gigabyte nodes provided by HPE; and Big Red 200 a 704-
node Cray EX.

Many, if not most, users are less interested in carefully
analyzing the performance of their job than in getting their
workflow to run without error. While resource providers would
prefer that the user carefully analyzed their workload to
determine the exact resources (memory, CPU, walltime, etc.)
required, we find that in practice users quickly settle on a set
of parameters that work and then use them for all jobs. For
example, by providing the —mem=0 flag to a job, the user is
guaranteed to get all the memory available on a node, which
guarantees, in turn, that their job will not run out memory
(or some sort of multi-node approach will need to be taken).
As the amount of memory and number of cores available
on a single node increases, it becomes less and less likely
that the node is being used efficiently. Thus, the parameters

Scott Michael
Research Technologies
Indiana University
Bloomington, IN, USA
scamicha@iu.edu

Jefferson Davis
Research Technologies
Indiana University
Bloomington, IN, USA
majdavis @iu.edu

provided to the job are crucial to the efficiency of the job
in using the system resources. However, once the resources
are allocated, it is important that the user applications use
them efficiently. Many applications provide parameters that
allow the user to specify the resources to use, and many have
defaults that are potentially less than the maximum available
to them. If a user requests 16 cores per task and then runs an
application that defaults to a single thread, 15 cores go unused
for the duration of that application. Even if the user copies a
num_threads=4 parameter from an example, 12 cores in
this instance still go unused. By examining the command lines
actually run by the user for well-known applications, we can
determine how efficiently the resources requested are being
used.

II. MOTIVATION AND DESIGN CONSIDERATIONS

There are a number of ways to configure a batch scheduler,
such as Slurm [1], that can affect job throughput and how
efficiently researchers are able to make use of resources.
Over time, the core count and accelerator counts on a single
node have continued to increase, introducing the need for
subdividing nodes to allow for a single node to provide
resources for multiple workloads. We consider three possible
modes of operation that have been used at IU, with the
understanding that there are many more possible alternatives.
A cluster operated in a job exclusive mode allows for only one
job per node. A little over a decade ago, this was the default
deployment for most clusters. For machines that are targeted
for a small number of users and applications that are highly
parallelized, this can still be a reasonable alternative. A cluster
operated in user exclusive mode allows for multiple jobs from
the same user to occupy a node, but not more than one user
per node. This option can help users with high throughput
workflows that have many tasks, where each task requires
relatively few resources. Rather than putting the onus on the
user to orchestrate the workflow under a single job asking
for more resources, the user can rely on the scheduler to run
many jobs at once. From the resource provider’s perspective,
there is little risk of one user’s workflow negatively impacting
another due to node sharing. A cluster operated in shared mode
allows for multiple jobs from different users to occupy a node.
When the Carbonate cluster was commissioned in 2017, it was

the first HPC system to come into production operation as a
shared-mode machine. This followed testing and development
of the sharing parameters and cgroup controls in Slurm
on a previous machine. All subsequently deployed machines,
including Big Red 200 and Quartz have been operated in
shared mode. Where a machine operating in shared mode
used to be more of a rarity, as core counts and memory per
node have increased over time, and the types of workflows and
scientific disciplines served by HPC systems have expanded,
it has become increasingly common.

Users run a variety of applications on the IU clusters:
highly-tuned traditional supercomputing applications such as
LAMMPS [2]; genome assemblers with high-memory require-
ments like ABySS [3]; TensorFlow [4] based machine learning
applications; complex workflow-based applications driven by
SnakeMake [5] or NextFlow [6]; as well as single-task, single-
and multi-threaded applications and scripts created by users
for many purposes. While these applications have an immense
variety of goals, each one must request a limited number of
resources to run on the system: nodes, cores, memory, and
GPUs and perhaps other trackable resources. We recommend
that users have an understanding of the resources they require
by determining the application’s limitations and constraints.
A genome assembler might benefit from more memory per
transcript while a watershed hydrological model with extra
density added will need extra processing power [7], [8]. The
user, however, who is focused on completing the assembly
or simulation rather than the resources it uses, has no clear
understanding of, or even interest in, these requirements. As
HPC applications experts, it should fall to us to recommend
appropriate settings, but we find that even with a limited set
of applications, understanding the requirements well enough
to make recommendations is a difficult task. Here we make
an attempt to understand a subset of the applications that are
run on the system, and the ways users specify the resources
they feel are required.

