
An Approach to Continuous Testing
Francine Lapid

High Performance Computing Division
Los Alamos National Laboratory

Los Alamos, USA
lapid@lanl.gov

Shivam Mehta
High Performance Computing Division

Los Alamos National Laboratory
Los Alamos, USA
smehta@lanl.gov

Abstract—The National Nuclear Security Administration De-
partment of Energy supercomputers at Los Alamos National
Laboratory (LANL) are integral to supporting the lab’s mission
and therefore need to be reliable and performant. To identify
potential problems ahead of time while minimizing the interrup-
tion to the users’ work, the High Performance Computing (HPC)
Division at LANL implemented a Continuous Testing framework
and the necessary infrastructure to be able to automatically and
frequently run a series of tests and proxy applications. The tests,
which benchmark various system components, were integrated
into the Pavilion2 testing framework and are launched in small
Slurm jobs across each machine every weekend. The results of
the tests are summarized in a comprehensive Splunk dashboard,
enabling continuous monitoring of the health of the machines
over time without having to parse through each run’s output
and logs. This project is currently running on all of LANL’s
newest fleet of Cray Shasta machines: Chicoma, Crossroads,
Razorback, Rocinante, and Tycho. This paper details the different
components of the Continuous Testing framework, the resulting
setup, and the impact it has on our HPC workflow.

Index Terms—high performance computing, continuous test-
ing, Splunk, Pavilion2

I. INTRODUCTION

The National Nuclear Security Administration Department
of Energy high performance supercomputers at Los Alamos
National Laboratory (LANL) run mission critical codes re-
lated to national security. To ensure the supercomputers are
reliable and performant, the High Performance Computing
Division (HPC) needs to periodically test the machines to
identify potential problems. The Programming and Runtime
Environments Team (PRETeam), the team responsible for
system testing, runs full-scale tests to identify problems prior
to returning the system to the users after taking the system
down for Dedicated System Time (DST)1. While it is widely
agreed upon that thorough testing is an important step of the
maintenance process, it does take time away from users to be
able to do their work.

DST Testing often took 2-3 hours on top of several hours-
to-days maintenance work. When LANL supported multiple
different clusters with the same operating systems and file sys-
tem mounts, users were able to do their mission-critical work
on a different machine if their preferred machine was down
for maintenance. However, over the past year, LANL’s fleet
of supercomputers has been drastically reduced in favor of a

1Time allocated for system maintenance, upgrades, and testing.

small number of fast and efficient supercomputers. These new
supercomputers perform 4 to 8 times better than previously
commissioned systems at LANL. [1] At the same time, due
to the small number of supercomputers, the DSTs had to be
reduced both in frequency and duration to ensure maximum
supercomputer availability. While the system administrators
are able to implement and apply updates using the rolling
reboot strategy2, system testers needed to find a new way to
validate the systems.

To overcome the system validation issues, the PRETeam im-
plemented the Continuous Testing framework. The framework
applies the Pavilion2 test harness and combines it with cron
jobs to automatically run a series of tests on a weekly basis
on LANL’s newest fleet of Cray Shasta machines: Chicoma,
Crossroads, Razorback, Rocinante, and Tycho. This project
also included creating Splunk dashboards to facilitate the
evaluation of the data from the tests.

This paper discusses the test selection criteria, development
of tests and series using the Pavilion2 test harness, refining
the current infrastructure to allow the benchmarks to run, and
forwarding the test results to a Splunk Indexer for results
evaluation.

II. TEST SELECTION

The purpose of the Continuous Testing project is to run a
predetermined set of tests periodically that properly monitors
the health of the systems over time while minimizing the
disruption to users’ work. The tests should somewhat adhere
to the following standards:

• Each test should attempt to simulate a users’ workload,
hence, the preference for benchmarks and proxy applica-
tions.

