
Madan Timalsina
NERSC/NESAP Postdoc

Data & AI Services

Optimizing
Checkpoint-Restart

Mechanism for HPC with
DMTCP in Containers at

NERSC

CUG Conference
May 5-9 2024

Perth, Australia

1Coauthors (NERSC): W. Arndt, J. P. Blaschke, L. Gerhardt, and N. Tyler

Outline

● National Energy Research Scientific Computing Center (NERSC)

● Checkpoint-Restart Mechanism

● DMTCP (Distributed MultiThreaded CheckPointing) Overview

● Checkpointing and Restarting Jobs using DMTCP

○ At NERSC Perlmutter

○ At NRSC Perlmutter inside the Containers

● Results

● Conclusion
2

NERSC:
National Energy Research Scientific Computing Center

NERSC
● NERSC (at LBNL), a state-of-the-art supercomputer, is the mission High Performance Computing

and Data facility for the DOE Office of Science
● Our mission involves deploying supercomputer systems designed for pioneering simulations and

large-scale data analytics
● NERSC Science Acceleration Program (NESAP) fosters collaboration with partners to optimize

scientific research for next-generation computational architectures and systems

● ~10,000 Users
● 800+ Projects
● ~2000 NERSC

citations per year

● Celebrating 50 Years

Acknowledged in ~ 5,800 refereed scientific
publications & high profile journals since 2020

NERSC Center Architecture

5

Quality of Service
Storage System (QSS)

Platform
Storage System (PSS)

> 800 GB/s

> 10 GB/s

 container services
2 x 400 Gb/s
2 x 100 Gb/s

200 GB/s
HPSS Tape Archive >1 EB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s

Community File System 240 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Workflow Environment
Management Environment

NERSC-10

Off Platform Storage

DTNs, Gateways

3.25
TB/s

(26 Tbps)

1,792 GPU-accelerated nodes
 4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
 448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
 2 AMD “Milan” CPUs
 1,536 TB CPU memory

Ethernet
Science Friendly Security
Production Monitoring

Power Efficiency

LAN

HPE Slingshot 11
ethernet-compatible
interconnect
4 NICs/GPU node,
1 NIC/CPU node

#12, 113PF Peak

(2026)

Containers at NERSC

6

Containers are valuable to our scientific computing users
● Encapsulation, isolation, reproducibility, portability, and even scalability

NERSC supports user container workloads via Shifter
● Developed at NERSC to address security concerns of docker
● Enables scalability on HPC systems
● Users can build their images with docker, then easily convert to shifter

with a simple pull command

NERSC also supports podman-hpc
● NERSC built wrapper for podman (open source tool)
● All the benefits of shifter, but using OCI (Open Container Initiative) standard runtime
● A rootless containers enhances security, users can build images at NERSC

https://docs.nersc.gov/development/containers/shifter/shifter-beginner-tutorial/
https://docs.nersc.gov/development/containers/podman-hpc/podman-beginner-tutorial/

Performance Benchmark of Containers at NERSC

7

● Enhances scaling efficiency of scientific workflows
(reduced load times, even compared to optimized
parallel file systems)

● Through encapsulation, containers introduce
resilience in managing complex tasks

● At NERSC, Shifter and Podman-HPC offer scalable
solutions supporting a wide range of research
activities

● Containerized Checkpoint-Restart (C/R)
mechanisms lead to faster and more reliable data
processing, accelerating scientific discovery

Scaling efficiency in scientific workflows with NERSC containers

Checkpoint-Restart (C/R)

 Checkpointing and Restarting (C/R)

● Checkpointing involves preserving the current state of a
running process (jobs) by creating a checkpoint image file.

○ This includes capturing the memory, executing instructions, I/O status, and related
data of the running process into a file

● Restarting the process is possible using the checkpoint file.
○ This enables the process to resume its execution from where it was saved (rather

than from the beginning), either on the same or a different computer, seamlessly
continuing its operation

It's a crucial capability in High-Performance Computing (HPC) due to complex
and time-consuming computations. It can reduce startup times in applications
and facilitates batch scheduler optimizations, including preemption

9

C/R: Benefits

HPC/NERSC Perspective
● Enhanced Job Prioritization: Potential

preempting of less critical jobs for more
urgent or time-sensitive tasks

● Optimized Node Utilization: Efficient
backfilling, maximizing node usage,
especially for large reservations

● Uninterrupted Operations: Run
checkpointing jobs until system
maintenance, ensuring minimal disruption

● Enhanced Reliability: Potentially
checkpointing all jobs before unexpected
power outages for system stability and job
recovery

User Perspective
● Extended Runtime: Allow jobs to exceed

walltime limits by resuming from checkpoints
● Increased Throughput: Leveraging gaps in

the Slurm schedule to optimize job
processing

● Extended Interactivity: Save and resume
interactive sessions seamlessly (if it’s time to
go home to dinner, then checkpoint and
restart the next day!)