To maximize job throughput and resource efficiency while
minimizing scheduling contention among users, accurate set-
ting of resource parameters is critical for a machine operated in
shared mode. While the accurate setting of resource parameters
is important for machines operated in job-exclusive or user-
exclusive modes, accuracy is only required at the node level.
There is no concern around intra-node scheduling contention
in either of these modes of operation, but for shared-mode
operations users will ideally specify the required amount of
CPU cores, memory, accelerators, and walltime so that a node
can be efficiently packed with jobs. The mode of operation also
has implications for the allocation process. Most centers that
have an allocations process for computational resources use a
single metric for the allocation (e.g. core hours or node hours),
with different types of architectures having some conversion
factor. At IU, there is not a strictly enforced allocation process;
research groups are required to apply for access to a machine,
and their job throughput is adjudicated by Slurm’s fair share
algorithm. The scheduler currently only considers CPU time
in the fair share calculation. In both cases, only a single

metric is used to determine access to resources, while job
parameters are often multidimensional including core hours,
memory, and accelerators. When job parameters are poorly
specified it can negatively impact the researchers, either by
consuming their allocation credits, or by lowering their job
priority via fairshare.

At the start of our investigation, we began by profiling
the diverse set of software applications installed on IU’s
clusters, encompassing scientific simulations, machine learn-
ing algorithms, and data-intensive workloads. From these,
we identified several commonly used applications that take
advantage of task parallelism (MPI) and several that use thread
parallelism (OpenMP or other threading variants). Threaded
applications commonly provide command-line options con-
trolling the number of threads, so, using data from XALT
[9], we examined the command lines generated by users to
determine patterns in the configuration. For MPI applications
we can simply determine the count of tasks actually launched.
In either case, we can compare the number of cores actually
used by the job to the number requested by the job script.

III. DATA COLLECTION

The data used came from three primary sources: XALT,
which gathers information as applications are run by users,
including the working directory, the path of the executable
and command line parameters, details of the runtime and
resources utilized, and other items; Slurm, which logs job
information to a database including the number of tasks
requested and launched, the number of cores requested, and
optionally the amount of memory and GPUs requested if
provided. In addition, Slurm saves the job script created for
each job and the environment variables in force at the time of
the launch. Finally, we went over the documentation for each
application or application suite to determine the parameters
used to request a thread count.

A. XALT Data Collection

For several years, RT has been gathering data on the
applications users run on the clusters by means of XALT
monitoring. XALT logs a variety of information about the
binaries selected by users, including the path of the executable,
the exact command line run by each application, and the Slurm
job ID associated with the application. XALT also provides
information on application suites that consist of multiple
applications. At IU, XALT is configured to track applications
on both the compute and login nodes.

XALT tracks applications by means of inserting a static
library into the executable via the LD_PRELOAD function. It
is, however, subject to various limitations; the primary one
being that logging every binary run by every user would be
a prohibitively large task. For this reason, many binaries that
are run are not entered into the database. These include: most
binaries in /usr/bin (such as 1s and mv); most binaries
that run for less than a minute; and a variety of applications
deemed to be uninteresting or overwhelming, such as lua and
Imod, which are required to run the module system.

Some extensions have been provided with XALT to find
characteristics of scripting language modules - extensions
for R, Python, and Matlab are available. Python supports a
mechanism for loading a system-defined package in each run,
and the XALT extension leverages this mechanism to log all
import statements. Like the application runs, logging every
single import would result in an extremely large database and
filtering mechanisms are provided. Similarly for R, a custom
data gathering package [10] is loaded via the RProfile.site
startup file, and loaded packages are gathered.

We pulled the top 100 applications/application suites by
number of runs for each of the three clusters. From these,
we selected 40 applications for further analysis. As shown in
Table I, the 40 applications represented 33% of the overall
number of runs logged by XALT, and 89% of the total core
hours.

