
Containers-first user environments on HPE Cray EX
Felipe A. Cruz

Swiss National Supercomputing Centre
Lugano, Switzerland
felipe.cruz@cscs.ch

Alberto Madonna
Swiss National Supercomputing Centre

Lugano, Switzerland
alberto.madonna@cscs.ch

Abstract—In High-Performance Computing (HPC), managing
the user environment is a critical and complex task. It involves
composing a mix of software that includes compilers, libraries,
tools, environment settings, and their respective versions, all
of which depend on each other in intricate ways. Traditional
approaches to managing user environments often struggle with
finding a balance between stability and flexibility, especially in
large systems serving diverse user needs.

This work introduces a containers-first approach for HPC,
enhancing stability and flexibility in user environments by seam-
lessly integrating container technologies on an HPE Cray EX
system. This approach evolves the user environment management
and delivery, enabling customized, fast, and transparent deploy-
ment through containers. It aims to isolate the user environment
from system software, maintaining consistent workflows even
during maintenance and upgrades. Furthermore, it increases
environment flexibility, adaptability to specific user needs, and
accelerates deployment of updates and fixes, while minimizing
system dependency.

The containers-first approach is a step forward towards
improved testing capabilities, with increased portability and
reproducibility of scientific workflows. This paper outlines the
principles and implementation of seamless integration of con-
tainer technologies into HPC infrastructure, which can directly
benefit operational efficiency, user productivity, and the overall
management of HPC systems.

Index Terms—User environments, Linux containers, user ser-
vices, system operations, workload manager

I. INTRODUCTION

In the current context of High-Performance Computing
(HPC), Linux containers are improving how we deploy and
run HPC workloads. The usage of containers is a response
to the challenges of traditional HPC system management,
which suffers from the complex integration of interdependent
software components, management of software conflicts, and
the fine-tuning of systems for peak performance, all of which
are formidable challenges. Moreover, the often sequential and
compartmentalized nature of traditional system engineering
work has made matters more challenging, often resulting
in slow and error-prone processes. As we strive towards
more flexible and efficient delivery of HPC solutions, Linux
containers appear as an innovative and practical alternative.
Container technology presents itself as a controlled and man-
aged abstraction for HPC workflows, enhancing productivity,
collaboration, and ease of management. Notably, containers
have been adopted as the medium of choice to deploy many AI
workflows, and the increasing support by workflow managers
(AiiDA [1], Nextflow [2]) will only accelerate this process.

An extensive usage of containers can bring major benefits to
HPC users and providers; and could address relevant problems
encountered by HPC users and providers alike:

• Decouple user environment from system components:
more freedom and flexibility in planning and executing
system maintenances, improved robustness and consis-
tency of the user environment as they do not change
across maintenance, more informative and meaningful
analysis of regressions as user-side components do not
change and are reproducible.

• Isolation: These environments allow for isolation, where
specific software versions and dependencies can be in-
stalled without depending on shared global system in-
stallations. This feature provides scalable management
of dependencies that are tailored to the specific needs
of projects and users, ensuring each has access to the
specific versions of libraries and tools it requires, and
preventing conflicts between different projects.

• Reproducibility and consistency: By utilizing container-
ization, projects become more reproducible and con-
sistent. Enabling other scientists to replicate the exact
environment, complete with identical software and li-
brary versions. This effectively resolves the “works in
my machine” issue while maintaining consistency across
development, testing, and production environments.

• Efficient deployability: Scientists can readily utilize tools
from the container ecosystem that simplify the software
management of a project. Capabilities like Dockerfiles
in conjunction with package managers can leverage base
images and layer caching alongside automation (CI/CD
and DevOps), greatly facilitating consistent and efficient
deployments.

• Extended compatibility: Containerization freezes the spe-
cific set of all installed software, while system depen-
dencies can be addressed via system-specific hooks. This
approach simplifies complexity and allows scientists to
seamlessly deploy the same environment across systems
quickly.

• Flexibility for experimentation: Scientists can use con-
tainerized user environments to rapidly experiment and
test different software versions without affecting their pri-
mary environment. This flexibility is crucial for quickly
evaluating new libraries and ensuring compatibility, with-
out risks.

Nevertheless, while Linux containers offer a streamlined
method for distributing software and creating isolated execu-
tion environments, their use within HPC, particularly for scien-
tific users developing high-performance applications, presents
challenges. The simplicity of importing container images
strongly contrasts with the complexity of configuring these
images into fully functional HPC environments. Often, HPC
users struggle with multiple complex command-line opera-
tions to customize many properties, including bind mounts,
environment variables, container working directory, container
entrypoint, and the correct activation of hooks and plugins.

This complexity primarily arises from the lack of integration
between the container tools and the broader HPC infrastruc-
ture. Often viewed as accessory utilities for isolated use,
traditional HPC container tools pose a significant challenge
to achieving cohesive and efficient workflows within the HPC
ecosystem. This challenge has a significant impact on the
iterative process of developing and debugging complex sci-
entific software stacks. Debugging workflows with containers
forces developers into a time-consuming and manual effort of
iteratively rebuilding, uploading, and re-importing images, a
process that not only slows down progress but also introduces
additional layers of complexity through the need for careful
coordination between various tools and systems.

The overall effect of these challenges is substantial, as
they introduce friction toward the adoption and effective use
of containers for HPC, causing many HPC users to miss
out on the benefits that containers bring. Overcoming these
obstacles is the next step towards leveraging the full potential
of container technology, ensuring container-based workflows
that are feature-rich, efficient, and user-friendly for the HPC
user community.

We propose an approach to user environments in HPC
designed around making containers first-class elements of the
system, focusing on integrating container technologies directly
into HPC infrastructures. This approach, dubbed containers-
first for short, is intended to make software management and
execution more efficient while preserving the familiar user
experience offered by traditional HPC systems. It directly
tackles the complexities of integrating containers into HPC
environments, ensuring a seamless and transparent usage of
HPC systems. This strategy also enhances productivity for
users and administrators by streamlining operations.

