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Abstract—A user of an High Performance Computing (HPC)
system relies on a multitude of components, both on the user-
facing side, such as modules, and lower-level system software,
such as Message Passing Interface (MPI) libraries. Thus, all these
different aspects must be tested to guarantee an HPC system is
production ready. We present here a suite of tests that cover
this larger space, which not only focus on benchmarking or
sanity checks but also provide some diagnostic information in
case failures are encountered. These tests cover the job scheduler,
here SLURM, the MPI library, critical for running jobs at scale,
and GPUs, a vital part of any energy efficient HPC system. Some
tests were critical to uncovering a number of underlying issues
with the communication libraries on a newly deployed HPE-Cray
EX Shasta system that had gone undetected in other acceptance
tests. Others identified bugs within the job scheduler. The tests
are implemented in a REFRAME framework and are open source.
MPI SLURM Software Stack Benchmarks Automation
Regression Tests

I. INTRODUCTION

Characterizing the environment of an HPC system is critical
in providing a quality service to end users. Typically this is
performed by running regression tests across various aspects
of the system regularly over an extended period of time, as
well as acceptance testing. Common areas to test, and of
particular relevance to this work, include data exchange and
communication operations (e.g. MPI implementation), and the
job scheduler being used on the system (e.g. SLURM).

Message Passing Interface standard (MPI, 1) is the de facto
standard defining communication operations for exchanging
data in parallel computing environments. The MPI standard
defines multiple operations for various communication pur-
poses and provides bindings for C and Fortran programming
languages. MPI is critical to all supercomputing environments.
At the Pawsey Supercomputing Research Centre, well over
90% of the compute cycles are consumed by multi-node jobs
using this standard.

Job schedulers are another vital component of HPC systems,
responsible for distributing the available computing resources
amongst the jobs requested by users. The SLURM batch
system [2] is a prominent scheduler, used by many of the
top supercomputers in the world, including on our systems
at Pawsey. They are responsible for managing resources,
scheduling, and executing jobs. As such, they are crucial to
the quality of service provided to users. A poor-performing job
scheduler could leave much of the system resources unused or
leave user jobs in a queue, waiting to be executed, for extended
periods of time. Testing the entire functionality of a job

scheduler would be a massive, if not impossible, undertaking,
but a suite of tests to check the core, basic functionality, would
be important in characterizing its performance and diagnosing
potential issues.

At Pawsey, we provide a specific set of packages, built using
SPACK [3] accessed through the lmod module system [4], or
provided as containers-as-modules through shpc [5]. SPACK,
although ideal for building a package and all it’s dependencies,
does not test the result, hence the need to test user access to
software and check for desired functionality.

To this end, we have developed a suite of tests, which are
now a part of our regular regression and acceptance testing at
Pawsey, designed to run:

MPI: Contains the Ohio State University Micro-
Bencmarks (OMB, 6) along with specific more
complex tests that contain a large variety of
communication patterns

SLURM: Covers areas of resource management (including
memory, cores, threads), accounting and billing,
and affinity at the process and thread levels for
both CPU and GPU.

Software: Checks SPACK installations provides desired
functionality, no missing external dependencies,
and also checks modules produced.

All tests also provide detailed logging (e.g. node state, memory
utilisation, available memory on nodes, CPU core affinity) in
order to bypass the need of a debugger and profiler, which can
limit the number of processes on which the test is run. These
tests have been integrated into a REFRAME [7] framework and
are freely available at [8]. REFRAME is a Python framework
designed for running benchmarking and regression tests on
HPC systems that abstracts away the low-level details of a test,
such as system and environment configuration and setup. The
REFRAME framework allows one to separate test logic from
system setup and configuration. This framework allowed us to
write the sort of tests we wanted with the desired functionality,
scope, and flexibility.

