
Andrey Alekseenko, Szilárd Páll, Erik Lindahl

GROMACS on AMD GPU-based HPC platforms:

using SYCL for performance and portability

KTH Royal Institute of Technology & SciLifeLab

Stockholm, Sweden

andreyal@kth.se

Molecular dynamics

• Newton’s equations of motion
• Fixed problem size (~104-106): limited hardware parallelism
• Fast iterations: timestep ~1 fs, need to reach µs to ms

2024-05-09 Cray User Group 2
Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516

Molecular dynamics: example schedule

2024-05-09 Cray User Group 3

< 1 millisecond

GROMACS

• Open-source molecular dynamics engine
• 470k lines of C++ code

• High-performance for a wide range of modeled systems
• From 104 to 109 particles

• … and on a wide range of platforms
• x86-64, ARM, POWER, RISC-V
• AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
• Linux, Windows, MacOS, *BSD

• MPI; OpenMP; SIMD intrinsics; CUDA / OpenCL / SYCL

2024-05-09 Cray User Group 4

GROMACS

• Multi-level parallelism:
• MPI (task- and domain decomposition)
• OpenMP
• CUDA / OpenCL / SYCL
• SIMD intrinsics

• Efficient scaling:
• Caching and locality-optimized algorithms
• Flexible offloading scheme: GPU-resident or heterogeneous
• Direct GPU-GPU communication

• GPU-initiated: work in progress

• Scalable distributed FFT

2024-05-09 Cray User Group 5

GPU support in GROMACS 2020

Non-bonded offload √ √

PME offload √ √

Update offload √ X

Bonded offload √ X

Direct GPU-GPU comm √ X

PME Decomposition X X

Hardware support NVIDIA NVIDIA, AMD, Intel

2024-05-09 Cray User Group 6

?

?

SYCL

2024-05-09 Cray User Group 7

#include <sycl/sycl.hpp>

// Boilerplate
sycl::queue queue{{sycl::property::queue::in_order()}};
// Allocate GPU memory
float* Ad = sycl::malloc_device<float>(n, queue); // ...
// Copy the data from CPU to GPU
queue.copy<float>(Ah, Ad, n); // ...
// Submit a kernel into a queue; cgh is a helper object
queue.submit([&](sycl::handler &cgh) {
cgh.parallel_for<class Kernel>(sycl::range<1>{n},

 [=](sycl::id<1> i) {
Cd[i] = Ad[i] + Bd[i];

});
});

• Open standard
• High-level
• Vendor-neutral
• Multiple implementations
• Based on C++17

Supported hardware

• Primary targets:
• AMD CDNA2 GPUs with AdaptiveCpp
• Intel Xe-HPC GPUs with oneAPI

• Secondary targets:
• Other AMD GPUs with oneAPI and AdaptiveCpp
• Other Intel GPUs with oneAPI

• Should work:
• NVIDIA GPUs with oneAPI and AdaptiveCpp

2024-05-09 Cray User Group 8

Why SYCL for AMD GPUs

• Open, vendor-independent standard

• Intel GPU support
• We want less backends, not more

• Two relevant implementations
• AdaptiveCpp (previously known as hipSYCL)
• Intel oneAPI DPC++

• Built upon the HIP toolchain:
• Day-one hardware support
• Can use native code inline
• Vendor tools and native libraries just work

2024-05-09 Cray User Group 9

GROMACS 2024

• SYCL nearly on par with CUDA in feature-support
• Forces and update offload, GPU-aware MPI

• Already used for large-scale runs on LUMI

• Two versions of AdaptiveCpp runtime compared
• 0.9.4
• 23.10.0

• Intel oneAPI also works, but slower for now

2024-05-09 Cray User Group 10

GROMACS HIP

• Independent fork by AMD and Stream HPC
• Based on 2022.beta2

• HIPified CUDA version with many optimizations

• A lot of divergence from mainline GROMACS:
• Conditional kernel fusion to avoid memsets
• Pair list sorting to improve kernel scheduling
• Hardware-specific intrinsics (unsafeAtomicAdd, warp_move_dpp)
• Compiler workarounds (moving code around, casting pointers to

different type and back, etc)
• No pull-down of any correctness fixes or scheduling improvements

2024-05-09 Cray User Group 11

Cray EX235a

• AMD EPYC 7A53 64-core CPU
• 8 cores per CCX, 8 CCX per CPU; some sites reserve 1 core per CCX

• 4x AMD Instinct MI250X
• 2 GCD per board, 8 GCDs per node

• 4x Cray Slingshot-11 NICs
• connected to MI250X

2024-05-09 Cray User Group 12

Kernel performance (single GCD)

2024-05-09 Cray User Group 13

• Many SYCL kernels are close to HIP
• Some are faster!

