s7codee

Quickstart guide of Codee

Download the binary distribution package of Codee for your system.

”

Uncompress the Codee package in the desired location. This “Codee installation folder
contains the subfolder bin/, 1ib/ and examples/).

Add the location of the Codee binary available in the subfolder ‘bin/’ of the Codee
installation folder to the environment PATH. Setup in the system terminal window:

Linux: export PATH="$PATH:<Codee installation folder>/bin”
Windows-terminal: set PATH="%PATH%;<Codee installation folder>\bin"
Windows-powershell: $env:path += ";<Codee installation folder>\bin"
MacOS: export PATH=$PATH:<Codee installation folder>/bin

Alternatively, setup the path to the Codee binaries in the computer boot process:

Linux-bash:  Add the export PATH command to .bashrc and re-open the terminal
Windows: Add the export PATH command in System properties and re-open the terminal

Copy the Codee license file to the Codee installation folder with the name “codee.lic”.
Alternatively, specify its location through the CODEE_LICENSE_PATH environment variable.

Run the Codee command-line tools to show the Codee version installed in the system:

codee --version

Using the performance-demos repository as base, go to the MATMUL/serial folder:
Linux: git clone https://github.com/codee-com/performance-demos-fortran.git

cd performance-demos-fortran/MATMUL/serial
Windows: git clone h ://github.com/codee-com/performance-demos-fortran.gi
cd performance-demos-fortran\MATMUL\serial

Produce the Screening Report of Codee (screening command):

codee screening matmul.f90 --target-arch cpu -- -03

Date: 2024-04-08 Codee version: 2024.2
Compiler flags: -03

[Fortran] target compiler: <none> (Compiler Agnostic Mode)
[1/1] matmul.f9@ ... Done
SCREENING REPORT

---Number of files---
Total | C C++ Fortran

| e Checks per category---------------- | Priority |
| Scalar Control Memory Vector Multi Offload Quality | L1 L2 L3 |
| |

|

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analysis time : time required to analyze the target

# checks : total actionable items (opportunities, recommendations, defects and remarks) detected
Profiling : estimation of overall execution time required by this target



https://github.com/codee-com/performance-demos-fortran.git
https://github.com/codee-com/performance-demos-fortran.git
http://www.codee.com

RANKING OF CHECKERS
Checker Level Priority # Title

PWROO3 L1 P18 1 Explicitly declare pure functions

PWRO63 L1 P12 1 Avoid using legacy Fortran constructs

PWRO50 L2 P6 1 Consider applying multithreading parallelism to forall loop

PWRO35 L3 P2 2 Avoid non-consecutive array access to improve performance

RMKO10 L3 Po 2 The vectorization cost model states the loop is not a SIMD opportunity due to strided memory

accesses in the loop body
SUGGESTIONS

Use 'checks' to find out details about the detected checks:
codee checks matmul.f90 --target-arch cpu -- -03

1 file, 1 function, 5 loops successfully analyzed and @ non-analyzed files in
21 ms

8. Follow the suggestions in order to produce the Checkers Report (option --checks) that
lists all the checks applicable to your code.

codee checks matmul.f90 --target-arch cpu -- -03

Compiler flags: -I include -03

[Fortran] target compiler: <none> (Compiler Agnostic Mode)
[1/1] matmul.f9@ ... Done

CHECKS REPORT

matmul.f90 [PWRO63] (level: L1): Avoid using legacy Fortran constructs

matmul.f90:17:7 [PWRO50] (level: L2): Consider applying multithreading parallelism to forall loop

matmul.f90:11:7 [PWRO35] (level: L3): Avoid non-consecutive array access to improve performance

matmul.f90:17:7 [PWRO35] (level: L3): Avoid non-consecutive array access to improve performance

matmul.f90:12:10 [RMK@1@] (level: L3): The vectorization cost model states the loop is not a SIMD opportunity due to
strided memory accesses in the loop body

matmul.f90:19:13 [RMKO10] (level: L3): The vectorization cost model states the loop is not a SIMD opportunity due to
strided memory accesses in the loop body

SUGGESTIONS

Use --verbose to get more details, e.g:
codee checks --verbose matmul.f90 --target-arch cpu -- -03

Use --level to filter checks with a specific level of priority, e.g:
codee checks --level L1 matmul.f90 --target-arch cpu -- -03

More details on the defects, recommendations and more in the Open Catalog of Best Practices for Performance:
https://github.com/codee-com/open-catalog/

1 file, 1 function, 5 loops successfully analyzed and © non-analyzed files in 20 ms

9. Show the detailed Checkers Report (option --verbose). As an example, focus on the
checker PWRO050, related to applying multithreading parallelization for multicore CPUs.
The detailed Codee output, which includes links to the open catalog available in the
website, precise location in the source code, etc..., is as follows:

codee checks --verbose matmul.f90 --target-arch cpu -- -03

matmul.f90:17:7 [PWRO50] (level: L2): Consider applying multithreading parallelism to forall loop
Suggestion: Use 'rewrite' to automatically optimize the code
Documentation: https://github.com/codee-com/open-catalog/tree/main/Checks/PWRO50
AutoFix (choose one option):
* Using OpenMP 'for' (recommended):

codee rewrite --multi omp-for --in-place matmul.f90:17:7 -- -03
* Using OpenMP 'taskwait':
codee rewrite --multi omp-taskwait --in-place matmul.f90:17:7 -- -03

* Using OpenMP 'taskloop':
codee rewrite --multi omp-taskloop --in-place matmul.f90:17:7 -- -03



http://www.codee.com

10. Note that the check PWRO50 contains an AutoFix section that remarks the existence of

1.

12.

source code rewriting capabilities that facilitate the usage of Codee as a coding
assistant. Focus on PWR050 and implement multithreading with OpenMP “for” option, by
executing the following command:

codee rewrite --multi omp-for -o matmul_codee.f90 matmul.f90:17:7 -- -03

Compile the original source code of MATMUL (matmul.f9e) and the optimized source
code of MATMUL (matmul_codee.f90). For instance, using the GFortran compiler:

gfortran matmul.f90 time.f90 main.f90 -o matmul -03
gfortran matmul_codee.f90 time.f90 main.f90 -o matmul_codee -03 -fopenmp

Run the original MATMUL (matmul) and the optimized MATMUL (matmul_codee):
Linux: ./matmul 1500
./matmul_codee 1500

Windows: .\matmul 1500
.\matmul_codee 1500


http://www.codee.com