Our paper is organized as follows. In the first section, we
describe our test design, providing motivation by way of the
issues encountered by Pawsey staff and researchers using
Pawsey systems. We discuss how these tests are critical to
properly characterize an HPC environment, with some example
results from a selection of tests. We end with a summary of
the tests and key conclusions.
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II. TEST DESIGN

A. Why standard acceptance tests were not enough

Our system had passed a (initially thought to be rigorous)
suite of acceptance tests, containing HPL, a wide variety of
OMB tests, production codes like LAMMPS, amongst others.
However, these tests stressed a limited number of MPI commu-
nication patterns. Moreover, they are designed to benchmark a
system rather than stress a system while providing diagnostic
information.

Initially, we did not have any unit tests that could replicate
the sheer number of pt2pt messages some production codes
place when loading input data and running an MPI domain
decomposition using a large number of MPI processes. Nor
did OMB replicate all the varied communication patterns used
by codes running on our systems. This pushed us to delve into
the source code of software encountering issues and develop a
variety of unit tests.

Similarly, regarding SLURM tests, our initial standard
acceptance tests were largely limited to testing whether SLURM
was operational and performing its primary functions. Tests
of correctness and robustness were largely non-existent. Some
issues with SLURM were only seen when certain types of
job requests were submitted by users (e.g. specific types of
resources requests or varying levels of parallelism). Moreover,
inaccuracies in SLURM’s automatic resource calculations are
often not evident until job accounting is observed or resource-
hungry user jobs are being run.

These limitations, combined with the need for increased
automation and flexibility, led us to develop a suite of new tests.
These tests both target some of the specific MPI and SLURM
issues we encountered and solve the aforementioned limitations
in our already existing test suite. Additional functionality
included in our tests (detailed below) increases their utility
compared to standard tests and make them more useful to the
HPC community as a whole.

In the rest of this section we briefly outline some of the
test design decisions we made which we feel are the most
impactful and beneficial compared to standard tests.

B. Detailed logging

We have included as standard in most of our tests (all MPI
tests) detailed logging to aid in diagnosing and triaging issues.
An external library we developed provides detailed memory
usage, affinity reporting, and timing statistics. This library
is used in the majority of our tests, with the memory usage
and affinity reporting being particularly useful. It provides
the functionality of traditional debuggers and profilers, except
it is embedded in the code and tests themselves, rather than
run separately. The MPI tests we developed also make use
of polling the memory state and the kernel ring buffer of the
nodes before and after the MPI-enabled job is run in the job
submission script.

These logs proved to be invaluable in our testing. The
memory and affinity information recorded proved key to
investigating some of the issues we encountered. Unexpected

memory footprints were immediately identifiable, as was poor
affinity which could adversely affect performance. Some of the
MPI issues we encountered were not actually caused by our
MPI implementation, but rather completely different causes,
which was able to be identified through error messages in the
dmesg node health logs (e.g. node-specific issues, system-wide
configuration error).

C. Stressing the system with MPI

A key difference in our MPI tests compared to standard
acceptance tests is the scale of the MPI communication being
performed. We wanted to have tests which mimicked typical
user workflows on our system. Therefore, we needed tests with
many processes, operating across many nodes, dealing with
large quantities of data, and executing the same types of MPI
communications that are common in user codes. Several of the
issues in our MPI implementation were only discovered when
we started testing large-scale MPI jobs, far more demanding
on the system and implementation than standard acceptance
testing.

D. Extended scope of SLURM testing

We had SLURM tests as part of our regression testing
suite already, however, those were mostly limited to checking
that SLURM was operational and functioning at the most
fundamental level. However, during the initial months of
Setonix service we noticed some inconsistencies in SLURM’s
behaviour. This led us to investigate further and come to the
conclusion that we needed tests which exposed more aspects
of SLURM.

Rather than check for core basic functionality, many of our
new SLURM tests are sanity checks that a given job request
leads to a job that has the correct environment configuration,
resource limitations, and billing. These tests have allowed
us to quickly pick up subtle issues that would otherwise go
undetected, since many jobs can run apparently fine even with
these problems, especially if users aren’t precise with their
resource requests. They have also allowed us to see when
some aspect of behaviour has changed, perform follow-up
investigative testing, and either implement a fix or workaround
ourselves, or submit a ticket to schedmd.