• NBNXM is the longest-running
• Pair list sorting (work-in-progress)
• Compiler codegen optimizations
• Better parameter tuning

• Seen 20% perf. difference between
ROCm 5.3-5.6 for the same kernel

Performance/maintainability balance!

GROMACS 2024.0, ROCm 5.3.3, Dardel GPU, Grappa PME

Runtime performance: events

2024-05-09 Cray User Group 14

CUDA: 10.3 µs

SYCL: 44.1 µs

Note: the figure is with CUDA+oneAPI, but HIP+AdaptiveCpp behaves similarly

API spec: sycl::event sycl::queue::submit(…)
=> (cuda|hip)Event(Create|Record|Destroy)

Solution: HIPSYCL_EXT_COARSE_GRAINED_EVENTS

Runtime performance: deferred launch

CUDA: 3.9 ms per 10 steps SYCL: 6.1 ms per 10 steps

2024-05-09 Cray User Group 15

Note: the figure is with CUDA+AdaptiveCpp, but HIP+AdaptiveCpp behaves similarly

Solution: HIPSYCL_MAX_RT_CACHED_NODES

Runtime performance: worker threads

• OpenMP parallelism in GROMACS
• AMD HSA worker thread (1 core)
• Two AdaptiveCpp worker threads to call HIP API

• Optimized in AdaptiveCpp 23.10.0, but still need 1 core

• Why even have worker threads?
• Instant submission mode!

2024-05-09 Cray User Group 16

Runtime performance: instant mode

2024-05-09 Cray User Group 17

8µs 72µs MCN=100

15µs 30µs MCN=0

40µs 14µs Instant

Instant submission mode was the best in all our tests.

Might change with GPU-initiated communications!

GROMACS 2024, ROCm 5.3.3, AdaptiveCpp 23.10.0, Dardel GPU. Qualitative data for illustration only.

Effects of AdaptiveCpp runtime

2024-05-09 Cray User Group 18

GROMACS 2024.1, ROCm 5.4.6, LUMI-G, Grappa RF (46M atoms)

Single-GCD performance

2024-05-09 Cray User Group 19

GROMACS 2024.0 / GROMACS HIP, ROCm 5.3.3, Dardel GPU

Single-node performance

2024-05-09 Cray User Group 20

GROMACS 2024.0 / GROMACS HIP, ROCm 5.3.3, Dardel GPU, STMV (1M atoms)

Multi-node scaling

2024-05-09 Cray User Group 21

GROMACS 2024.1 / GROMACS HIP, ROCm 5.4.6, LUMI-G, Grappa RF (46M atoms)

Conclusions: SYCL in GROMACS

• Portability:
• Same code running on AMD, Intel, and NVIDIA GPUs

• Minimal device-specific optimizations

• Performance:
• Kernel performance is lower, but does not have to be

• Complete native kernels can be dropped in
• We know where the performance is lost

• Need to find the balance between maintainability and performance
• But easier maintenance also leads to performance improvements

• SYCL runtime required initial effort, but now works well
• Other projects can benefit

2024-05-09 Cray User Group 22

Conclusions: SYCL in GROMACS

• Can SYCL be used on exascale-class AMD GPU-based systems?
• Yes! Even for challenging cases like MD!

• Power of collaboration:
• A lot of work on GPU scaling initially done with NVIDIA
• Working closely with AdaptiveCpp developers to improve the runtime

• Ongoing work with Codeplay to help improve oneAPI DPC++ performance
• AMD’s HIP port was an important driver for optimizations

• Some adopted by other GROMACS backends

• Next challenges:
• GPU-initiated communications (SHMEM, MPI RMA, Stream-aware MPI)
• 3D FFT strong scaling

2024-05-09 Cray User Group 23

Acknowledgements

• Aksel Alpay
• Maciej Szpindler
• Ragnar Sundblad
• Julio Maia
• Bálint Soproni
• And the whole GROMACS community!

2024-05-09 Cray User Group 24

	Slide 1
	Slide 2: Molecular dynamics
	Slide 3: Molecular dynamics: example schedule
	Slide 4: GROMACS
	Slide 5: GROMACS
	Slide 6: GPU support in GROMACS 2020
	Slide 7: SYCL
	Slide 8: Supported hardware
	Slide 9: Why SYCL for AMD GPUs
	Slide 10: GROMACS 2024
	Slide 11: GROMACS HIP
	Slide 12: Cray EX235a
	Slide 13: Kernel performance (single GCD)
	Slide 14: Runtime performance: events
	Slide 15: Runtime performance: deferred launch
	Slide 16: Runtime performance: worker threads
	Slide 17: Runtime performance: instant mode
	Slide 18: Effects of AdaptiveCpp runtime
	Slide 19: Single-GCD performance
	Slide 20: Single-node performance
	Slide 21: Multi-node scaling
	Slide 22: Conclusions: SYCL in GROMACS
	Slide 23: Conclusions: SYCL in GROMACS
	Slide 24: Acknowledgements