● Efficient Debugging: Pause, identify errors,
and restart jobs from specific checkpoints for
iterative debugging

10

Challenges in C/R

● Complexity for User Transparency: Requires extensive effort
to create a seamless experience for users during checkpointing
and restarting processes

● MPI Support Challenges: Particularly intricate due to the
combination of various MPI implementations (e.g., MPICH,
OpenMPI) and networks (e.g., Slingshot, Infiniband), resulting in
the need for multiple versions (MxN problem)

● DMTCP serves as a solution for overcoming these challenges
● For more details, refer to the NERSC documentation

11

https://docs.nersc.gov/development/checkpoint-restart/dmtcp/

DMTCP: Distributed
MultiThreaded CheckPointing

NERSC documentation, DMTCP website, DMTCP github

https://docs.nersc.gov/development/checkpoint-restart/dmtcp/
http://dmtcp.sourceforge.net/index.html
https://github.com/dmtcp/dmtcp/blob/master/QUICK-START.md

DMTCP: Simplifying Checkpoint-Restart

An open-source tool offering seamless checkpoint and restart functionalities for
distributed applications across clusters, grids, cloud environments etc

Preserves Application State Seamlessly
● No Code or Kernel Modifications: Stores complex threaded or distributed

applications without altering their code or the Linux kernel
● Accessible to Users: Doesn't require special system privileges, allowing operation

without root access

User-Friendly Checkpointing
● Seamless User-Space Operation: Performs checkpoints without changing user

code or system settings
● Versatile Application Support: Works with diverse applications like MPI, OpenMP,

Python, C/C++, Fortran, shell scripts, and resource managers (e.g., Slurm)
13

How does DMTCP Work?

DMTCP Coordinator to Computation Ratio: One DMTCP coordinator
manages one checkpointable DMTCP computation
Multiple Checkpointable Computations: Multiple coordinators can
handle separate computations, each independently checkpointtable
Checkpoint Thread vs. User Thread: Only one of the DMTCP
checkpoint thread or user thread can be active at any given time, not
both concurrently
Fault Tolerance without Single Point of Failure: No single point of
failure if checkpoint image files are backed up. Even if the coordinator
fails, the system can restart from the last checkpoint
Preservation of Runtime Libraries: Runtime libraries are saved as part
of the memory image. Applications continue using the same library API
Inclusion of Linux Environment Variables: Linux environment
variables are part of the memory image. Special DMTCP plugin needed
to modify saved environment variables during checkpoint
User-Space Functionality: Entire process operates in user-space; no
need for administrative privileges for its functioning
RESTART: same as ckpt, but in opposite order

DMTCP Architecture:
Coordinated Checkpointing

14

Checkpoint/Restart (C/R) Jobs
with DMTCP at Perlmutter

NERSC documentation

https://docs.nersc.gov/development/checkpoint-restart/dmtcp/

How does it work?
● NERSC CR Module (nersc_cr) manages Checkpoint/Restart (C/R) jobs

● Users can set the checkpoint interval with the -i option and submit their job either manual or
automated way

● The batch system initiates job execution by allocating the requested nodes within available time
frames, prioritizing higher-priority jobs

● As a part of automatic resubmission, the job runs until it receives signal USR1
(--signal=B:USR1@60) 60 seconds before it hits the allocated time limit

● Upon receiving the signal, the func_trap function gets executed, which in turn executes
○ ckpt_command if specified
○ Requeues the job and then updates remaining walltime for requeued job

● Steps 2-4 are repeated until the job completes or reaches the desired duration

● User checks the job results upon completion

● More details, NERSC documentation
16

https://docs.nersc.gov/development/checkpoint-restart/dmtcp/

Checkpoint/Restart (C/R) Jobs
inside Container using DMTCP:
Perlmutter

Requirements
● DMTCP cannot be checkpointed from outside the containers. It must be included

within the container when it is build

● The simulation package can be built in many ways:
○ During the container's build process
○ After the container has been built, by linking the source code from elsewhere
○ Extend the functionality by building on top of an existing container, enabling quick

experimentation with minimal modifications

All methods have been tested and verified

● In the context of Geant4, various versions can be directly sourced from the CernVM
File System (CVMFS), facilitating easy access to multiple versions for testing and
deployment

