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Computational steering of experiments in automated 
laboratories has potential to significantly increase scientific 
research productivity and accelerate discovery. New algorithms 
have been developed to better capture the structure-property 
relationships for driving experiments towards exploration of 
material sites of interest for specific function or that may exhibit 
new phenomena [1,2]. However, gaps still exist in effectively 
utilizing prior knowledge and integrating outputs from High 
Performance Computing (HPC) simulations. These require 
considerable computing resources whereas experiment control 
algorithms typically run at the instrument edge. To enable 
innovation in computational steering workflows spanning edge 
to HPC datacenter boundaries, new data management 
infrastructures are needed that facilitate capture and sharing of 
relevant data. 

In this work we start with state-of-the-art Deep Learning – 
Gaussian Process Kernel (DKL) active learning algorithm 
running at the edge [1] and enhance it with meta-learning 
algorithm running at computing facility that helps to integrate 
prior knowledge from other experimental sites, reducing 
experiment time, cost, and sample degradation. First, we briefly 
recap the results published in [3] and focus on data management 
infrastructure details not published so far that enable algorithm 
optimization and data sharing between multiple edges and the 
datacenter. Then, we discuss work in progress on wrapping this 
inner loop of experiment control with outer loop that uses 
experimental results to calibrate Molecular Dynamic (MD) 
simulations in the HPC datacenter, where the simulations in 
turn help to reconfigure the DKL process for exploration of 
specific phenomena. We focus on the data management 
infrastructure that enables both loops in this complex workflow. 
While inner loop involves sharing of experimental data and AI 

models, the outer loop also involves sharing the details of how 
the DKL active learning arrived at structures of interest. This 
requires capture of the active learning history and sharing it 
between the edge and the datacenter. We take advantage of the 
Federated Common Metadata Framework (CMF) [4, 5] (see 
Figure 1) that captures the entire data lineage from the DKL 
with references to relevant data slices, enables data versioning 
for reproducibility, post-hoc analysis and explainability, and 
seamless sharing between edge-to-HPC sites employing Git- 
like paradigm. It decouples data and metadata to reduce data 
movement by limiting it to relevant data subsets. 

 
Figure 1: Federated CMF applied to Active-learning Workflow 

 
The DKL, meta-learning, and data management described 

in this work is applied to Scanning Transmission Electron 
Microscopy (STEM) experiments at Oak Ridge National 
Laboratory (ORNL). However, we believe that it has more 
general applicability. The specific signals from the experiment 
to drive HPC simulations may be different in other domains, 
but the general need for providing context of experimental data 
for simulation by capturing the data lineage from experimental 
exploration by data infrastructures like CMF will be similar. 
CMF aids in HPE S/W stack like MLDE, Fed-SDK, etc. The 
overall workflow in context of a microscopy experiment is 
schematically depicted by Figure 2. 
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Figure 2: Optimizing Scientific Workflows: Active-Meta Learning with CMF

A. Autonomous Experimentation Active-Meta Learning using 
Reptile Algorithm 
Autonomous Experimentation in Microscopy adopts Deep 

Kernel Learning (AE-DKL) [1] to predict energy spectra from 
structures, by employing a Gaussian Process Regressor 
combined with a 4-layer Multi-Layer Perceptron (MLP) feature 
extractor, enabling autonomous microscopy. It enables AI-
driven discoveries of new phenomena by employing active 
learning that drives the spectroscopy- probe to structural sites 
with high probability of interesting spectra. It incurs challenges 
in cost, efficiency, generalization, reproducibility, and real-
time analysis. We improve the AE- DKL in our Reptile-DKL 
workflow (Fig. 3) [3] by training a meta-model in HPC 
datacenter on prior experiments using Reptile algorithm [6] to 
provide seed for few-shot model adaptation at the instrumental 
edge, reducing active learning and experiment times by 30-40% 
[3].  

 
Figure 3: Reptile-DKL Training [3] 

The meta-model training involves exploration of optimum 
sub-sets of prior experiments (the “task” sets) for the best 
generalization, and optimization of various hyper-parameters, 
including the number of Reptile iterations. Results and lineages 
from these explorations (see examples from Table 1 and Figure 
4) are captured in CMF to help accelerate meta-model 
retraining after addition of new experiments, seeding “task” 
sets and hyper-parameters from historical experience. 

Our meta-model trained on plasmonic images also shows 
good adaptation to other domain: acceleration of tumor 

classification in Breast Cancer images [7-9] through cross-
domain Transfer Learning [3]. 

 

 
Figure 4: Reptile Reptile-DKL CMF Lineages - training with different 

task sets 
 

Table 1: Reptile-DKL Accuracies for different task sets and hyperparameter 
explorations 
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B. Bridging Simulation and Experiment: CMF-Enhanced 
Microscopy Workflow  
Molecular Dynamics (MD) simulations can explore 

significantly broader set of structures than laboratory 
experiments. The Reptile DKL method involves 3 stages or 
execution steps: Task Preprocessing, Full train-dataset training 
with meta learning, and test-dataset used for inference with 
Active Learning. The Meta-model training involves Task-wise 
Batch Sampling stage, Individual Task Training stage 
producing Individual Task Models, which is concatenated 
parallelly and used to update the base model parameters. The 
model has learnt on multiple similar yet different tasks to 
generalize much faster on the new/unseen tasks. 