1) Application Suites: XALT’s gathering mechanism
records the exact path of every application that is logged;
this could include exact duplicate applications such as
/usr/bin/more and /usr/local/bin/more. For pur-
poses of reporting, XALT groups these instances into a single
set of applications we refer to as an “Application Suite”.
This concept is extended by a set of configurable regular
expressions that can be provided to categorize applications;
XALT reports consider each categorization a single application
and denotes that by appending an asterisk to the suite title. For
example, rosetta”, “rmpisnow”, and ’minirosetta.mpi.linux”
are all collected into the single application suite “Rosetta™”.
XALT provides a complex database case statement that com-
putes the suite name when reporting results from the database.
We use this categorization in our data collection similarly,
borrowing the case statement, and denote the suite name as
the ”AppCode”. If a given application does not appear in any
regular expression, it is given an AppCode that consists of the
name of the binary, without any path information. In addition,
we extended the default set of regular expressions to collect
various applications popular among Indiana University users;
we collect applications belonging to NCBI Blast, Relion, and
Orca among others.

2) Sampling: Another method of saving database space is
to discard various runs from the database, based on the amount
of time the application runs, and a generated random number.
At TU, these results are configured with the following rules:
an application that runs for less than five minutes is retained
with a probability of .0001; an application that runs for five
to ten minutes is retained with a probability of .01, and all
applications that run for more than ten minutes are retained.
The probability used for sampling each run is stored in the
database; thus it can be inferred that an application with a
probability of .0001 has been run many hundreds of times
at a minimum, and if the application appears in the database
several times, the number of runs can confidently be assumed
to be in the tens of thousands.

Cluster XALT Runs | Core Hours
Quartz 59.11% 94.07%
Big Red 200 29.2% 51.9%

TABLE I: Percentage of XALT runs and core hours repre-
sented by the top 40 applications.

B. Slurm Data Collection

For each application call used in a Slurm job, we pulled
information on the resources requested by the user: memory,
tasks, GPUs, and CPUs per task. We categorized each job as
single task or multiple task and GPU or non-GPU. In addition,
we looked at the job script that the user provided to determine
if they actually used srun (the Slurm equivalent to mpirun) to
take advantage of multiple tasks when requested.

C. Software Application Parameters

After identifying the 40 applications of interest, we sorted
them into three categories: SIMD applications, MISD and
single-threaded applications, and script runners. An applica-
tion that supported both MPI and multiple-thread running
styles was considered to be a SIMD application. We generally
recommend to users that Big Red 200 be used for SIMD
applications and Quartz for other applications. IU has a
large computational biology department and bioinformatics
applications seem to tend towards non-SIMD applications, so
the most popular applications run on Quartz consist primarily
of bioinformatics applications (Figure 1) .

Top 10 Applications by Count

NCBI_Blast* « s ools a Amber fdtd-engine* cellranger pcp

Top 10 Applications by Core Hours

Sum of Corehours
g

msm fdtd-engine* NCBI Blast* samtools bwa pcp Amber* Qe* cellranger
Appcode

Fig. 1: Quartz Top Applications

The resulting data set consisted of a set of over two million
command lines executed by users on the clusters, representing
500,000 distinct jobs and over 50 million core hours (Figure 2)
(NB We use XALT’s definition of core hours here, which is not
the same as those returned by other methods. See Section VI
for information on how XALT calculates core hours). Also, for
each job, we collected the cores, nodes, memory, and GPUs
requested, as well as the setting of OMP_NUM_THREADS and
the details of any calls to srun or mpirun (Table II).

Quartz Big Red 200
Command Lines 1374246 1072780
Job Requests 478886 521179
OMP_NUM_THREADS 159071 19167
srun 164245 55556

TABLE II: Collected data size by cluster

XALT Core Hours

—8— Big Red 200
—8— Quartz

105 4

104 4

103 4

Frequency

102 4

10l 4

T . T T .
10° 10! 102 10° 10*
Core Hours

Fig. 2: Core Hours reported by XALT

IV. RESULTS

We performed a variety of analyses on the resulting data
set. The results of our study demonstrate the significance
of software parameter optimization in maximizing HPC per-
formance. We observe substantial variations in application
efficiency depending on parameter configurations, highlighting
the need for tailored optimizations for specific workloads.
Additionally, the user behavior analysis reveals trends in
job submission patterns, which can be leveraged to enhance
scheduling strategies and reduce wait times for users.

A. Overall efficiency of apps

Of the applications that supported a thread parameter, 5,845
command lines run on Big Red 200 and Quartz actually spec-
ified one (Figure 3). Many, if not most, of these runs specified
24 cores; this may be an artifact of users moving from the
Carbonate system in which each node had 24 cores. No users
took advantage of the full 128 cores of the Quartz system,
which seems plausible given the difficulties of efficiently using
128 threads in a single application [11]. Big Red 200, which
also provides 128 cores per node, had some less explicable
thread count requests, including 5, 30, and 35 threads. If
these users were running multiple jobs or multiple nodes per
job, several cores per node were going unused.