FROM my_application_container:latest

RUN git clone
https://github.com/dmtcp/dmtcp.git \
 && cd dmtcp \
 && ./configure && make \
 && make install

18

● Users submit their job scripts, with the checkpoint interval (-i),

incorporating DMTCP within containers, along with necessary software

packages like Geant4, CP2K

● Custom batch scripts manage checkpoint-restart tasks, which isn't

directly feasible within the container environment

● The script initiates checkpointing via restart_job function including a

start_coordinator to initiate jobs and executes using dmtcp_launch,

ensuring efficient job lifecycle management

● Upon receiving termination signals (SIGTERM), the setup facilitates

checkpointing, ensuring continuous job execution and effective

resource utilization

● This method ensures efficient handling of Checkpoint/Restart

processes, aligning with the specific needs of HPC environments,

leading to the successful completion of jobs

Automated C/R Strategies

19

Manual C/R Strategies

● Initial job submissions include checkpointing to set a baseline for potential
restarts

● Users actively monitor job progress through output and error logs to detect
interruptions

● Checkpoint files act as job snapshots, enabling precise recovery from
disruptions

● Manual intervention allows for restarting jobs using these checkpoints, ensuring
progress continuity

● The manual C/R process is a cycle of submission, monitoring, checkpointing,
and restarting as needed

● This approach gives users direct control to address specific computational
challenges within the job lifecycle

20

20

Results

21

● Geant4 is a crucial tool for High Energy Physics (HEP) research, has been
thoroughly tested and has passed the assessments

● Tested across multiple Geant4 versions (10.5, 10.7, 11.0) covering diverse
simulation environments and particle interactions

● Performed tests using Shifter and Podman-HPC container images

● Each job, regardless of complexity, was preempted and then successfully
resumed, highlighting the C/R mechanism's robustness

● Planning to extend our research into additional fields such as material
science, with ongoing tests using CP2K

21

Results

22

Impact of C/R on resource utilization
● Without C/R: The normal operational regime shows consistent

CPU use and effective memory management
● Checkpoint-Only: Regular peaks in memory usage at

checkpoints, with corresponding declines in CPU utilization
● Checkpoint-Restart: Spikes in memory use during checkpoints

followed by corresponding declines in CPU utilization. A gaps in
memory and CPU utilization due to preemption and job requeuing.
We can see job has restarted in the different node afterward

C/R techniques exhibit a slight increase in computation time
and memory usage (< 1%) because of DMTCP and
associated file loading; however, this approach greatly
reduces time and resource use by resuming the task from the
last checkpoint state, enhancing efficiency

node 1 node 2

preemption &

job requeuing

 Checkpointing

Future Directions

● Extend HEP-based simulation strategies to material science, enhancing research
applications

● Plan to broaden testing with various material science software, including CP2K,
VASP, BerkeleyGW, and LAMMPS

● Explore the use of MANA (MPI-Agnostic Network-Agnostic) for checkpointing to
improve efficiency in MPI applications

● Leverage MANA's split-process approach for more streamlined and robust
computational workflow management

23

Conclusion

● The study showcases the effectiveness of checkpoint-restart techniques using DMTCP
in High-Performance Computing environments

● Demonstrated utility across HPC platforms including container technologies like Shifter
and Podman-HPC

● This method is particularly valuable in complex, lengthy HPC computations, significantly
reducing time and cost associated with process restarts

● Implementation in diverse simulations including HEP, medical science, and material
science (test ongoing), showcasing versatility

● Highlights a critical advancement in efficient and reliable computational methodologies
● Confirms the effectiveness of the technique and opens new opportunities in

computational science
24

Thank You

Some DMTCP Commands

dmtcp_coordinator -- coordinates checkpoints between multiple processes.
Example: -i, --interval: Time interval between automatic checkpoints (sec)

--exit-on-last: Auto-exits when the last client disconnects

dmtcp_launch -- Start a process under DMTCP control
Example: -i, --interval: Time interval between automatic checkpoints (sec)