Therefore, MD has the potential to steer the active learning 
in Reptile-DKL by informing it what spectral features to 
prioritize when looking for new phenomena or specific 
functional behaviors. (The meta learning lineage of the Reptile 
DKL for 3 meta-model training iterations are shown in Figure 
5) However, MD simulation models need to be calibrated to 

reflect correctly the most interesting features (e.g., defects). In 
our presentation, we will show initial results from an iterative 
workflow that employs experimental data to refine simulation 
model, and simulation results to inform scalarization of 
experimental spectra to drive active learning.  

Active learning lineages captured in the CMF help inform 
initial conditions for MD simulations. The uncertainties are 
indicative of structural features that the AI model is least certain 
about (i.e., not represented in prior knowledge) and should be 
included in MD calibration. The order in which the locations 
have been explored is important because it captures points of 
probe-induced sample heating that affect correct matching 
between experiment and simulation. Figure 6 shows the active 
learning lineage captured in CMF along with example locations 
(shown in Fig. 7) and uncertainties (shown in Table 2). 
Experimental results with spectral intensities from active 
learning step are also captured in CMF and used to help 
parametrize MD simulations. More detail will be given in the 
presentation. 

 
 

 
Figure 5: Meta-model Training CMF Lineage 

 

 
Figure 6: Reptile-DKL guided Active Learning 

 



 
Table 2: Active Learning Results (Only first 5 steps shown for simplicity) 

 
 

In summary, our data management infrastructure built on 
CMF enhances computational steering of experiments:  

i) Enables seamless sharing of relevant data subsets between 
edge and HPC datacenter,  

ii) Helps to accelerate AI model training by learning from 
historical experience,  

iii) Validates meta- model adaptability by capturing its few-
shot learning trajectory for further examination, and  

iv) Captures the evolution of experiments to help calibrate 
the simulations.  
CMF also helps to address time disparity between experiments 
(fast) and simulations (slow) by aiding workflow manager to 
select relevant data subsets for staging. These workflows 
efficiently save training time and reduce compute requirements 
through reproducibility. Implementation can be found in [10]. 

 

 
Figure 7: Active Learning Explored Regions 

C. Identifying Stable Trajectories 
This section delves into the application of Ab Initio 

Molecular Dynamics (AIMD) simulations for investigating the 
dynamics and characteristics of materials such as MoS2 
(molybdenum disulfide) with sulfur (S) defects. AIMD 
simulations involve modeling atomic and molecular behavior 
based on fundamental physical principles, like quantum 
mechanics, without relying on empirical parameters. Here, 
AIMD simulations are utilized to explore the dynamics and 
properties of MoS2 with S defects. The dataset comprises 

image representations of the MoS2 structure at various time 
points during the AIMD simulations as given in Figure 8, while 
the ground truths represent corresponding data indicating defect 
locations or states within these images. These masks serve as 
reference data for validating or training models to automatically 
detect defects.  

 
Figure 8: AIMD MoS2 Simulated Structure and Defect locations 

By extracting energies linked to different configurations 
from AIMD trajectories, our aim is to pinpoint the most 
energetically stable structure among them. In materials science, 
comprehending the energetic stability of different 
configurations is vital for predicting their stability under diverse 
conditions and designing materials with desired properties. 

Figure 9 illustrates the exploration of stable energy regions 
in AIMD simulation: red points are selected through active 
learning, and blue points are ground truth energies. 

 
Figure 9: Active Learning Explored Regions in AIMD Simulation 

Using an experimentally trained model for active learning 
on simulations involves leveraging insights gained from 
physical experiments to guide the selection of data points in 
simulated environments. This process typically entails 
employing a meta-model, often constructed using techniques 
like Bayesian Optimization and deep kernel learning, trained on 
data acquired from real-world experiments. The meta-model 
learns to approximate the underlying relationships between 
input parameters and desired outcomes, enabling efficient 
exploration of the simulated space. The pre-trained meta-model 
aids in efficiently identifying stable energy structures across 
different trajectories, as depicted in Figure 8, based on the 
maximum uncertainty acquisition function. By actively 
selecting data points based on the meta-model's predictions, 
particularly focusing on areas of high significance, the 
simulation process can be optimized to identify key insights or 
optimal solutions. The integration of experimentally derived 
knowledge with simulation-based exploration enhances the 
efficiency and effectiveness of the overall research or 
optimization process. This research is ongoing, with continuous 
experimentation. 
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D. Future Work 

We will explore different ways to steer the active learning 
in ReptileDKL algorithm by MD simulations to uncover 
characteristics of various defects sites and other interesting new 
physical phenomena. Sample evolution study will also be 
performed based on the performance characteristics and the 
dynamic changes of the molecules that are logged in CMF. We 
also intend to deploy it in real-time microscopic sites of ORNL 
to simultaneously work on the current experimental setup. 
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