• Each test should evaluate a particular system component.
• Each test should be completed within 10 minutes so as

to not take too many compute cycles from the users.
Initially, the list was composed of benchmarks from the

Crossroads Acceptance Testing3 effort as those tests were
already configured to work on Shastas and integrated into

2A strategy used by administrators to apply updates and perform a node
reboot after completion of an active job. From the user’s perspective, the
nodes take slightly longer to return to the queue causing almost no disruption
to their work. [2]

3https://mission.lanl.gov/advanced-simulation-and-
computing/platforms/crossroads/benchmarks/

LA-UR-24-23893

TABLE I
CURRENT LIST OF TESTSa IN THE CONTINUOUS TESTING FRAMEWORK

Test Name System Component Description
Flexible I/O Tester Filesystems Simulates different I/O workloads.
Gromacs - Water Benchmark CPU & GPU Water molecule simulation timings.
HPCG CPU & Network Represents workload of modern applications.
Jacobi GPU Distributed Jacobi solver.
Mem-Info Memory Records memory information.
Module-Timing Environment Modules Module commands timings.
Perl-Perf CPU Runs and times math calculations in Perl.
Stream Memory Memory bandwidth test.
VPIC Memory Particle-In-Cell plasma simulation.

aSome integrated user codes are also part of the framework, however, they are not listed here due to internal policies.

Pavilion2. However, of those tests, only HPCG, VPIC, and
STREAM4 comply with the requirements above. Although
these tests do check the performance of the CPU, memory, and
network, they do not test the GPUs and the filesystems, hence
the addition of Gromacs, Jacobi, and the Flexible I/O Tester
tests. The list was further expanded by evaluating common
issues faced by the users and adding workload specific tests.

III. THE FRAMEWORK

For the Continuous Testing framework, there were a few
required components that allowed for automatic job schedul-
ing, execution, and evaluation. Pavilion2, the cron daemon,
and Splunk were chosen as these components were already
used in PRETeam’s workflow in some capacity.

A. Pavilion2

Pavilion2 is an open-source Python 3-based testing frame-
work largely developed at LANL for running and analyzing
tests for HPC systems. [3] It is regularly used at LANL
to verify the production-readiness of a system after it has
undergone maintenance. Configurations for selected tests, a
series file, and a mode file were created for Pavilion2.5

1) Test Configurations: The test configuration step involves
writing yaml definitions to generate build, scheduler, run, and
parser scripts. The following code blocks will briefly explain
the yaml definitions used to generate each component for the
HPCG test.

a) Variables: The variables section is used to replace test
configuration values using double curly brackets. For HPCG,
it is used to define the input deck, openmp argument, compiler
command, and the mpich directory. The input deck is used to
pass arguments to the executable while the rest of the variables
are used to generate the makefile.

variables:
input_deck:
npx: 6

4Originally, the IOR micro-benchmark was chosen for filesystems tests,
however, it was quite aggressive and caused filesystems unavailability for the
user’s jobs during its run. It was later removed and replaced by the Flexible
I/O Tester.

5The following sub-sections provides a brief introduction to writing Pavil-
ion2 test configurations, mode files, and series files. For detailed information,
please refer to: https://pavilion2.readthedocs.io/en/latest/index.html

npy: 6

npz: 3

nx: 88

ny: 88

nz: 88

openmp: '-qopenmp'

cxx: 'CC'

mpi_dir: '$(CRAY_MPICH_DIR)'

b) Build: The build section is used to generate the build
script. The source* keys informs Pavilion2 of the location of
the source code (github url), when to download (only when the
source code is missing), and the download location (hpcg/src
directory). The modules key contains a list of modules
that Pavilion needs to load to set up the build environment.
The templates key is used to generate a system specific
makefile. The template make file replaces some of the values
with the ones defined in the variables sections and saves the
file as Make.<system_name> which is used by the make
command in the cmds section to build the executable.

build:
source_url: https://github.com/hpcg-benchmark\

/hpcg/archive/refs/heads/master.zip

source_download: 'missing'

source_path: 'hpcg/src'

templates:
hpcg/Make.tmpl: ./setup/Make.{{sys_name}}

modules:
- 'intel'

- 'cray-mpich'

cmds:
- 'make arch={{sys_name}}'

c) Scheduler: The scheduler section is used to define
the scheduler and pass scheduler options. In HPCG’s case, it
specifies to use the Slurm scheduler while passing the number
of nodes, tasks per node, the partition, and the quality of
service as the arguments.

scheduler: slurm

schedule:
nodes: 1

tasks_per_node: 108

partition: 'standard'

qos: 'standard'