The rest of this document is structured as follows. Section II
states the principles that characterize the approach of contain-
ers as first-class HPC objects and outlines a solution founded
on such principles. Section III describes a pathfinder imple-
mentation for the proposed solution. Section IV discusses how
the pathfinder is deployed and configured to suit an HPE Cray
EX system. Section V presents a number of real-world use
cases and highlights the advantages delivered by a containers-
first approach for each of them. Finally, Section VI concludes
the discussion by summarizing the main contributions of this
work.

II. PRINCIPLES OF CONTAINERS AS FIRST-CLASS HPC
ELEMENTS

The containers-first approach introduces several principles
to improve user experience and operational efficiency in HPC
systems:

(P1) Ease of Use. The system is intentionally designed to be
user-friendly and intuitive. We prioritize interfaces that
simplify the workflow for users and developers, making
the process straightforward and efficient.

(P2) Removal of Complexity. Although deploying containers
into functional HPC environments can be complex, our
approach ensures that this complexity is hidden from
users. The system manages all the details internally,
presenting users with a simplified and clean interface.
This allows scientists to focus on their work without the
need to concern themselves with the technical aspects of
container management.

(P3) Predictable Operations. Users can expect reliable and
consistent results each time they use the system. A
containers-first approach aims to provide a stable user
environment, maintaining consistency through infras-
tructure updates and maintenance without unexpected
changes.

(P4) Seamless Integration. The system orchestrates the op-
erations of the various container toolset components,
thereby simplifying the user’s workflows. As such, users
do not need to manually manage the interactions between
different container tools to ensure smooth operations.

(P5) Minimal Learning Curve. Designed with familiarity in
mind, the containers-first system is easily accessible to
users familiar with traditional HPC systems. It offers
straightforward core functionalities and enables users
to become proficient with minimal additional training
quickly.

Through these principles, the containers-first approach aims
to modernize HPC systems, making them more accessible,
efficient, flexible, and easier to operate without sacrificing the
performance and familiarity that HPC users expect.

In this work, we have put into practice the containers-first
principles, implementing a container engine that seamlessly
integrates with the HPC infrastructure. The starting step was
to evolve the integration between the Workload Manager
(WLM) and HPC container tools. We achieved this via a
tightly integrated WLM scheduler plugin (as pioneered by
Shifter [3] and Pyxis [4]), introducing simplicity and efficiency
in workflow management and making the process intuitive for
users and developers (P1).

Central to our approach is the introduction of the Envi-
ronment Definition File (EDF), a comprehensive blueprint
detailing all the properties required to instantiate a functional
container-based HPC environment. It encapsulates the con-
tainer customizations in a single, manageable unit, simplifying
the tasks of handling, distributing, and building upon them.
This design choice removes the underlying complexity of
containers (P2), allowing scientists to concentrate on their

User

Containers-first
Slurm plugin

Container Hooks
Indentity sync

Environment Definition
File

User/Group
Subordinate

IDs

Centralized Identity
Management

CONTAINER
process

HPC
image store

3rd Party/Vendor
Container Registry

Vendor
Hardware

Specs

Engine
configuration

HPC Provider On-site
Registry for Build Caches

Container
Engine

Container
Runtime

Image Build
Tool

Image
Conversion

Tool

Fig. 1: Design diagram of a containers-first implementation on an HPC system with Slurm.

research without concerns about the technicalities of container
management.

The integration of the EDF with the WLM further leverages
container technologies to interface with its host capabilities,
ensuring Predictable Operations (P3). As such, users can con-
veniently submit the EDF as a single option within the WLM
command or batch script, guaranteeing a stable and consistent
user environment. This stability is maintained throughout in-
frastructure updates and maintenance by employing container
hooks that interface with host capabilities. In effect, hooks
implement on-demand access to system features and hardware,
enabling HPC performance without requiring a strict coupling
between container images and host resources. Thus, changes
in driver libraries or low-level middleware maintained by
the HPC provider are prevented from affecting user software
stacks, ensuring reliability in results.

Furthermore, through the WLM integration, we achieve
Seamless Integration (P4). The WLM plugin orchestrates the
multiple container toolset components during the instantiation
of the user environment, eliminating the need to manage
these components manually, simplifying user workflows, and
ensuring smooth operations. As such, even complex use cases
can be abstracted to the point where end users do not directly
interact with any container tool, effectively running their
workflows as if they were operating natively on a traditional
HPC system.

Lastly, the system has been tailored to ensure a Minimal

Learning Curve (P5). Users familiar with WLM on traditional
HPC systems will find the container-first enhancements easily
accessible. The EDF’s straightforward nature and the system’s
seamless integration of core functionalities allow users to
become proficient quickly, with minimal additional training
required.

By implementing the principles of containers as first-class
elements, we present a solution where container instantiation
becomes entirely transparent for the end user. This advance-
ment allows all HPC workflows to be executed within contain-
ers, bringing to full fruition the benefits of user environment
customization, flexibility, and decoupling. Containers are thus
transformed into fundamental, first-class components of the
HPC ecosystem, evolving how HPC platforms are prepared,
deployed, operated, and maintained.

III. PATHFINDER IMPLEMENTATION

A pathfinder version of the described solution was devel-
oped by combining established file formats, modified open
source tools, and modular components built for industry stan-
dard containers in HPC.

A. The Environment Definition File format

The Environment Definition File (EDF) is an artifact in-
tended to represent in a declarative and prescriptive fashion
the particular details which transform a container image into
a usable HPC environment on a given computing system. It

must support the most popular and useful container features,
so that it can substitute the extensive use of container-related
command line options, which is frequent in real-world HPC
use cases and results in long, elaborate, and unwieldy com-
mand lines. It must be accessible and human-friendly, so that
users can quickly understand and modify it to their needs. It
must be composable and extensible, so that new environments
can be built upon established ones for a given system or project
without repeating or duplicating settings.