Of the jobs where a thread count was specified, almost all
(99%) requested the correct number of cores via the scheduler
to use the threads. In retrospect this is not a surprising result;
a user who is sophisticated enough to use multiple threads
will generally also know how to request those cores. Users,
on the other hand, who called an application that supported a
thread count parameter without specifying that parameter, had
a variety of core requests (Table III). This may indicate a

Thread Count vs Number of Runs

= Quartz
m= Big Red 200

10°

Number of Runs
g

ml “ |

10°
|| | |
5 8

16 20 24

032 35 48 64
Thread Count

Fig. 3: Command line thread count parameters

lack of knowledge on the users’ part of how to effectively run
their applications, but there also may be other explanations:
running an application that is secondary to the main purpose
of the job; intentionally running an application that defaults to
using all available threads; running applications in parallel that
each require a number of threads; or running an application
launched by a script or workflow manager that does not
correctly allocate CPUs. Whatever the reason, it seems likely
that, at least in some cases, this indicates inefficiently allocated
cores.

Requested Cores | Count
1 393
4 1

8 681
24 123
32 4408
48 62
64 12

TABLE III: Requested cores for applications without a thread-
count parameter (Quartz)

A similar result was observed when comparing the number
of tasks requested in the job script to the number of tasks
specified in the srun or mpirun lines (Table IV). Greater than
99% of jobs where both of these numbers were specified
matched them correctly; but the majority of jobs did not
specify any task count at all. This, again, may point to users
who are not clear on how to use all the tasks they’ve requested;
or it may indicate more sophisticated task assignments than we
have covered here. (Also, a small number of users specified
task counts by using an environment or script variable. We did
not attempt to discover the efficiency of these jobs). There did
not seem to be any particular pattern in the number of tasks
requested when the user did not specify a task count in the
srun command (Figure 4).

Quartz | Big Red 200
Numeric task count 4284 870
Non-Numeric Task Count 16 434
No task count 11413 12410
Matching 4240 814

TABLE IV: Requested tasks specified in srun command lines

Many applications, rather than allowing the user to spec-
ify a number of threads, rely on the environment variable
OMP_NUM_THREADS. When this variable was set, we exam-
ined user scripts to determine if the script was explicitly setting
the value or if it was set in the environment prior to the script
execution. We found it was much more commonly set in the
environment, and in this case, it is almost always set to four
or fewer threads. It seems likely that this is set as a generic
or even accidental parameter, set by the user as a standard
part of the environment rather than being intentionally set for
a particular run. This may indicate that many users do not
understand how Slurm configures the environment for a job.
When the value is explicitly set in the script, it is likely to be
much greater (Figure 5).

1004 @ ® br20o
® ® quartz
.
107 4 °
° .
e e o
.
o
5 . ° e .
o
g 1074 b °
2 ° . ° *
°
[]
o® o °
1] b4
10 . .
%
® °
. .
10° 4 L] [} ° °
0 20 40 60 80 100 120

Number of Tasks

Fig. 4: Requested tasks for jobs with no task specification in
an srun call

Thread Count vs Runs

B Declared in Environment
Declared in Script

103 4
w
< 1024

E‘l

10! 4

100 4

T T T T T T T T T
2 9 8 10 12 6 18 20 24 30 40 50
Thread Count

Fig. 5: OMP_NUM_THREADS values and source

B. Core Counts by User and by Application

Figures 6 and 7 show a chart of the average count of
requested cores by user and by application, respectively. The
median of the means for users was 31.03 cores per request,

while the median for applications was slightly higher at 46.19
cores per request. There is considerable overlap between these
two charts: the users who run applications that support the
highest core counts are the users who request the most cores.
The higher application median is probably the result of having
more users than applications; the wider variety of users may
imply the inclusion of newer users reluctant to overburden the
system with resource requests. The second and third quartiles
ranged from 11 to 64 cores in the case of users; from 23 to
153 cores in the case of applications. PCP is an interesting
application case here; averaging more requested cores than
any application we studied other than MILC, PCP is a “serial
ensemble” job executor [12] rather than a traditional SIMD
application.