LA-UR-24-23893

d) Run: The run section contains the information to set
up the run environment and then run the binary. The env key
specifies the environment variables to export, the modules to
load and the commands to run. The cmds key after variable
replacements would be: srun -N 1 -p standard -q
standard --tasks_per_node=108 ./bin/xhpcg
--npx=6 --npy=6 --npz=3 --nx=88 --ny=88
--nz=88.

run:
env:
OMP_NUM_THREADS: 2

modules:
- 'intel'

- 'cray-mpich'

cmds:
- "{{sched.test_cmd}} ./bin/xhpcg \

--npx={{input_deck.npx}} \

--npy={{input_deck.npy}} \

--npz={{input_deck.npz}} \

--nx={{input_deck.nx}} \

--ny={{input_deck.ny}} \

--nz={{input_deck.nz}}"

e) Results: The result parse section is mainly used to
capture and parse the results. For HPCG, 3 important metrics
are captured: the GFLOP/s, the bandwidth, and the time. By
default, Pavilion2 captures the run log and will only parse
information from there. However, using the files key inside
a regex key will make Pavilion2 look into that file to parse
results. While the GFLOP/s, the bandwidth and the time
capture numerical data, the result key is used to evaluate the
run and provide a pass/fail verdict.

result_parse:
regex:

gflops:
files: 'HPCG-Benchmark*'

regex: 'GFLOP/s\srating\sof=(\d+.\d+)'

bandwidth:
files: 'HPCG-Benchmark*'

regex: 'Raw\sTotal\sB/W=(\d+.\d+)'

time:
files: 'HPCG-Benchmark*'

regex: 'Time\sSummary::Total=(\d+.\d+)'

result:
action: store_true

files: 'HPCG-Benchmark*'

regex: 'HPCG\sresult\sis\sVALID'

2) Mode file: The second sub-step within the Pavilion2
setup is the mode file. A mode file provides a way to override
something that is defined in a test configuration. The test
configuration written in the previous sub-step works fine,
however, it only runs on 1 node once. It’s great for verifying
the test functionality, however, the test needs to run on all
available nodes with the quality of service set to high.

Iterate over all the chunk ids

permute_on: sched.chunk_ids

List of chunk ids

chunk: '{{sched.chunk_ids}}'

schedule:
Nodes from the 'up' (available + idle) state

node_state: 'up'

Use all of the 'up' nodes

nodes: 'all'

Chunking size: 1 node per chunk

chunking:
size: 1

Quality of Service set to high

qos: high

The mode file uses pavilion-provided system variables to
permute over all available nodes and run 1 test per node. The
choice of 1 node runs allows the execution of tests without
causing a backlog of slurm jobs due to requested nodes being
unavailable. Although the permutations and chunking can be
written inside a test configuration, since it has to be applied
to all the tests, it is easier to write a mode file which can be
applied to all the tests.

3) Series file: To simplify the Pavilion run command, a
series file is written that groups the tests and automatically
applies the mode file to all the tests listed.

test_sets:
basic:
tests:
- "gromacs-water.base"

- "hpcg.base"

- "mem-info.base"

- "module-timing"

- "perl-perf"

- "stream.base"

- "vpic.gnu"

- "vpic.intel"

- "vpic.shasta"

- "vpic.shasta-small"

modes: ['continuous']

simultaneous: 100 # Run 100 tests at a given time.

repeat: 1 # Run this series only once.

The series file makes the continuous testing framework modu-
lar. The tests can easily be added and removed from the series
file without any modification to other files.

B. Cron Daemon

The Cron Daemon runs commands at specific times. [4]
Although Pavilion2 series can be run with just one command,
the Continuous Framework needs to do more, such as cancel-
lation of old series, rescheduling new series, and logging of the
weekly execution. Instead of writing multiple crontab entries
that performed the tasks, a script was written to complete the
tasks. The script would source the activation script, cancel the
previously run series and reschedule a new one while logging
the standard out to a log file.

LA-UR-24-23893

Fig. 1. Continuous Testing Splunk dashboard summarizing Rocinante supercomputer’s test results from the last 30 days.