To implement the concept of the EDF, the TOML [5] file
format was chosen. TOML was selected for its ease of both
reading and writing, for its support of comments, for the
simplicity of integrating a parser in the source code, and for
its previous adoption by other container tools (for example
Podman [6] and Singularity [7]) as a format for configuration
files.

With reference to Listing 1, the current implementation of
the EDF supports the following features:

• defining one or more base environments to conveniently
create variants of existing EDFs (line 1), for example
adding debug settings and tools - settings from base
environments are imported incrementally according to the
order given in the value;

• selecting the container image to use for the environ-
ment (line 5) - images can be specified either as registry
references or as absolute paths to a Squashfs file;

• providing a recipe file to build the image (line 6) - this
feature is used in the case the image parameter (line 5)
is a filesystem path to a non-existing file;

• setting the initial working directory for the con-
tainer (line 7);

• choosing whether to execute the container image entry-
point (line 8);

• setting the container’s filesystem as writable or read-
only (line 9);

• defining a list of bind mounts to be performed within the
container (line 10);

• setting, modifying, or unsetting environment variables in
the container (line 16);

• defining OCI-like annotations1 for the container, which
can be used for various purposes, including activation and
control of hook programs (line 21). The EDF supports
annotations through a TOML table, so it’s possible to
improve readability and scoping of related annotations
by declaring TOML sub-tables.

To improve the convenience of writing, managing, and shar-
ing Environment Definition Files, two more general features
are supported. First, parameter values can contain relative
filesystem paths, so that EDFs can be stored alongside ap-
plication code, both on a computing cluster and on Source
Code Management (SCM) systems. Second, host environment
variables can be referenced and expanded within EDFs using

1In the context of the OCI specifications [8], annotations are key-value pairs
which represent arbitrary metadata for different entities, including containers;
it is recommended that annotation keys adopt a reverse domain name notation.

1 base_environment = [
2 "parent_env0",
3 "research_group_env"
4]
5 image = "nvcr.io/nvidia/nvhpc:23.11-devel-

cuda_multi-ubuntu22.04"
6 containerfile = "./Containerfile.devtools"
7 workdir = "/workdir"
8 entrypoint = false
9 writable = true

10 mounts = [
11 "/user/experiment:/workdir",
12 "/configs:/workdir/configs",
13 "${SCRATCH}/data:/workdir/data"
14]
15
16 [env]
17 MELLANOX_VISIBLE_DEVICES = "none"
18 CONFDIR = "/workdir/configs"
19 UNSET_BEFORE_RUNNING = ""
20
21 [annotations]
22 com.hooks.cxi.enable = true
23 com.hooks.ofi_nccl.version = "cuda12"

Listing 1: EDF example. This is meant only to represent the currently
supported parameters and syntax, and does not necessarily reflect an actual
EDF use case.

the dollar sign and curly braces syntax, making files quicker
to adapt when changing systems or users.

B. Workload Manager plugin and container runtime

Workload manager integration and container management
are implemented by extending the open source software Pyxis
and Enroot [9], which are respectively a SPANK2 plugin
for the Slurm workload manager [10] and an HPC-focused
container runtime. This combination is chosen because Pyxis
already provides many of the desired features (and therefore
the possibility to expedite development), however it is only
intended to work in conjunction with the Enroot runtime.

Pyxis is extended by adding the following features:
• the --environment option for the srun command,

through which the user can specify an EDF, and therefore
a containerized environment in which to execute a job;

• support for the EDF_PATH environment variable, to
define a custom search path for EDFs and facilitate
referencing frequently used environments;

• a plugin configuration option to define a search path
for system-wide EDFs, thus enabling the possibility to
provide default environments for the system;

• a TOML parser to decode the EDF file specified by
the --environment option and map its entries to
container features;

• support for starting containers directly from images in
the Squashfs [11] file format - the motivations behind
this feature are discussed in Section IV.

2SPANK stands for Slurm Plug-in Architecture for Node and job [K]control

In turn, Enroot is modified in the following aspects:
• when pulling images from remote Docker registries,

layers are saved directly if they are compressed using the
Zstandard [12] (zstd) format: normally Enroot extracts
downloaded layers and re-compresses them using zstd
before finally saving them to its layer cache - this is done
to leverage zstd’s decompression speed when extracting
cached layers ahead of flattening and squashing them,
and it’s advantageous if layers are originally compressed
in a format that is slower to decompress (e.g. gzip [13]);
however, the extraction and re-compression are redundant
if the registry already sends a zstd-compressed layer, and
can be skipped;

• when importing images from local Podman repositories,
the Squashfs image is generated directly from a Podman
container instead of exporting the container’s contents as
a tar archive and extracting them again - a more detailed
description of this leaner, faster procedure is provided in
Section V-D;

• specific configuration options for squashfuse [14] and
fuse-overlayfs [15] programs were added to have more
fine-grained control of the binaries used; this allows
to tailor the installation better to the characteristics or
limits of the host operating system. One such example is
provided in Section IV.

C. Running containerized environments

In accordance with the principles stated in Section II,
our implementation is intended to be familiar, intuitive, and
seamless to use compared to a traditional HPC system.

A single option to Slurm commands (--environment) is
required to request a job to be run in a containerized environ-
ment. The option takes one mandatory argument, which is the
absolute path to the EDF describing the desired environment,
for example:

$ srun --environment=$SCRATCH/edf/debian.toml
cat /etc/os-release

The EDF is looked up and parsed by the modified Pyxis
WLM plugin, which also implements a search path feature.
By default the search path for user EDFs is initialized to
$HOME/.edf, but can be controlled through the EDF_PATH
environment variable, which must be a colon-separated list
of absolute paths to directories, similarly to the PATH and
LD_LIBRARY_PATH variables. The complete search path is
obtained by appending the system-wide search path to the
user-specific one, if the former is defined in the WLM plugin
configuration. If a file is located in the EDF search path,
the argument to the command line option can be just the
environment name, that is the name of the file without the
.toml extension, for example:

$ ls -l $SCRATCH/example-project/
fedora-env.toml
$ export EDF_PATH=$SCRATCH/example-project/
$ srun --environment=fedora-env cat /etc/os-

release

1 $ cat example.sbatch
2 #!/bin/bash -l
3 #SBATCH --job-name=edf-example
4 #SBATCH --environment=debian
5 #SBATCH --time=0:01:00
6 #SBATCH --nodes=1
7 #SBATCH --output=slurm-%x.out
8
9 # Run job step

10 srun cat /etc/os-release

Listing 2: Example of a Slurm batch script using --environment as an
sbatch option to select an EDF.