-j, --join-coordinator: Join an existing coordinator, raise error if one doesn't already exist

dmtcp_restart -- Restart processes from a checkpoint image.
Example: -h, --coord-host: Specifies the hostname where dmtcp_coordinator is running

-i, --interval: Time interval between automatic checkpoints (sec)

dmtcp_command -- Send a command to the dmtcp_coordinator remotely
Example: -s --status: Prints status message

-k --kill: Kills all nodes

-q --quit: Kills all nodes and quits

For more details, refer to the DMTCP website, NERSC documentation
26

http://dmtcp.sourceforge.net/index.html
https://docs.nersc.gov/development/checkpoint-restart/dmtcp/

Sample Job Script: Manual submission and resubmission

#!/bin/bash
#SBATCH -J test_cr
#SBATCH -q debug
#SBATCH -N 1
#SBATCH -C cpu
#SBATCH -t 00:07:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err

#user settings
export OMP_PROC_BIND =spread
export OMP_PLACES =threads
export OMP_NUM_THREADS =2

./g4.sh

#!/bin/bash
#SBATCH -J test_cr
#SBATCH -q debug
#SBATCH -N 1
#SBATCH -C cpu
#SBATCH -t 00:07:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH --time-min=00:05:30

#user settings
export OMP_PROC_BIND =spread
export OMP_PLACES =threads
export OMP_NUM_THREADS =2

#for c/r with dmtcp
module load dmtcp nersc_cr

#Checkpointing once every 5 min (change
interval as needed)
start_coordinator -i 300

#running under dmtcp control
dmtcp_launch -j ./g4.sh

Original script
#!/bin/bash
#SBATCH -J test_cr
#SBATCH -q debug
#SBATCH -N 1
#SBATCH -C cpu
#SBATCH -t 00:07:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH --time-min=00:05:30

#user settings
export OMP_PROC_BIND =spread
export OMP_PLACES =threads
export OMP_NUM_THREADS =2

#for c/r with dmtcp
module load dmtcp nersc_cr

#Checkpointing once every 5 min (change
interval as needed)
start_coordinator -i 300

#restarting from dmtcp checkpoint files
./dmtcp_restart_script.sh

run.sh restart.sh

sbatch restart.sh

 To run:

 To restart:

sbatch run.sh

C/R Jobs with DMTCP CR Module: Perlmutter

27

Sample Job Script: Auto resubmission # Checkpoint/Restart Logic
if [[$(restart_count) == 0]]; then
 # First run of the job

 # Set OpenMP environment variables
 export OMP_PROC_BIND =spread
 export OMP_PLACES =threads
 export OMP_NUM_THREADS =2

 # Launch the user's application under DMTCP control
 dmtcp_launch -j ./my_g4.sh &
elif [[$(restart_count) > 0]] && [[-e dmtcp_restart_script.sh]];
then
 # Restarting the job

 # Execute the restart script
 ./dmtcp_restart_script.sh &
else
 # If unable to restart, print error message and exit
 echo "Failed to restart the job, exit" ; exit
fi

Requeuing Logic
ckpt_command =ckpt_dmtcp # Command for additional checkpointing
requeue_job func_trap USR1 # Requeue job upon receiving USR1 signal

Wait for all background processes to finish
wait

 To run: sbatch run.sh

C/R Jobs with DMTCP CR Module: Perlmutter

#!/bin/bash

SLURM Job Submission Directives
#SBATCH -J test_cr # Job name: test_cr
#SBATCH -q debug # Queue name: debug
#SBATCH -N 1 # Number of nodes: 1
#SBATCH -C cpu # Node type: CPU
#SBATCH -t 00:07:00 # Time limit: 7 minutes
#SBATCH -e %x-%j.err # Standard error file format
#SBATCH -o %x-%j.out # Standard output file format
#SBATCH --time-min=00:05:30 # Minimum time: 5 min 30 sec

#SBATCH --signal=B:USR1@60 # Send USR1 signal 60s before time limit
#SBATCH --requeue # Enable job requeuing
#SBATCH --open-mode=append # Open output files in append mode

Load necessary modules for checkpoint/restart
module load dmtcp nersc_cr

Start DMTCP coordinator for checkpointing every 5 minutes
start_coordinator -i 300