Mean Core Requests by User

1044 ~7- Q1
—=- Q2 (Median)
—— 3

Mean Core Requests

User

Fig. 6: Mean number of cores requested by individual users

Mean Core Requests by Application

-——- Q1
—==- 0Q2 (Median)
- Q3

103 4

Mean Core Requests

Application

Fig. 7: Mean number of cores requested by various applica-
tions

C. Scripting Applications

A confounding factor for our analysis is the large and
increasing number of jobs that are driven by scripting lan-
guages such as Python, R [13], and Java, where the resource

allocations, if they exist at all, are hidden inside the script. Our
database is incomplete in this regard, unfortunately - we have
yet to begin R package tracking on Big Red 200 and are not
tracking all versions of R on Quartz. However, we did track R
versions on Carbonate, a cluster that was retired in 2023. Of
the scripting languages we examined, XALT only supports R,
Python, and Matlab library loading, and we are not attempting
to track Matlab libraries at all.

There are a variety of R packages that can be used for
parallelism in R [14]. Historically, the R packages rpvm (R
interface to a Parallel Virtual Machine) and Rmpi (interfaces
to MPI engines) have been used, but we found no instances of
either of these packages in our database. However, more re-
cently, higher-level task-running libraries have been developed
such as doParallel and future.

Python is similar. The multiprocessing, threading, and asyn-
cio parallelization packages are part of the base libraries
and the packages allow different types of parallelism. In
addition, third-party packages such as Dask, MPI4Py, and
Joblib provide more sophisticated tooling for users attempting
parallel processing. To get an understanding of which of these
libraries were commonly loaded by our users, we looked at the
relative rankings of these libraries (Figure 8). R packages were
commonly in the top 10 libraries loaded. Python parallelization
libraries were less popular, probably an artifact of the different
collection methods required for each of these languages. The
original rpvm package is no longer supported, but we were
surprised that no users seem to be attempting to run Rmpi. The
newer packages, however, are quite popular with our users and
further study of usage patterns of these libraries is warranted.
We hope to delve deeper into the threading mechanisms of
the more widely used packages and determine how effectively
they are used.

Parallelization libraries by cluster and language

parallel 4] |]

future1 =]

oCParallel an

forEach - a

doParallel 1 m =

joblib - e
mpi4py []
dask []
asyncio 1 @ Python - Carbonate (1]
® Python - Quartz
threading 1 m R-Carbonate *
yrocessing { W R-Quartz o e
T T
10! 10?
Rank

Fig. 8: Popularity of various parallelization libraries. The
X axis shows the ranking of the libraries among the most
commonly used libraries in that language.

V. CONCLUSIONS AND FUTURE WORK

By using both Slurm logs and data from XALT we were able
to gain a deeper understanding of how the HPC systems at [U
are being used and gained further insight into the applications
being run on the system. For a system that is operated in
a shared mode it is critically important that users match
their resource requests with the application run parameters
to optimize efficient use of the machine and minimize queue
wait times for users. These initial results have indicated that,
despite our best efforts with outreach and training, there are
still a significant number of users that may be over-requesting
resources in their Slurm submissions. With this knowledge,
we can begin to guide users on requesting and using HPC
resources in a way that leads to a more efficient usage of
the whole system. As a university, we are training a new
generation of students in computational research on a wide
variety of applications. It is imperative that we work alongside
the research programs to help new students and researchers
learn the best ways to utilize HPC systems.

These initial results are indicative of user behavior that we
would like to improve, but we have only scratched the surface
of analyzing user applications. Going forward, we have two
main aims in mind. The first is to extend our analysis and
the second is to find the most effective ways to influence user
behavior. For the analysis, we plan to include an even wider
variety of applications. With clustering and other machine
learning techniques we expect to develop a typology of users
and user scripts in order to focus our user outreach efforts. We
additionally will build on our understanding of user workflows
to be able to more accurately detect when users are improperly
specifying resources and when they are using the system in
an unusual way. We plan to look into using prologue scripts
or job submission filtering to prevent or warn users that they
may need to re-examine their resource requests to maximize
efficiency. Our hope is that with continuous improvement
and expansion of the analysis, coupled with more direct user
outreach and feedback, we can improve the usage experience
for end users and have the university HPC resources be used
even more efficiently.