The --environment command line option can also be
used within batch scripts as an #SBATCH option, as shown
in Listing 2. It is important to note that in such a case all
the contents of the script are executed within the container-
ized environment, therefore Slurm commands like srun or
scontrol must be available in the container. This can be
achieved through a container hook like the one described in
Section III-D1.

A current limitation in the support for batch scripts is that
when an EDF is selected via an sbatch option, all subsequent
commands and job steps will be executed within that specific
environment, without the possibility to choose a different
one. If a batch use case requires switching between multiple
container environments or if it’s not possible to setup Slurm
commands within containers, the --environment option
can still be used explicitly in srun command lines when
starting job steps.

D. Container Hooks

A number of container hooks work in synergy with the
WLM plugin to expose the full spectrum of system features
into containers and deliver a consistent and transparent user
experience. Hooks are accessory, standalone programs which
are called by container runtimes at various points during
the lifetime of a container to execute arbitrary actions, often
related to container customization, like performing additional
bind mounts. In this regard, compatibility with the hook
interface defined by the Open Containers Initiative (OCI) [8]
Runtime Specification [16] is highly desirable, since comply-
ing with an open industry standard allows hook programs to
be reusable across different tools in a straightforward way.

Enroot supports custom ’pre-start’ hooks in the form of
Bash scripts, which are executed right before the container-
ized user application starts and must employ specific syntax
elements. However, Enroot does not natively support OCI
hooks due to its non-compliance with OCI specifications.
To overcome this limitation, we developed a custom Enroot
hook that acts as an “adapter” for OCI hook executables.
This adapter simulates an OCI-compliant bundle and container
state, enabling OCI hooks to function as if they were being
executed by an OCI-compliant runtime. This solution allows
the integration of OCI hooks such as those developed in the
scope of the Sarus [17] project. As a result, the presented

container engine actually utilizes both regular Enroot hooks
and OCI hooks.

We now outline the specific hooks implemented in our
pathfinder implementation to enable the containers-first ap-
proach. These hooks use the adapter mechanism described
above to extend functionality, ensuring robust and versatile
container operations. This integration is crucial for enhancing
the flexibility, efficiency, and usability of our containerized
user environments, and aligning with the strategic objectives
of a containers-first approach.

1) Slurm hook: Mounts Slurm binaries, directories, config-
urations and dependencies into containers, so that it is possible
to use Slurm CLI commands within interactive jobs or in batch
scripts, whose content is executed within containers when
using the --environment option and the EDF.

2) Libfabric hook for Slingshot 11: Enables connectivity
through the HPE Slingshot 11 high-speed network within con-
tainers. This is achieved by mounting the custom libfabric [18]
installation provided by HPE in Cray EX systems (which
includes the user-space portion of Slingshot in the form of the
CXI libfabric provider), alongside the related dependencies.
The hook also creates a drop-in configuration file for the
ldconfig utility, refreshes the dynamic linker cache in the
container to include the newly-mounted shared libraries, and
can optionally set environment variables to customize settings
for libfabric or the CXI provider.

3) NVIDIA GPU hook: Provides access to NVIDIA CUDA
GPUs inside containers by using components from the
NVIDIA Container Toolkit [19]. This hook is bundled with the
Enroot source code and is reused without any modification.

4) OFI NCCL plugin hook: The NVIDIA Collective Com-
munication Library (NCCL) [20] is widely used to implement
optimized communication between NVIDIA GPUs, particu-
larly within Machine Learning frameworks and applications.
Despite its broad adoption, NCCL’s design and APIs cannot
interface directly with libfabric. This is a problem on Sling-
shot 11-based systems, where the network software stack is
exposed to user applications through libfabric. Nevertheless,
NCCL supports external network plugins which allow the
library to leverage arbitrary or custom network technolo-
gies. Amazon Web Services has developed one such plugin,
called “AWS OFI NCCL”3 and available as open source
software [21]. The plugin allows NCCL to utilize libfabric
as a backend to access network hardware, thereby extending
support to interconnects exclusively accessible through libfab-
ric.

The “OFI NCCL plugin hook” bind mounts the plugin
binary into the container in a standard linker path and sets an
environment variable to instruct NCCL to load that specific
plugin, since a default NCCL may be already installed in
container images.

The container hook supports selection of different plugin
variants through an annotation provided in the EDF, so that

3OFI stands for Open Fabrics Interfaces, which in this context is another
way to reference the libfabric framework.

users can match the version of CUDA in their containerized
environment with the corresponding build of the plugin.

5) SSH hook: The SSH hook bundled with the Sarus [17]
container engine is an OCI hook capable of enabling SSH
connections inside containers. It implements several function-
alities, such as generating dedicated SSH keys to not expose
actual user keys from the host system, mounting SSH binaries
into containers and starting up an SSH daemon at container-
creation time, and ensuring that incoming connections are
provided with an appropriate and consistent execution context
(for example in terms of environment variables and working
directory). The Sarus SSH hook is intended to augment con-
tainers which are not originally equipped with SSH utilities,
and therefore does not pose any requirement on the container:
the SSH software consists in a statically linked version of
Dropbear, a minimal SSH server and client implementation.

Among its features, the hook can authorize connections
using an arbitrary public key provided by the user, taking
advantage of Dropbear’s compatibility with OpenSSH public
key authentication. This is useful to support not just direct
connections from user workstations, but also remote debugging
use cases with tools like Microsoft’s Visual Studio Code [22].
An example is described in Section V-B.