E. Expanded user experience testing

Initially, our tests focused on the user experience consisted of
checks of a specific set of modules and applications. Though
these tests were useful, they were incomplete and required
updates as application versions changed. To improve automation
and completeness of tests of the software stack and the modules
that provide access to users, we have improved the integration
of our tests with SPACK [3], our package manager of choice.
In this way, all packages and modules are checked to see if
they provide the desired basic functionality.

III. ISSUES

We provide here a brief summary of the issues encountered
by users and staff running MPI-enabled codes and using



SLURM on a newly commissioned HPE Cray HPC system,
Setonix, which debuted at 15 in the Top 500 list [9] and 4 in
the Green 500 list [10]. Although some of the issues discussed
below are specific to the deployment of Phase-1 Setonix1 and
its associated Test Deveolpment System (TDS) Joey23, the
general issues could be encountered in any MPI deployment
and SLURM. It is important to note that Phase-1 Setonix passed
acceptance tests, which consisted of MPI-enabled production
codes like LAMMPS [11] and benchmarking codes like HPL
[12] and OMB, as well as SLURM tests. Yet there were issues
in both the MPI deployment and SLURM that went undetected,
speaking to the need for further testing. Many of our initial
MPI issues were solved with an upgrade to our libfabric library,
however the SLURM issues persisted through several different
version upgrades4 and through both Setonix Phase-1 and Phase-
2.

A. MPI Issues

The primary issues encountered with MPI-enabled codes
were:

Mem-Leak: Multi-node jobs with many MPI processes
and large message sizes (sent across nodes)
were crashing with a variety of reported errors:
so-called bus errors; generic SLURM kill
errors; out-of-memory (OOM) errors; errors
reporting address issues with xpmem library;
or errors referencing Open Fabrics Interface
(OFI) library.

Mem-Reduced: Idle nodes would slowly have decreasing
amounts of available memory after running a
number of MPI jobs, regardless of whether
these jobs ran successfully or not. These
jobs appeared to leave a permanent memory
footprint even after the code had completed ex-
ecuting, which slowly decreased the available
memory on a node over time.

Scaling: Tests of several codes and software showed
that pt2pt communication did not scale well
past two nodes. The scaling was sufficiently
poor that even a much older system outper-
formed Setonix by factors of 5 or greater
when using & 96 cores across multiple nodes.
If processes were restricted to communicate
only with neighbouring processes, the observed
scaling was far better, so only codes in which
processes communicated with large fractions
of the communicator would be affected.

1Setonix is a HPE Cray EX system and is deployed in two phases: Phase-1
mainly consisted of 512 compute nodes with 2 AMD Milan CPUs; Phase-2
involves upgrades to software as well as an additional 1024 AMD Milan nodes
and 192 GPU nodes with 4 AMD MI250x GPUs and AMD Trento CPUs.

2Joey has 12 AMD Milan compute nodes.
3Phase-1 Setonix and Joey were deployed running Cray Shasta < 1.7,

used Mellanox Network Interface Cards (NICs), cray-mpich< 8.1.12, and
libfabric/1.11.x.

4During the development of the tests presented in this work, our Setonix
supercomputer used SLURM versions 22.02.x, and 22.05.2 to 22.05.11

We note that almost all of these issues had the same root
cause, bugs in the libfabric library. However, determining
the root cause required the development of specific unit tests
that reproduced the communication patterns of real-world codes
as well as being able to stress the network.

B. SLURM Issues

The primary issues we encountered with SLURM were:
Memory-Calc: The automatic memory calculation

SLURM performs when using -mem or
-mem-per-cpu options is not correct, and
SLURM will reject some jobs which it
mistakenly believes are asking for too much
memory.

Affinity: The affinity of processes and threads is not
optimal in shared-node access, at times looking
to be entirely random.

Billing: Users run jobs under an account and that ac-
count is charged accordingly for the resources
they consume. However, the billing calculated
by SLURM was found to be incorrect in certain
scenarios.