New for C/R jobs with DMTCP Automatic resubmission
● The requeue_job function captures the specified signal (e.g., USR1)

and then executes the func_trap function upon its reception
● The func_trap function initiates checkpointing, prepares inputs for

the next job, requeues the job, and updates remaining walltime

28

Sample Job Script: Manual submission and resubmission

#!/bin/bash
#SBATCH -J G4_test_cont
#SBATCH -q debug
#SBATCH -N 1
#SBATCH -C cpu
#SBATCH -t 01:00:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH --time-min=00:06:00

Additional directives...
#SBATCH --module=cvmfs
#SBATCH
--image=mtimalsina/geant4_dmtcp:9Nov2023

Set the DMTCP_COORD_HOST variable
#to identify hosts or manage checkpoints
export DMTCP_COORD_HOST =$(hostname)

Launch the job within the Shifter container
shifter --module=cvmfs
--image=mtimalsina/geant4_dmtcp:9Nov2023
/bin/bash ./my_g4.sh

#!/bin/bash
#SBATCH -J G4_test_cont
#SBATCH -q debug
#SBATCH -N 1
#SBATCH -C cpu
#SBATCH -t 00:30:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH --time-min=00:06:00

Additional directives...
#SBATCH --module=cvmfs
#SBATCH --image=mtimalsina/geant4_dmtcp:9Nov2023

Set the DMTCP_COORD_HOST variable
#to identify hosts or manage checkpoints
export DMTCP_COORD_HOST =$(hostname)

Launch the job within the Shifter container
shifter --module=cvmfs
--image=mtimalsina/geant4_dmtcp:9Nov2023
/bin/bash ./test-checkpoint.sh

Original script
#!/bin/bash
#SBATCH -J G4_test_cont
#SBATCH -q debug
#SBATCH -N 1
#SBATCH -C cpu
#SBATCH -t 00:30:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH --time-min=00:06:00

Additional directives...
#SBATCH --module=cvmfs
#SBATCH --image=mtimalsina/geant4_dmtcp:9Nov2023

Set the DMTCP_COORD_HOST variable
#to identify hosts or manage checkpoints
export DMTCP_COORD_HOST =$(hostname)

Launch the job within the Shifter container
shifter --module=cvmfs
--image=mtimalsina/geant4_dmtcp:9Nov2023
/bin/bash ./dmtcp_restart_script.sh

run.sh restart.sh

sbatch restart.sh

 To run: To restart:
sbatch run.sh

29

C/R Jobs with DMTCP within Container: Perlmutter

test-checkpoint.sh
#!/bin/bash
dmtcp_launch --interval 300 ./my_g4.sh

Checkpoint image file

C/R Jobs with DMTCP within Container: Perlmutter
#!/bin/bash

Slurm directives for job properties
#SBATCH -J test-g4-cr # Job name
#SBATCH -q regular # Queue
#SBATCH -N 1 # Number of nodes
#SBATCH -C cpu # CPU architecture
#SBATCH -t 01:00:00 # Wall clock time
#SBATCH -e %x-%j.err # Error file
#SBATCH -o %x-%j.out # Output file

#SBATCH --time-min=00:45:00 # Minimum time allocation
#SBATCH --comment=01:05:00 # Comment
#SBATCH --signal=SIGTERM@60 # Signal handling for termination
#SBATCH --requeue # Requeue job if terminated
#SBATCH --open-mode=append # Append mode for output files

Additional directives...
#SBATCH --module=cvmfs # Load module
#SBATCH --image=mtimalsina/geant4_dmtcp:Dec2023 # Container image

Set the DMTCP_COORD_HOST variable
export DMTCP_COORD_HOST =$(hostname)

Requeue function to resubmit the job on SIGTERM
function requeue () {
 echo "Got Signal. Going to requeue"
 scontrol requeue ${SLURM_JOB_ID }
}

Trap SIGTERM to trigger requeue function
trap requeue SIGTERM

Launch the job within the Shifter container
shifter --module=cvmfs --image=mtimalsina/geant4_dmtcp:Dec2023
/bin/bash ./test-auto.sh &

wait

Basic slurm directives

New for C/R jobs with DMTCP
automatic resubmission

--comment sbatch flag is used to specify the
desired walltime and to track the remaining
walltime for the job after pre-termination