Despite the Sarus SSH hook being an OCI-compliant hook,
we are nevertheless able to call it from Enroot thanks to a
suitable adapter hook, which also manages the cleanup of the
SSH daemon process once the container terminates.

6) MPI replacement hook: Through the use of an Enroot
adapter hook, our pathfinder container engine implementation
can also utilize the Sarus MPI hook, which performs on-
the-fly complete replacement of an MPI installation in the
container with an ABI-compatible host counterpart. This op-
eration transparently provides container applications with an
MPI stack tuned for the system where the container is running.
When ABI compatibility between container and host MPI
stacks is satisfied, the Sarus MPI hook enables near-native
communication performance for generic, portable containers
and advanced features like RDMA, which may not be available
in the original MPI from the container image.

7) Slurm PMIx hook: Provides support for the Slurm inte-
gration of the PMIx interface [23]. When Slurm uses PMIx
to coordinate multi-rank jobs, this hook automatically bind
mounts into the container the PMIx directories created by the
WLM and ensures that related container environment variables
are set. This hook is bundled with the Enroot source code and
is reused without any modification.

IV. DEPLOYMENT AND CONFIGURATION FOR AN HPE
CRAY EX SYSTEM

In this section we discuss the deployment of the pathfinder
container solution introduced in Section III on an HPE Cray
EX system at CSCS, and how the configuration is tailored to
the characteristics of said system. The cluster features the HPE
Slingshot 11 [24] high-speed network, which connects the
compute nodes between themselves and to an HPE ClusterStor
E1000D Lustre-based parallel filesystem.

The binaries for the modified versions of Pyxis and Enroot,
and the Sarus OCI hooks are installed via RPM packages,
while configuration files and the Enroot hook scripts (Sec-
tion III-D) are generated at installation time from templates
managed through an Infrastructure as Code (IaC) approach.

For container image pulls, Enroot is configured to cache
downloaded image layers in individual user folders on the
Lustre filesystem, and to create Squashfs images using the
Zstandard compression algorithm [12] with compression level
1, without compressing data blocks. Zstd offers an excellent
balance between compression speed and compression ratio,
allowing to noticeably reduce the time spent importing im-
ages while producing comparable image sizes to the default
compressor based on zlib [25].

The Pyxis plugin is configured to start containers directly
from Squashfs images, instead of its typical mode of operation
which uses plain directories to serve as the root filesystem
(rootfs) for the container. This setting is made possible by one
of the new features we implemented in Pyxis (Section III), and
is chosen for three reasons. First, mounting the rootfs from an
image in the Squashfs format happens almost instantaneously,
while a plain directory must be extracted from the image
before the mount operation can take place; therefore, the
direct mount of the Squashfs image significantly reduces
the container startup time and enhances the implementation
of the Seamless Integration principle (P4). Second, when
the data are located on a parallel filesystem, a filesystem
loop mounted from a Squashfs image achieves superior I/O
performance compared to a plain directory [3], especially in
the case of random access patterns, such as those generated
by large Python application stacks. Third, if a plain directory
is extracted to a node-local, in-memory filesystem in order to
prevent the I/O performance degradation, this would consume
a portion of the RAM available to user applications; hence, the
direct mount of a Squashfs image also preserves the amount
of memory usable by applications.

To perform the Squashfs and overlay mounts required
to setup the container, Enroot is configured to use specific
binaries. On the one hand, squashfuse_ll 0.5.1 is chosen
because, compared to the regular squashfuse program,
its low-level FUSE API implementation and multithreading
support enable the container filesystem to obtain higher per-
formance [26]. On the other hand, fuse-overlayfs 1.13 is in use
after we verified that employing version 1.1.0 of the utility, as
provided by the base operating system, was causing program
hangs when accessing specific symlink patterns.

V. EXAMPLE USE CASES

This section describes examples of EDFs and workflow
elements taken from real-world use cases by early access users
and staff on CSCS systems.

A. Training an ML/AI model

FourCastNet [27] is a global data-driven weather forecasting
model based on a deep learning approach and the use of
Adaptive Fourier Neural Operators (AFNO). Compared to

traditional Numerical Weather Prediction (NWP) models based
on the solution of differential equations, FourCastNet gener-
ates final results in a fraction of the time, with comparable
(or, for some parameters, higher) forecasting accuracy.

Despite the complexity of the application, an environment
to train FourCastNet can be expressed with a fairly simple
EDF, as shown by the example in Listing 3. The container
image provides the source code of the model [28] on top
of an NVIDIA NGC [29] PyTorch [30] base image, and is
entered in the EDF as a pre-pulled Squashfs file path to
skip the remote pull normally performed by Pyxis and start
the container sooner. An array of bind mounts is defined
taking advantage of TOML syntax and entering one array
element per line to improve readability. An important aspect
to consider when setting up FourCastNet for training is how
to structure the input files and directories, which are dictated
by configuration settings of the given model. In this context, a
container is convenient to use because the model configuration
can remain unaltered and different datasets can be swapped in
by changing the mount source paths from the host. The EDF
also includes annotations that activate specific hooks detailed
in Section III-D. These hooks enable the integration of the
libfabric framework with the Slingshot 11 interconnect via
the CXI provider. They also ensure that the AWS OFI NCCL
plugin, which is compatible with the version of the CUDA
runtime found in the container, is properly mounted.

This setup exemplifies how the containers-first concept
streamlines the deployment of complex HPC applications
and usage workflows. It separates them from other system
components, treating each as an independent, self-contained
unit. This isolation is achieved through a combination of the
container, the EDF, and necessary hooks.

One of the main benefits of this approach is that it hides the
internal workings and complex build stack of the application
from the system software stack. On the other hand, it also hides
the majority of the system software from the application itself.
This prevents the application from depending on specific sys-
tem components, allowing it to interact only with the elements
and interfaces exposed into the container. These components
are then explicitly tracked and controlled within the EDF. As
a result, this method supports modularity, encapsulation, and
abstraction, which enhance overall deployment robustness and
manageability.