Config: Node-level settings set by the SLURM config-
uration file were found to change suddenly and
unexpectedly. This did not occur as part of a
reboot, but while the nodes were still operating.

All of these issues are relatively subtle and, therefore, it
is understandable that they were not picked up in initial
acceptance testing. Most of them have no direct impact on
the ability of most jobs to run. The primary consequences
were bad affinity adversely affecting performance in some
circumstances, certain valid job requests being rejected, and
billing miscalculations in certain job configurations leading to
accounts being charged the wrong amount of service units.

IV. TESTS

A. MPI tests

In this section we detail a of the key tests we developed to
either track or aid in diagnosing/fixing the MPI issues outlined
in the previous section. We also expand on the results from our
tests and how those assisted in determining the root problem
at hand. The solutions and/or workarounds for each issue are
also discussed.

All of our MPI tests follow the same general structure. Each
test starts with a build phase where any required source code
is compiled, then the primary execution phase occurs, which
includes a node health check before and after code execution
and in-built profiling, then finally sanity and/or performance
checks are performed to determine whether the test succeeded
or failed.

1) Mem-Leak: : Multi-node jobs with many MPI processes
with large message sizes and internode communication were
crashing with numerous different reported errors during Phase-
1 Setonix. The error messages were varied and a single
code could encounter all of them if run multiple times, so
initially, it was not obvious what was causing the wide



variety of errors. Due to the severity of the crashes, core
dumps were not particularly useful. Further investigations using
open-source codes with useful logging information (such as
VELOCIRAPTOR, 13 and SWIFTSIM, 14) indicated the errors
occurred during MPI communication and were more likely to
occur with increasing per node memory usage and/or increasing
message sizes.

Our MPI tests showed available node memory shrinking dur-
ing MPI communication. Increasing the number of processes
would increase the unexpected excess memoryy usage, along
with the likelihood of encountering uninformative errors like
"bus error". This issue was severe as there was no workaround
other than running codes with more nodes but fewer processes
per node to reduce a job’s memory footprint per node.

Additionally, some nodes would become unresponsive after
crashing with bus errors or would crash or hang immediately
upon trying to launch a new MPI-enabled job. Capturing the
messages in the kernel ring buffer before and after the MPI-
enabled code was run allowed us to quickly see what issues
these nodes encountered after a crash. This information is vital
for diagnosing issues by the HPC vendor (HPE Cray) and
critical for quickly checking if there are unexpected memory
leaks in MPI associated libraries.

The only solution to this issue was upgrading to a newer
libfabric.

2) Mem-Reduced: : Related to the previous issue, we
noticed more jobs failing due to Out-Of-Memory (OOM) errors
during Phase-1 Setonix. Polling the nodes showed an ever
increasing number of nodes reporting less than the expected
available memory, with the amount slowly decreasing over
time.

Running many iterations of the test outlined in Sec. IV-A1
or a more simplified pt2pt focused test showed that even
small, multi-node MPI jobs that ran successfully would leave
decreasing amount of available memory. The MPI or more
precisely the communication library’s memory leak was not
being cleaned up after the successful completion of jobs.

3) Configuration-related errors: : Another use case for
our tests is verification of network configurations. Although the
issue encountered was specific to Joey after it had hardware
and software updates applied, bringing it in line with Phase-2
Setonix, it highlights the usefulness of the above approach.

After being upgraded, Joey was unable to run moderate sized
multi-node MPI jobs with pt2pt communication. Despite
these nodes being able to run codes like HPL, they failed to
run production codes like LAMMPS at scale, which has a more
stressful communication pattern (more messages being sent).
The multi-node MPI jobs would crash with a variety of errors.
Furthermore, after a node experienced a crash, it would be
unable to initialize an MPI job.

The key to diagnosing this issue was the logs produced by
dmesg, which allowed HPE Cray staff to quickly identify
an error in the network configuration, which again had gone
unnoticed by more standard tests. Once the configuration was
properly set, the crashes no longer occurred.