A crontab entry is then added to run this script every
Saturday at midnight. The reasoning behind scheduling jobs
at midnight on Saturday is due to one of the requirements
for the Continuous Testing framework: The testing should
not hinder scientists’ work. During weekdays scientists are
actively allocating nodes to run and test their simulation.
However, prior to leaving for the weekends, scientists would
schedule long running jobs and won’t check in until Monday.
This would be the perfect time to run the Continuous Testing
framework since it would schedule and run tests as soon as a
node becomes available following a scientist’s job completion.

C. Splunk
Following test completion, Pavilion2’s parsed results are

automatically stored in a json log file. The result log file
can be continuously monitored by a Splunk forwarder that
sends results immediately to an indexer for transformation
of data into searchable events. [5] Using Splunk’s Search
Processing Language (SPL), the PRETeam can query the data
for a particular test event and evaluate the results. [6]

By creating a threshold for the performance metrics, a
“passing” criteria can be generated and saved as a report.
The reports are then used to create a Splunk dashboard
which allows for system evaluation in a concise manner. [7]

Each panel on the dashboard represents the performance of a
different test as shown in Fig. 1.

IV. RESULTS & CONCLUSIONS

The Continuous Testing framework has been implemented
in all of LANL’s Shasta machines: Chicoma, Razorback,
Rocinante, Tycho, and Crossroads. The series automatically
runs on the weekend and processes the results for evaluation.
The Splunk dashboard provides a simple way to view the
summarized results without having to manually parse through
each test’s output. The additions to the infrastructure that allow
the tests to run automatically simplify the steps to find issues
when they arise without much interference from the PRETeam.

While the Continuous Testing project has only just been
implemented the past few months as of April 2024, the
modularity of the framework allows the PRETeam to easily
add additional tests and features as the users’ needs change.
Since the implementation of this project, the PRETeam has
received and completed requests from code teams and system
administrators to integrate several benchmarks that they have
identified to be necessary.

In addition, because of the Continuous Testing project,
the PRETeam has been able to reduce the list of tests run
during DSTs to a few simple sanity checks. As a result,

LA-UR-24-23893

this has shortened the amount of time the systems need to
be unavailable to the users. On average, the DST testing
now takes 30-45 minutes depending on the number of nodes
on a particular system compared to 2-3 hours prior to the
implementation. The results collected from the memory tests
has also been helpful in determining the threshold for the
Node Health Check to reboot low memory nodes after job
completion. This prevents interruptions to scientists’ work due
to out-of-memory issues.

V. FUTURE WORK

The Continuous Testing framework is an on-going project.
In the future, the PRETeam would like to add more tests,
curating the list to maintain robustness. For example, some
network tests are initially omitted as they would need to run
on multiple nodes. As the list of tests grows, ensuring that the
entire list of tests completes on every node before the next
iteration starts the following week becomes a challenge and a
bottleneck. Initially, all of the continuous tests would complete
within a few days. However, with the increase in the number of
tests, large machines like Crossroads and Tycho are sometimes
unable to complete the entire set of tests within a week. There
are several open issues in the Pavilion2 repository that will
help mitigate a few issues, including this one.

Due to the novelty of these Shasta systems, the PRETeam
will eventually need to determine a good baseline to set as a
pass/fail threshold for the performance tests since the current
thresholds generate a lot of false positives. Data is currently
being collected to determine proper thresholds for these tests.

VI. ACKNOWLEDGEMENTS

Special thanks to the Advanced Simulation and Computing
program, the PRETeam, Ben Santos, Anna Pietarila Graham,
Jennifer Green, Jim Williams and Conor Robinson, without
their support and expertise, this project would not have been
possible.

REFERENCES

[1] Brian Keenan. Welcome to Crossroads, Aug 2023.
[2] AI Integration User. Rolling Restart and What It Implies, Oct 2023.
[3] Paul Ferrell. Pavilion2, Oct 2022.
[4] Marcela Maslano Paul Vixie. cron(8) - linux man page.
[5] Splunk Enterprise - Getting Data In, Sep 2022.
[6] Splunk Enterprise - Search Manual, May 2021.
[7] Splunk Cloud Platform - Search Tutorial, Mar 2024.

LA-UR-24-23893