VI. APPENDIX
Here we provide some details on the data collection method-
ology.
A. Command Lines

Application command lines are stored in the XALT database
as a Binary Large Object, or BLOB. Inside the blob is a JSON
string which can be read from the database with the following
code:

Listing 1: SQL Command Line

select convert(uncompress(cmdline)
using utf8)
as cmd from xalt_run;

In Python, in turn, this can be converted to a usable object
with the JSON module with the simple command

Listing 2: Command Line to JSON

j = json.loads (cmd)

XALT can also be used to gather srun command lines, but
these seem to be a different enough entity that we preferred
to pull them directly from Slurm job scripts via the sacct
command line. For the time period in question, we requested
all job scripts and searched through them to find instances of
srun and mpirun.

B. Scripts

Scripts present a special problem in the analysis of software
usage. It is rare that the number of threads in use in a script
is provided on the command line; rather, if multiple threads
are even being used, the number is specified somewhere in the
script. Also, many users, as well as many applications released
as public software such as Alphafold [15], use scripts as work-
flow managers, calling various other applications. Since XALT
only logs the starting and ending time of each application, a
workflow manager written in Python will consider both the
application and the Python script to be running for the entire
duration of the application, although the amount of processing
power used by the script may be minimal. For this reason and
others we recommend against attempting to reconcile the core
hours reported by XALT to the core hours reported by other
logging methods.

In addition, users of XALT may be surprised to not find
applications they expect in the database. For example, de-
termining the number of Jupyter runs would seem to be a
matter of querying the database for the ”jupyter” application,
but from XALT’s point of view no such application exists.
Instead, XALT records that a Python application was run and
it included ”-m jupyter” on its command line. Jupyter is a
script with a shebang header specification telling the system
to run it as a Python module.

C. Slurm Job Information

Although Slurm stores its internal information in a database,
the provided command-line API can be simpler to work with.
For example, reconciling the job ID logged by XALT from
an environment variable will not necessarily match directly to
the ID stored in the database in a job that was run as part
of a job array. This is handled automatically by the API. The
API does require a working Slurm instance and some amount
of processing and possible network communications, however.
Reading the Slurm database directly may be less of a burden
on the system.

ACKNOWLEDGMENT

The authors acknowledge the Indiana University Pervasive
Technology Institute for providing supercomputing, database,
and storage resources that have contributed to the research
results reported within this paper.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44—60.

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” Comp.
Phys. Comm., vol. 271, p. 108171, 2022.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome research, vol. 19, no. 6, pp. 1117-1123, 2009.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

J. Koster and S. Rahmann, “Snakemake—a scalable bioinformatics
workflow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520-2522, 08
2012. [Online]. Available: https://doi.org/10.1093/bioinformatics/bts480
P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, pp. 316-319, 2017.

D. Kleftogiannis, P. Kalnis, and V. B. Bajic, “Comparing memory-
efficient genome assemblers on stand-alone and cloud infrastructures,”
PLoS ONE, vol. 8, no. 9, p. 75505, Sep. 2013.

Y. Shen and C. Jiang, “A comprehensive review of watershed flood
simulation model,” Natural Hazards, vol. 118, no. 2, pp. 875-902, Jun.
2023.

K. Agrawal, M. R. Fahey, R. McLay, and D. James, “User environment
tracking and problem detection with xalt,” in 2014 First International
Workshop on HPC User Support Tools, 2014, pp. 32-40.

(2018) Overloaded library and require functions for collecting package
usage statistics in r. [Online]. Available: https://github.com/jrmccombs/
packagestats

S. Eyerman, K. Du Bois, and L. Eeckhout, “Speedup stacks: Identifying
scaling bottlenecks in multi-threaded applications,” in 2012 IEEE Inter-
national Symposium on Performance Analysis of Systems & Software.
IEEE, Apr. 2012.

A. Thota, S. Michael, S. Doak, and R. Henschel, “Tools to execute
an ensemble of serial jobs on a cray,” in Cray Users Group Meeting
(CUG2013), Napa Valley, CA, 2013.

R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2021. [Online]. Available: https://www.R-project.org/

(2024) Cran task view: High-performance and parallel computing
with r. [Online]. Available: https://cran.r-project.org/web/views/
HighPerformanceComputing.html

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. 21’dek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-
Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska,
T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W.
Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly
accurate protein structure prediction with AlphaFold,” Nature, vol.
596, no. 7873, pp. 583-589, Aug. 2021. [Online]. Available:
https://www.nature.com/articles/s41586-021-03819-2