4) Scaling: : Tests of several codes, such as LAMMPS,
showed that Phase-1 Setonix with the older libfabric
library did not scale well beyond two nodes. Further testing
indicated that codes with extensive pt2pt communication
were scaling poorly. We developed a simple unit test to replicate
the communication patterns during the initial MPI domain
decomposition and subsequent communication per round of
compute seen in production codes. Specifically, the unit test
can vary the fraction of the N -sized MPI_COMM_WORLD
each MPI process communicates with, going from a process
communicating to just two neighbouring process thereby
generating 2 ∗ N messages, to each process communicating
to all others thereby generating N(N − 1) messages. The test
can also vary the message size sent. It then reports statistics
of the time taken to complete the communication.
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Fig. 1. Strong scaling of time taken to complete asynchronous pt2pt
communication where each MPI process communicates to every other process.
Here jobs use 24 processes. Points show the average time taken and error bars
show the minimum and maximum. We also show lines indicating a scaling with
message size and another for one that scales with the number of messages. We
also show results from a HPE Cray EX system with an updated libfabric
library.

Figure 1 shows the average time taken to complete a
N(N − 1) pt2pt communication round, along with the
minimum and maximum time taken by any given MPI process
to complete send and receives. During rounds of extensive
pt2pt communication the time taken on Phase-1 Setonix was
scaling with the number of messages once the number of nodes
exceeded 2, that is communication across blades (there are
2 nodes per blade). This scaling is in contrast to that seen
on Magnus, our older generation Cray HPC system 5. The
minimum time on Magnus also did not increase greatly even
when using 16 nodes, though at this point, the scaling seen is
more like that of Phase-1 Setonix. For comparison, we also
show results of running this test on LUMI, which has the

5Magnus has a maximum of 5 hops compared the maximum of 3 hops for
Setonix



same hardware as Setonix, but had Cassini NICs and updated
libfabric libraries.

As of this writing, the precise underlying cause for the poor
scaling is unclear. A workaround for the OFI library was iden-
tified, specifically disabling the on-demand communication ini-
tialisation by setting MPICH_OFI_STARTUP_CONNECT=1.
This moves the overhead of establishing connections at the start
and significantly improved performance. The poor MPI scaling
was limited to HPE Cray EX systems with libfabric< 1.15
based on current tests.

B. SLURM tests

In this section we detail several of the key issues we have
encountered in our SLURM deployment and tests we developed
to either track or aid in diagnosing/fixing them. We use a
vendor-provided SLURM deployment that our team have little
ability to modify and/or update, so our ability to directly resolve
issues is limited. Instead, these tests are used more as a tool to
monitor over a long period of time the state of SLURM and
to quickly identify changes (either positive or negative) when
updates are applied.

1) Memory-Calc: : We discovered that some SLURM jobs
were not launching due to a reported invalid node specification,
despite requesting what should be valid resources. Further
testing showed that the automatic memory calculation of
SLURM was not working properly. Specifically, the memory
per CPU was not being calculated or enforced properly if there
was no specific memory request in the job submission script.

In light of this discovery we wrote a test to check SLURM’s
automatic memory calculation. The test attempts to submit a
job script with parameters of the job script, such as number of
tasks, number of CPUs, memory, etc. being able to be set and
modified in an easy manner. The test will attempt to launch
the job, and if the job is launched, query SLURM to check
the reported memory.

The nodes on our system allow for 128 CPUs to be
requested per node, however, we found that if the memory
was not explicitly stated in the job submission script, SLURM
would only allow jobs with up to 66 CPUs to be submitted.
If the memory was explicitly set to what SLURM should
be automatically calculating then larger jobs would submit
successfully. Our test showed that for all jobs without any
memory specification which submit successfully, the memory
as reported by SLURM was correct. Thus, it appears that
what SLURM is reporting is not what is being used (at least
not consistently) in the determination of whether a resource
request is valid in this context. Our best guess is that when the
memory per CPU is not explicitly stated, SLURM’s automatic
calculation is not consistently enforced.

At this stage we have not identified the specific cause of
this problem. Our SLURM has been upgraded twice since
first identifying this issue and it has not been resolved. As a
workaround for this we have recommended in our user-facing
documentation that users always specify the memory.