B. Remote debugging with Visual Studio Code

Debugging code on HPC systems can be a complex task,
and even more so if the code runs within a container. The
workflow is additionally challenged by the preference of
some users, often coming from outside a traditional HPC
background, to develop and debug code remotely from their
laptops, employing graphically rich tools, like Microsoft’s
Visual Studio Code [22].

Our containers-first solution can facilitate this use case in
two ways: by using an EDF to modularize the debugging setup
and by making remote connections more convenient through
a container hook.

1 image = "${SCRATCH}/fcn-collaboration/ml+
fourcastnet+22.12.sqsh"

2
3 mounts = [
4 "${SCRATCH}/fcn-collaboration:/workdir",
5 "${SCRATCH}/fcn-results/:/output",
6 "${SCRATCH}/init_dir_fcn:/init_dir",
7 "${SCRATCH}/fcn-collaboration/

profiler_output:/profiler_output",
8 "${SCRATCH}/m01/p_levels_raw:/input"
9]

10
11 workdir = "/workdir"
12
13 [annotations]
14 com.hooks.cxi.enable = true
15 com.hooks.ofi_nccl.version = "cuda11"

Listing 3: Example of an EDF used to train FourCastNet on a CSCS cluster.

Regarding the first aspect, consider a containerized environ-
ment based on an NGC image for PyTorch, which could be
used to develop and run Python codes. An example EDF for
such an environment is represented in Listing 4. To carry out
remote debugging, additional tools and environment features
are required; similarly, a working directory dedicated to de-
bugging might be preferred to the one used for regular runs.
EDFs can designate other TOML files as bases, and therefore
compose environments incrementally from different files. This
capability is useful to abstract the debugging elements from
the base development environment, leaving the latter unaltered
and making the definition of the debugging environment akin
to an “add-on module” to the base (Listing 5). Instead of
creating a nearly identical environment which might have to
be maintained separately, the debugging setup is defined by
modular composition and seamlessly inherits changes from
the base environment.

Regarding the second aspect, a combination of EDF and
SSH hook from Section III-D5 can be used to minimize the
complexity of setting up remote connections. Before starting
the container, the user copies to the HPC system the public
portion of the key they intend to use for connecting. Then,
they enter in the debug EDF the annotations to drive the
execution of the SSH hook, as shown in Listing 5. In particular,
the authorize_ssh_key annotation indicates the path
to the user public key file on the host system. When the
container is created, the hook introduces a statically linked
SSH server into the container, automates its launch as a
daemon and, as instructed by the authorize_ssh_key
annotation, adds the user public key to those accepted for
incoming connections. Afterwards, the user adds an OpenSSH
configuration entry in their remote workstation, indicating the
address of the cluster node where the container is running,
and matching the port and private key with those entered
in the EDF. Finally, the user opens the Visual Studio Code
Remote SSH extension and uses the newly created OpenSSH
configuration to connect directly to the remote container. At

1 image = "nvcr.io/nvidia/pytorch:24.01-py3"
2
3 mounts = [
4 "${SCRATCH}$:/scratch"
5]
6
7 workdir = "/scratch"
8 writable = true

Listing 4: Example of an EDF defining a development environment with
PyTorch, CUDA and optimized NVIDIA ML dependencies.

1 base_environment = "pytorch-24.01"
2
3 workdir = "/scratch/ml/demo-Debug"
4 writable = true
5
6 [annotations.com.hooks.ssh]
7 enabled = "true"
8 port = "51234"
9 authorize_ssh_key = "${HOME}/.ssh/cscs-key.

pub"

Listing 5: Example of an EDF adding elements useful for remote debugging
to a base environment. Notice the definition of a base environment in line 1
and the annotations to activate the SSH container hook starting on line 6

this point, the container environment running in the Cray EX
system can be controlled remotely by Visual Studio Code’s
terminal. Likewise, VS Code’s editor and debugger can be
used to edit and run code, break execution and inspect the
program state on the compute node.

In summary, the EDF offers an intuitive format to define
composable settings for debugging, while the SSH hook en-
ables a simplified connection procedure. The latter is achieved
without bundling SSH software into a container image and
without handling the startup of the SSH daemon in a container
entrypoint script. The approach outlined in this section can
also be applied to Jupyter [31] notebooks: the Jupyter kernel
is run on the HPC system while the notebook web interface
and the Visual Studio Code debugger are executed remotely
on the user’s workstation.

C. Adopting system-specific defaults

From a user perspective, a great deal of the EDF’s value lies
in defining environments tailored around applications and use
cases, and being able to deploy them in a convenient, flexible,
and reliable way. Yet, while the focus of many execution
environments is the application, system-specific settings are
often needed to get the most out of a given platform. Cluster
owners, on their side, are interested in providing default
settings to make the user experience more convenient and to
facilitate access to system features.

For example, Listing 6 represents an EDF with
administrator-defined defaults for a CSCS cluster assigned to
Machine Learning projects. It enables fundamental system
features, like the user’s scratch directory and the hook for
the libfabric-based connectivity to the Slingshot network

1 mounts = [
2 "${HOME}/.bash_history:/.bash_history",
3 "${SCRATCH}:${SCRATCH}",
4 "/tmp:/tmp"
5]
6
7 [env]
8 HISTFILE = "/.bash_history"
9

10 [annotations]
11 com.hooks.cxi.enable = true
12 com.hooks.ofi_nccl.version = "cuda12"

Listing 6: Example of an EDF providing system settings to be reused as
defaults.

1 base_environment = "cscs-mlp"
2 image = "nvcr.io/nvidia/pytorch:24.01-py3"

Listing 7: Example of an use-case specific EDF using a base environment to
inherit system defaults on a CSCS cluster for Machine Learning.