Export hostname
to restart the job

Requeue function
to resubmit the job

Trap signal (SIGTERM) to
trigger requeue function

Launch the job within the
Shifter container

 To run:

sbatch run.sh

30

#!/bin/bash

export DMTCP_COORD_HOST=$(hostname)
source my_env_setup.sh

Function to restart or initiate the job
function restart_job() {
 start_coordinator -i 300

 if [[$(restart_count) == 0]]; then
 # Initial job launch
 dmtcp_launch --join-coordinator --i 300 ./my_g4.sh
 echo "Initial launch successful."
 elif [[$(restart_count) > 0]] && [[-e $PWD/dmtcp_restart_script.sh]]; then
 # Restart the job
 echo "Restarting the job..."
 echo "Executing: $PWD/dmtcp_restart_script.sh"
 $PWD/dmtcp_restart_script.sh &
 echo "Restart initiated."

 else
 echo "Failed to restart the job, exiting."; exit
 fi

 # Set up trap for checkpointing on termination signal
 trap ckpt_dmtcp SIGTERM
}

Execute the function to restart the job
restart_job

Wait for the job to complete or terminate
wait

C/R Jobs with DMTCP within Container: Perlmutter

This script provides functions for managing and
monitoring SLURM jobs, including time tracking, signal
trapping, job requeuing, and integration with DMTCP
for checkpoint/restart functionality. It converts time to
human-readable format, calculates remaining time for
job scheduling, updates job comments accordingly, and
manages job requeuing based on the remaining time

This function sets up and manages a job using
DMTCP for checkpointing. It starts the job if it's the
initial run. Or restarts it from a checkpoint if it's a
subsequent run. Additionally, it configures a trap to
automatically checkpoint the job when a termination
signal is received

Your simulation code

test-auto.sh

31

Users can choose the checkpoint interval with the -i option.

#!/bin/bash

Ensure the checkpoint directory exists and has the correct permissions

chmod 755 /podman-hpc

export DMTCP_COORD_HOST=$(hostname)
source my_env_setup.sh

Function to restart or initiate the job
function restart_job() {
 start_coordinator -i 300

 if [[$(restart_count) == 0]]; then
 # Initial job launch
 dmtcp_launch --join-coordinator --i 300 ./my_g4.sh
 echo "Initial launch successful."
 elif [[$(restart_count) > 0]] && [[-e $PWD/dmtcp_restart_script.sh]]; then
 # Restart the job
 echo "Restarting the job..."
 echo "Executing: $PWD/dmtcp_restart_script.sh"
 $PWD/dmtcp_restart_script.sh &
 echo "Restart initiated."

 else
 echo "Failed to restart the job, exiting."; exit
 fi

 # Set up trap for checkpointing on termination signal
 trap ckpt_dmtcp SIGTERM
}

Execute the function to restart the job
restart_job

Wait for the job to complete or terminate
wait

C/R Jobs with DMTCP within Container: Perlmutter
#!/bin/bash

Slurm directives for job properties
#SBATCH -J test-g4-cr-podman # Job name
#SBATCH -q regular # Queue
#SBATCH -N 1 # Number of nodes
#SBATCH -C cpu # CPU architecture
#SBATCH -t 01:00:00 # Wall clock time
#SBATCH -e %x-%j.err # Error file
#SBATCH -o %x-%j.out # Output file
#SBATCH --time-min=00:45:00 # Minimum time allocation
#SBATCH --comment=01:05:00 # Comment
##SBATCH --signal=B:USR1@60 # Signal (previously used)
#SBATCH --signal=SIGTERM@60 # Signal handling for termination
#SBATCH --requeue # Requeue job if terminated
#SBATCH --open-mode=append # Append mode for output files
Additional directives...
#SBATCH --module=cvmfs # Load module
#SBATCH --image=mtimalsina/geant4_dmtcp:Dec2023 # Container image

Set the DMTCP_COORD_HOST variable
export DMTCP_COORD_HOST=$(hostname)

Requeue function to resubmit the job on SIGTERM
function requeue () {
 echo "Got Signal. Going to requeue"
 scontrol requeue ${SLURM_JOB_ID}
}
Trap SIGTERM to trigger requeue function
trap requeue SIGTERM
#requeue_job func_trap USR1

Launch the job within the Shifter container
podman-hpc run --userns keep-id --rm -it --mpi \
 -e SLURM_JOBID=${SLURM_JOB_ID} \
 -v /cvmfs:/cvmfs \
 -v $(pwd):/podman-hpc \
 -w /podman-hpc \
 mtimalsina/geant4_dmtcp:Dec2023 \
 /bin/bash ./test-auto.sh &

wait Significant modifications have been implemented in the
shifter image script to ensure compatibility with podman-hpc

32