2) Affinity: : Binding of processes and threads can impact
performance and during benchmarking tests we noted some

oddly poor behaviour with default SLURM binding. To that
end, we run tests to check both thread-level affinity (e.g. OMP)
and task-level affinity (e.g. binding MPI processes to CPUs)
in different job configurations - multi-node vs. single node,
exclusive vs. shared access, job packing, job arrays, etc.

The test consists of running simple codes from our library,
profile_util, to report the affinity from within the code
at run-time. Based on the job configuration and the different
affinity options, the test’s logic for what is considered "optimal"
affinity changes.

Our testing showed that we could get consistent optimal
affinity when using exclusive node access. In our case, optimal
was spreading threads/processes across L3 cache regions,
repeating if necessary. For Milan CPUs, L3 cache regions
contain 8 cores, giving 0, 8, 16, 24, 32, 40, 48, 56, 1, 9, etc.
We achieve this with exclusive access with regular jobs, job
packing, and job arrays. Modifying OMP environment variables
related to thread-level affinity modifies the affinity as would
be expected.

However, this changes with shared node access and several
jobs running at the same time. Here the affinity is generally
not optimal. Process level affinity tends to hop across sockets,
filling up an L3 cache in each socket before moving onto the
next L3 cache in each socket. When ensuring only one job
is running (using only a portion of the node), the affinity is
optimal in simple cases where no job packing, job arrays, or
hyperthreading are used. More advanced job configurations did
not yield optimal affinity, at both the thread and process level.
The OMP environment variables which affect affinity behaved
as they should, as they did in exclusive access, but achieving
the desired spread of processes/threads across L3 caches could
not be consistently achieved in shared access.

3) Billing: : As access to resources is budgeted through
allocations at Pawsey, it is important that jobs be charged
correctly for consumed resources. Our billing related test
submits a job, queries SLURM for job properties, checks
that those match the requested resource allocation and checks
that the account is correctly charged. We test a wide range
of different job configurations, primarily varying the relation
between an explicit memory request, and what the total
memory would be given the number of CPUs we request,
with hyperthreading disabled and enabled.

At Pawsey, SLURM is configured to set the memory based
on the number of CPUs requested and accounts are billed the
service units (SUs) using CPUs requested with this request
being equal equivalent number of CPUS if there is explicit
memory. Our tests showed that billing, specifically the TRES
determined by SLURM, was correctly set except for jobs that
used hyperthreading and where the explicit requested memory
based number of CPUs was greater than the explicit number of
CPUs requested. For these jobs, the account would be billed
based on the CPU request, the smaller amount. When using
one thread per core, test results were consistent across all job
configurations.

4) Config: : We encountered an issue on GPU nodes where
part of the SLURM configuration would revert to a different



value without notice or apparent cause on active nodes running
jobs. The unexpected change is very worrying given there are
no notifications a change has occurred and the change affects
many aspects of jobs. It also did not happen universally across
all nodes at once - nodes would revert in bunches at seemingly
random times.

This motivated a test that checks all GPU nodes by querying
the configuration reported by SLURM and verifying that a job
is able to run as if the configuration was normal. This test is
somewhat unique in that we need to run it often and respond
to failures by manually reconfiguring the nodes.

The specific change we observed in our configuration was
the gres parameter would revert from 8(S:0-7) to 8. This
broke the relationship between GPUs and CPUs on our nodes
such that each GPU was no longer associated with 8 CPUs.
The wrong number of CPUs were being allocated per GPU
and could only be allocated in blocks of four GPUs, so in our
setup, all jobs were given either 32 or 64 CPUs, regardless of
what they actually asked for. This effect flowed into billing in
that accounts were charged the wrong amount of SUs due to
being allocated the incorrect amount of resources. Similarly,
GPU-CPU affinity was affected as well. CPUs were no longer
associated with the correct GPU and processes would be
distributed across the incorrectly granted resources, leading to
unexpected (and at times, inefficient) affinity.