(Section III-D2). It specifies domain-specific settings, like
mounting the AWS OFI NCCL plugin for CUDA 12 using
the related hook from Section III-D4. Finally, it defines
convenience features to increase container transparency, like
mounting the Bash history and the /tmp directory from
the host system. The latter mount is especially useful when
different containerized processes on the same physical node
(whether running concurrently or in subsequent batch job
steps) expect to consistently use the contents of the temporary
filesystem directory. This EDF is stored in a location which
is configured as the path for system-wide environment
definitions in the WLM plugin. Notice that in Listing 6 no
container image is defined, and therefore the environment
definition is incomplete. A single EDF does not need to be
deployable on its own if it is combined with others to obtain
a fully valid definition.

The composability of EDFs allows to transparently inherit
system-default settings into more portable, use case-specific
environment definitions. Assuming that the file from Listing 6
was saved with the name cscs-mlp.toml, Listing 7 rep-
resents a user EDF adopting it as base to acquire all its pa-
rameters. Because of its location in the configured search path
for system EDFs, the base environment can be identified just
with the "cscs-mlp" string. The user EDF only specifies
the details which are related to the desired application, in this
case just a PyTorch image. As such, the user EDF can easily
switch between different contexts, or different platforms, by
adjusting the base environment parameter or overriding the
minimum required amount of settings. This is convenient for
users who prefer storing EDFs in SCM tools alongside their
project’s source code.

D. Building customized image variants

Due to the popularity of containers, vendors and open
source communities offer a wealth software stacks in the

1 FROM nvcr.io/nvidia/pytorch:24.01-py3
2 RUN pip install wandb

Listing 8: Example of a Containerfile adding a Python package to a base
image with pip.

1 image = "${SCRATCH}/my_images/pytorch-wandb.
sqsh"

2 containerfile = "${SCRATCH}/containerfiles/
Containerfile.pytorch-24.01-wandb"

Listing 9: Example of an EDF which creates a custom image variant from a
Containerfile.

form of container images. It is not uncommon that users only
require to make small modifications to an already available
image to meet their needs. When doing so, the best practices
advise to build a new, customized image from a recipe file,
in order to preserve the reproducibility and prescriptiveness
characteristics brought by containers. However, building a
custom image to be used on an HPC system is inconvenient
for some users. There are several possible reasons for this,
including but not limited to the following:

• users might not have access to a computer where to build
the image with the same microarchitecture as the target
HPC system;

• users might not have access to a container registry where
to upload their image variant;

• building on a separate system, uploading to a registry,
and pulling is time consuming and not worth for experi-
menting with small changes;

• direct interaction with tools to build and import images
is undesirable or confusing for inexperienced users.

Our containerized environments implementation provides a
way to build and deploy custom container images directly on
the HPC system with minimal user intervention. As an exam-
ple, consider the following case: a user wishes to augment a
PyTorch image from the NVIDIA GPU Cloud with the Python
package to connect to the Weights & Biases platform, used by
some ML practitioners to assist in model development. This
can be achieved in two Containerfile4 instructions, as shown
in Listing 8.

The containerfile parameter in the EDF is used to
associate a Containerfile to a containerized environment. When
an EDF image is specified as a filesystem path, the WLM
plugin checks if it corresponds to an existing file. If no
file exists at the given path, an image is built according to
the provided Containerfile using a container build tool like
Buildah or Podman. The new image is then imported by Enroot
(converting it to a Squashfs-based format suitable for HPC)
and saved at the path indicated by the image EDF parameter.
Listing 9 provides an example of such a use case.

4“Containerfile” is a vendor-neutral nomenclature to refer to an image
recipe for an OCI-compliant build tool. In practice, the term can be considered
equivalent to “Dockerfile”.

If Podman is used as build tool, we implemented an
optimized import procedure in Enroot to skip explicit layer
flattening or exporting the image contents from Podman as a
tar archive. Instead, a Podman container is created to have all
the layers merged by an OverlayFS filesystem with negligible
overhead. The root filesystem (rootfs) of said container is
then mounted to a location which can be accessed from the
host, and the mksquashfs utility is invoked directly on
the rootfs directory. This procedure reduces the time spent in
importing an image to only the time required for conversion
into Squashfs. The approach is implemented by combining
Podman’s create, unshare, and mount commands, and
is inspired by the procedure followed by Enroot when pulling
images from remote repositories, which also leverages an
OverlayFS to skip image layer flattening.

The end result of the containerfile parameter in the
EDF is that building container images is transparently inte-
grated into the same command used to run applications. The
feature streamlines the process of introducing modifications
of arbitrary complexity to reference images, facilitating the
creation of radically different images as well.

The ability to quickly and easily generate image variants
from Containerfiles removes the need to resort to startup or
entrypoint scripts in order to make on-the-fly customizations
to containers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a containers-first strategy for
user environments on HPE Cray EX systems that enhances
stability, flexibility, and efficiency. The containers-first ap-
proach improves the management and deployment of HPC user
environments while leveraging, enhancing, and integrating
multiple container tools to address the challenges traditionally
associated with integrating containers into HPC to provide
frictionless containerized user environments.

The presented approach isolates user environments from the
system software stack, enabling reproducibility and streamlin-
ing deployment processes. By integrating containers into HPC
environments, we alleviate common usage friction, simplify
configuration, and facilitate the deployment of complex scien-
tific software stacks. The modular and adaptable nature of the
containers-first approach allows users to maintain consistent
environments across various systems, improving the repro-
ducibility of experiments and sharing of results. Moreover, the
operational improvements make the system more convenient
to use, reducing the time to solution for complex applications
and workflows.

In conclusion, the containers-first approach represents a
paradigm shift in managing user environments for HPC sys-
tems. It addresses the current needs of HPC management
and makes HPC more accessible, modular, immediate, and
adaptable. Looking ahead, we plan to further refine and expand
this approach. Our focus will include improved integration
with container build tools and registries to better support
the increasingly complex, fast-paced, innovative, collaborative,

and reproducible workflows on traditional HPC and emerging
fields such as AI and ML.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of
the following colleagues at the Swiss National Supercomput-
ing Centre: Dr. Fawzi Mohamed for collaborating on the de-
velopment and deployment of the pathfinder container engine
implementation and the Environment Definition File format;
Dr. Michele Brambilla for contributing to the development of
the container hooks; Dr. Theofilos Manitaras for providing the
use case material for the FourCastNet ML/AI model example;
Stefano Schuppli for sharing material used in the remote
debugging use case example.

