
Quickstart guide of Codee

1. Download the binary distribution package of Codee for your system.

2. Uncompress the Codee package in the desired location. This “Codee installation folder”
contains the subfolder bin/, lib/ and examples/).

3. Add the location of the Codee binary available in the subfolder ‘bin/’ of the Codee
installation folder to the environment PATH. Setup in the system terminal window:
Linux: export PATH=”$PATH:<Codee installation folder>/bin”

Windows-terminal: set PATH="%PATH%;<Codee installation folder>\bin"

Windows-powershell: $env:path += ";<Codee installation folder>\bin"

MacOS: export PATH=$PATH:<Codee installation folder>/bin

Alternatively, setup the path to the Codee binaries in the computer boot process:

Linux-bash: Add the export PATH command to .bashrc and re-open the terminal
Windows: Add the export PATH command in System properties and re-open the terminal

4. Copy the Codee license file to the Codee installation folder with the name “codee.lic”.
Alternatively, specify its location through the CODEE_LICENSE_PATH environment variable.

5. Run the Codee command-line tools to show the Codee version installed in the system:
codee --version

6. Using the performance-demos repository as base, go to the MATMUL/serial folder:
Linux: git clone https://github.com/codee-com/performance-demos.git

cd performance-demos/MATMUL/serial

Windows: git clone https://github.com/codee-com/performance-demos.git

cd performance-demos\MATMUL\serial

7. Produce the Screening Report of Codee (screening command):
codee screening main.c -- -I include -O3

Date: 2024-04-08 Codee version: 2024.2
Compiler flags: -I include -O3

[C] target compiler: <none> (Compiler Agnostic Mode)

[1/1] main.c ... Done

SCREENING REPORT

---Number of files---
Total | C C++ Fortran
----- | - --- -------
1 | 1 0 0

Lines of code Analysis time # checks Profiling
------------- ------------- -------- ---------
55 19 ms 6 n/a

CHECKS PER CATEGORY AND PRIORITY LEVELS

---------------Checks per category----------------	Priority
Scalar Control Memory Vector Multi Offload Quality	L1 L2 L3
------ ------- ------ ------ ----- ------- -------	-- -- --
1 0 3 2 n/a n/a 0	2 0 4

Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analysis time : time required to analyze the target
checks : total actionable items (opportunities, recommendations, defects and remarks) detected
Profiling : estimation of overall execution time required by this target

RANKING OF CHECKERS

www.codee.com Page 1 Apr 8, 2024

https://github.com/codee-com/performance-demos.git
https://github.com/codee-com/performance-demos.git
http://www.codee.com

Checker Level Priority # Title
------- ----- -------- -

-
PWR039 L1 P27 1 Consider loop interchange to improve the locality of reference and enable vectorization
PWR053 L1 P12 1 Consider applying vectorization to forall loop
PWR010 L3 P4 1 Avoid column-major array access in C/C++
PWR048 L3 P3 1 Replace multiplication/addition combo with an explicit call to fused multiply-add
PWR035 L3 P2 1 Avoid non-consecutive array access to improve performance
RMK010 L3 P0 1 The vectorization cost model states the loop is not a SIMD opportunity due to strided memory
accesses in the loop body

SUGGESTIONS

Use 'checks' to find out details about the detected checks:
codee checks main.c -- -I include -O3

Use --target-arch to focus on the checks most relevant to your hardware type [cpu | gpu | mcu], e.g.:
codee screening --target-arch cpu main.c -- -I include -O3

Consider using Codee with a target compiler in order to filter out optimizations that are already applied by your
compiler. For example, for GCC:

codee screening --target-compiler-cc gcc main.c -- -I include -O3

1 file, 2 functions, 6 loops successfully analyzed and 0 non-analyzed files in 21 ms

8. Follow the suggestions in order to produce the Checkers Report (option --checks) that
lists all the checks applicable to your code.
codee checks main.c -- -I include -O3

Compiler flags: -I include

[C] target compiler: <none> (Compiler Agnostic Mode)

[1/1] main.c ... Done

CHECKS REPORT

main.c:16:9 [PWR039] (level: L1): Consider loop interchange to improve the locality of reference and enable
vectorization
main.c:9:9 [PWR053] (level: L1): Consider applying vectorization to forall loop
main.c:17:13 [PWR010] (level: L3): Avoid column-major array access in C/C++
main.c:18:17 [PWR048] (level: L3): Replace multiplication/addition combo with an explicit call to fused multiply-add
main.c:15:5 [PWR035] (level: L3): Avoid non-consecutive array access to improve performance
main.c:17:13 [RMK010] (level: L3): The vectorization cost model states the loop is not a SIMD opportunity due to
strided memory accesses in the loop body

SUGGESTIONS

Use --verbose to get more details, e.g:
codee checks --verbose main.c -- -I include -O3

Use --level to filter checks with a specific level of priority, e.g:
codee checks --level L1 main.c -- -I include -O3

More details on the defects, recommendations and more in the Open Catalog of Best Practices for Performance:
https://github.com/codee-com/open-catalog/

Consider using Codee with a target compiler in order to filter out optimizations that are already applied by your
compiler. For example, for GCC:

codee checks --target-compiler-cc gcc main.c -- -I include -O3

1 file, 2 functions, 6 loops successfully analyzed and 0 non-analyzed files in 20 ms

9. Show the detailed Checkers Report (option --verbose). As an example, focus on the
checker PWR039 related to enforcing memory efficiency on microprocessors through
the Loop Interchange optimization. The detailed Codee output, which includes links to
the open catalog available in the website, precise location in the source code, etc…, is as
follows:
codee checks main.c --verbose -- -I include -O3

main.c:16:9 [PWR039] (level: L1): Consider loop interchange to improve the locality of reference and enable
vectorization
Loops to interchange:
16: for (size_t j = 0; j < n; j++) {
17: for (size_t k = 0; k < p; k++) {

Suggestion: Interchange inner and outer loops in the loop nest to improve performance

www.codee.com Page 2 Feb 1, 2024

http://www.codee.com

Documentation: https://github.com/codee-com/open-catalog/tree/main/Checks/PWR039
AutoFix:
codee rewrite --memory loop-interchange --in-place main.c:16:9 -- -I include -O3

10.Note that the check PWR039 contains an AutoFix section that remarks the existence of
source code rewriting capabilities that facilitate the usage of Codee as a coding
assistant. Focus on PWR039 and implement loop interchange in MATMUL by executing
the following command:
codee rewrite --memory loop-interchange -o main_codee.c main.c:16:9 -- -I include -O3

11. Compile the original source code of MATMUL (main.c) and the optimized source code of
MATMUL (main_codee.c). For instance, using the GCC compiler for C language:
gcc main.c matrix.c clock.c -o matmul -I include -O3

gcc main_codee.c matrix.c clock.c -o matmul_codee -O3 -I include

12. Run the original MATMUL (matmul) and the optimized MATMUL (matmul_codee):
Linux: ./matmul 1500

./matmul_codee 1500

Windows: .\matmul 1500

.\matmul_codee 1500

13.Measure the performance improvement obtained in your system. For reference purposes,
take a look at the Codee leaflet for loop interchange which shows up to 3x faster speed
on x86 and arm systems equipped with GCC, Clang and Intel compilers.

www.codee.com Page 3 Feb 1, 2024

https://www.codee.com/wp-content/uploads/2023/01/Leaflet-Loop-Interchange.pdf
http://www.codee.com