C. GPU tests

We have developed a set of tests to check the functionality
and performance of common GPU operations (e.g. allocation
and deallocation of memory, host-to-device data transfer and
vise versa) and GPU-direct MPI communication. These tests
primarily serve as long-term performance monitoring, although
the GPU-MPI tests also serve as an additional test of our MPI
implementation. The tests are as follows:

Warmup: This test runs a few simple instructions (e.g.
(de)allocation of memory, host-to-device and
device-to-host data transfer) for a certain set
of rounds and then runs a larger set of device
instructions for a certain number of iterations.
Support for multiple compilers and GPU of-
floading frameworks is included.

Multi-GPU: This test runs several rounds of kernel instruc-
tions concurrently across multiple GPUs. Sup-
port for multiple compilers and GPU offloading
frameworks is included.

GPU-MPI: This consists of a set of tests, each of which
focusses on a specific MPI communication
pattern. The tests are run across multiple nodes
and use multiple GPUs per node.

The GPU-MPI tests include the same node diagnostics as our
other MPI tests and all the GPU tests use the profile_util
library to achieve the same level of logging throughout the
code as the MPI tests do. All GPU tests include an additional
level of diagnostic information, which is usage statistics for
all GPUs in the job allocation. Regular calls are made to the
ROCM command line interface rocm-smi to capture GPU

usage. This allows us to ensure the number of GPUs being
engaged is what we expect along with when and how often the
GPUs are used, which is critical when analysing performance.

Figure 2 shows the performance of two of our GPU-MPI
tests across two different system environments. The top row is
in an environment running CPE/23.03 and the bottom row is
running CPE/23.09. Each test was run across three separate
ROCM versions in each environment (5.2.3, 5.5.3, and 5.7.1).
There are two primary findings from these test results: (i)
GPU-GPU MPI does not run on our system with ROCM/5.5.3
or later versions when running CPE/23.03, a problem that is
resolved in CPE/23.09; (ii) there is a significant performance
improvement in point-to-point MPI communication between
CPE/23.03 and CPE/23.09, up to factors of ∼ 2 for 1 node
and ∼ 5 across 2 and 4 nodes.

Additionally, the Warmup and MultiGPU tests are designed
to test multiple compilers, flags, and environment setup and
test different offload options like ACC or OMP offloading. The
reason is that moving to a new CPE means not only moving
to different compilers but moving to new ROCM versions.
Thus, they act not just as tests of GPU performance, but also
compiler performance with respect to GPU code and ROCM
performance.

D. Module and Software Tests

Modules, such as those provided by Lmod [4], are a
common method for providing users access to software on HPC
systems. With the increasing complexity of software stacks
(e.g., dependencies, number of builds, number of compilers),
the deployment and management has also become complex,
leading to HPC package management tools like SPACK [3],
which we utilise at Pawsey. Even with these tools, there can
be build failures and modules not being produced.

We developed a set of software stack tests focused on
checking that software has been built (by SPACK in our case),
an appropriate module has been constructed, and that the library
or executable function at the most fundamental level. These
tests have been integrated into our software stack installation
pipeline such that they are automatically run for all software
and libraries at appropriate stages and results can be quickly
viewed once installation has completed.

There are four separate tests we have developed, the flow
of which in the software stack installation process is shown in
Figure 3. The first test is run during concretization, the stage
where SPACK generates concrete specs for individual instances
of a package from the more generalised abstract specs. Our
abstract specs are grouped into environments and the test is
run once for each environment. It checks that for each abstract
spec in the environment the corresponding concretized spec(s)
are defined and, therefore, ready to install.

The final three tests form a test dependency chain, where
each one only runs if the previous one passed. This allows a
quick diagnosis of where the issue lies in case of a failure and
has sped up the process of identifying the cause of failures.
They are run immediately after package installation for each
package for which a module is to be created:
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Fig. 2. Scaling of time taken to complete different types of GPU-GPU MPI communication. Here, jobs use one process per GPU. The top row are results
from a CPE/23.03 environment and the bottom row is from CPE/23.09. The left column is results from running an MPI all-reduce operation while the right
column is from running asynchronous point-to-point send/receive operations on data. Results from running with different versions of ROCM are also shown
(note that GPU-GPU MPI did not function in later ROCM versions in CPE/23.03, which is why there is only one set of data in the panels in the top row).