REFERENCES

[1] S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann,
D. Gresch, T. Müller, A. V. Yakutovich, C. W. Andersen et al., “AiiDA
1.0, a scalable computational infrastructure for automated reproducible
workflows and data provenance,” Scientific data, vol. 7, no. 1, p. 300,
2020.

[2] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, pp. 316–319, 2017.

[3] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
HPC,” Proceedings of the Cray User Group, pp. 33–49, 2015.

[4] NVIDIA Corporation. (2019) Pyxis: Container plugin for the Slurm
Workload Manager. [Online]. Available: https://github.com/NVIDIA/
pyxis

[5] Tom Preston-Werner, Pradyun Gedam, et al. (2013) TOML: Tom’s
Obvious, Minimal Language. [Online]. Available: https://toml.io

[6] The Podman authors. (2017) Podman: A tool for managing OCI
containers and pods. [Online]. Available: https://github.com/containers/
podman

[7] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5, p.
e0177459, 2017.

[8] Open Container Initiative. (2022) Open Container Initiative home page.
[Online]. Available: https://www.opencontainers.org/

[9] NVIDIA Corporation. (2018) Enroot: A simple yet powerful tool
to turn traditional container/OS images into unprivileged sandboxes.
[Online]. Available: https://github.com/NVIDIA/enroot

[10] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job Scheduling Strategies for
Parallel Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.

[11] The kernel development community. (2023) Squashfs 4.0 Filesystem.
[Online]. Available: https://www.kernel.org/doc/html/v6.8/filesystems/
squashfs.html

[12] Y. Collet and M. Kucherawy, “Zstandard compression and the
’application/zstd’ media type,” RFC 8878, USA, 2021. [Online].
Available: https://www.rfc-editor.org/rfc/rfc8878

[13] P. Deutsch, “Gzip file format specification version 4.3,” RFC 1952,
USA, 1996. [Online]. Available: https://www.rfc-editor.org/rfc/rfc1952

[14] Dave Vasilevsky and Phillip Lougher. (2012) squashfuse - Mount
SquashFS archives using FUSE. [Online]. Available: https://github.com/
vasi/squashfuse

[15] The fuse-overlayfs authors. (2018) fuse-overlayfs: FUSE implementation
for overlayfs. [Online]. Available: https://github.com/containers/
fuse-overlayfs

[16] Open Container Initiative. (2015) Open Container Initiative Runtime
Specification. [Online]. Available: https://github.com/opencontainers/
runtime-spec

[17] L. Benedicic, F. A. Cruz, A. Madonna, and K. Mariotti, “Sarus: Highly
Scalable Docker Containers for HPC Systems,” in High Performance
Computing, M. Weiland, G. Juckeland, S. Alam, and H. Jagode, Eds.
Cham: Springer International Publishing, 2019, pp. 46–60.

[18] OpenFabrics Interfaces Working Group. (2022) Libfabric home page.
[Online]. Available: https://ofiwg.github.io/libfabric/

[19] NVIDIA Corporation. (2019) NVIDIA Container Toolkit: Build
and run containers leveraging NVIDIA GPUs. [Online]. Available:
https://github.com/NVIDIA/nvidia-container-toolkit

[20] NVIDIA Corporation. (2024) NVIDIA Collective Communications
Library (NCCL). [Online]. Available: https://developer.nvidia.com/nccl

[21] Amazon Web Services, Inc. (2018) AWS OFI NCCL. [Online].
Available: https://github.com/aws/aws-ofi-nccl

[22] Microsoft Corporation. (2015) Visual Studio Code. [Online]. Available:
https://code.visualstudio.com/

[23] R. H. Castain, J. Hursey, A. Bouteiller, and D. Solt, “PMIx: Process
management for exascale environments,” Parallel Computing, vol. 79,
pp. 9–29, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167819118302424

[24] Hewlett Packard Enterprise Company. (2022) HPE Slingshot
Interconnect. [Online]. Available: https://www.hpe.com/us/en/compute/
hpc/slingshot-interconnect.html

[25] Greg Roelofs and Jean-loup Gailly and Mark Adler. (1996)
zlib compression library home page. [Online]. Available: https:
//www.zlib.net/

[26] D. Dykstra, “Apptainer Without Setuid,” arXiv preprint
arXiv:2208.12106, 2022.

[27] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay,
M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Has-
sanzadeh, K. Kashinath, and A. Anandkumar, “Fourcastnet: A global
data-driven high-resolution weather model using adaptive fourier neural
operators,” arXiv preprint arXiv:2202.11214, 2022.

[28] Pathak, Jaideep and Subramanian, Shashank and Harrington, Peter and
Raja, Sanjeev and Chattopadhyay, Ashesh and Mardani, Morteza and
Kurth, Thorsten and Hall, David and Li, Zongyi and Azizzadenesheli,
Kamyar and Hassanzadeh, Pedram and Kashinath, Karthik and
Anandkumar, Animashree. (2022) FourCastNet source code, data,
and model weights. [Online]. Available: https://github.com/NVlabs/
FourCastNet

[29] NVIDIA Corporation. (2024) NVIDIA NGC. [Online]. Available:
https://www.nvidia.com/en-us/gpu-cloud/

[30] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia,
W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong,
M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch,
M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher,
Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk,
M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao,
K. Zhou, R. Zou, A. Mathews, G. Chanan, P. Wu, and S. Chintala,
“PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation,” in 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM,
Apr. 2024. [Online]. Available: https://pytorch.org/assets/pytorch2-2.pdf

[31] B. E. Granger and F. Pérez, “Jupyter: Thinking and storytelling with
code and data,” Computing in Science & Engineering, vol. 23, no. 2,
pp. 7–14, 2021.