Module: This checks that the module SPACK should
have created exists. For each module, the exis-
tence of any modules which it implicitly loads
(dependencies) is also checked. This particular
issue has arisen in several versions of SPACK
and does not seem to have a deterministic
cause.

Load-module: This test checks that created module can be
loaded without any errors or warnings and that
all load dependencies are also loaded in the
environment.

Exec/Lib: This test performs the most basic sanity check
- for software packages this checks the binary
via an invocation of -help or -version
while for libraries it is a check that all library
dependencies are present. While this does
not guarantee correctness or performance of
installed software, these tests are run during
the software installation process, and as such,
we opted for a basic sanity check over a proper
full run of the software.

After running our full software installation pipeline alongside
the above tests, we found that SPACK was not properly
generating module files, although in a subtle way that we
had not detected previously. While all software and libraries
which installed successfully had a corresponding module file
generated successfully, some of the dependencies of these

packages did not have their module files generated by SPACK.
Often the packages missing modules were just dependencies

of other packages, rather than final packages often used by
users. We typically do not require dependencies of a package
to have an explicit LOAD statement due to the rpaths used
by SPACK. In these circumstances, no warnings or errors are
produced and the basic sanity check test and any dedicated
software tests would pass. However, in circumstances where
we do require explicit loads to be present, such as when there
is a Python dependency and the missing module is a Python
one, basic sanity tests would fail.

We consider this an important result since it points to
unexpected behaviour in SPACK. It can be benign in many
circumstances but is not guaranteed to remain so. The nature
of this issue means that it is easy to miss, given SPACK issues
no warnings about the behaviour and issues would only be
encountered by end users trying to load the module or use the
package.

V. CONCLUSION

We have presented a suite of tests designed to check a
multitude of aspects of an HPC system, both user-facing
and lower level, from modules and job schedulers to MPI
implementations. Our tests go beyond standard tests like HPL
and OMB aimed at benchmarking the system. They not only test
more varied MPI communication patterns and more aspects
of user-facing elements, including replicating common user
workflows, but also provide a wealth of diagnostic information.
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Fig. 3. Low-level flowchart for our software stack installation process.
Red rectangles mark our tests and blue rounded rectangles mark other
standard, already-existing, parts of our pipeline. A test to check for successful
concretization in SPACK is run in the concretization phase, while three tests
are run for each package during the installation phase.

The diagnostic information is perhaps of greatest importance
since issues will undoubtedly be encountered. It has already
proven useful in determining root causes, and eventually fixing,
problems we have faced.

We believe tests of this scope should be a part of every HPC
cluster’s testing suite. The replication of common user work-
flows, increased testing on user-facing elements, and MPI tests
which stress the system, have allowed us to discover several
issues. Through this we have been able to update and refine
advice to researchers using Pawsey, official documentation,
and even adjust the setup of our system so as to minimize
the likelihood of encountering these problems. Additionally,
through notifying vendors and providing diagnostic reports and
logs, previously unknown problems have been detected and
triaged quicker than they otherwise would have been if they
had instead been encountered in standard operation by a user.

Consequently, we have incorporated these tests as regression
tests into our already existing suite of REFRAME benchmarking
tests. They complement existing REFRAME tests and will be
a standard part of our testing framework moving forward.
Additionally, in the near future we plan to augment this suite
of tests by setting up an automated framework for running tests
at regular intervals. This would also log test results into an
internal database and visualise results (e.g. failure rates, system
performance, software benchmarks) on a web interface for long-
term system monitoring. This will give a more comprehensive
picture of our system as a whole. We have also written separate

generalised versions of these tests, designed to be able to be
run on any HPC system with a minimal amount of work and
adaptation required. These tests are available in a public github
repo at [8].
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