
Containers-First User Environments on HPE Cray EX
Felipe A. Cruz, Alberto Madonna
cruz@cscs.ch
May 2024

Overview

● Alps Research Infrastructure at CSCS
● On Managing User Environments in HPC systems
● Containers-First

○ The Approach
○ The Architecture

● Pathfinder Implementation
○ Environment Definition File
○ Container Ecosystem Integration for HPC
○ Running example
○ Enhancing functionality and usability

● Use-cases: AI

Alps Research Infrastructure

Image generated by ChatGPT

Alps at CSCS

● General-purpose compute and
data Research Infrastructure
○ One Infrastructure
○ Many Uses

● Enabled by vCluster Tech
○ Versatile Clusters
○ Tailored solutions
○ Infrastructure as Code

On Managing User Environments for HPC vClusters

On Managing User Environments in HPC systems

Difficult and getting harder

● Integration Complexity
● Flexibility vs. Stability
● Efficiency in Deployment

Image generated by ChatGPT

On Managing User Environments in HPC systems

Difficult and getting harder

● Integration Complexity
● Flexibility vs. Stability
● Efficiency in Deployment

Image generated by ChatGPT

On Managing User Environments in HPC systems

Difficult and getting harder

● Integration Complexity
● Flexibility vs. Stability
● Efficiency in Deployment

Image generated by ChatGPT

Containers-First Approach

Containers-First Approach

● Decoupling the User Environment
● Enhancing Flexibility and Efficiency
● Increasing Consistency

Image generated by ChatGPT

Containers-First Approach

● Decoupling the User Environment
● Enhancing Flexibility and Efficiency
● Increasing Consistency

Image generated by ChatGPT

Containers-First Approach

● Decoupling the User Environment
● Enhancing Flexibility and Efficiency
● Increasing Consistency

Image generated by ChatGPT

Containers-First Main Features

● Leverage Containers
○ Isolation of Environments
○ Reproducibility and Consistency
○ Efficient Deployability
○ Extended Compatibility
○ Flexibility for Experimentation

● Integration with HPC Systems
● Frictionless User Environments

Containers-First Main Features

● Leverage Containers
○ Isolation of Environments
○ Reproducibility and Consistency
○ Efficient Deployability
○ Extended Compatibility
○ Flexibility for Experimentation

● Integration with HPC Systems
● Frictionless User Environments

Containers-First Main Features

● Leverage Containers
○ Isolation of Environments
○ Reproducibility and Consistency
○ Efficient Deployability
○ Extended Compatibility
○ Flexibility for Experimentation

● Integration with HPC Systems
● Frictionless User Environments

Containers-First Architecture

Containers-First Architecture

● Container Ecosystem Tools
○ Runtime
○ Workload manager integration
○ Image Build
○ Image Conversion

● Environment Definition File
● Container Hooks

Containers-First Architecture

Pathfinder Implementation

Environment Definition File – Highlights

● Key Concept for Containers-First
● Standardization and Simplification
● Reproducible Environments
● Customization and Extensibility
● Integration with HPC Tools

Example EDF

Example EDF (non-exhaustive)

● Line 1 - 4: Defining a base
environment from other Env.

● Inherit settings from parents
● Build upon existing environments

● Line 5: Specifies the container image
to use.

● Example:
○ NVIDIA HPC container
○ from NVIDIA's container registry
○ development tools and CUDA

support, based on Ubuntu 22.04

Example EDF (non-exhaustive)

● Line 6: Points to a Containerfile that
defines how to build the container
image.

● Basically specify a Dockerfile
● Build dockerfile rather than pulled

Example EDF (non-exhaustive)

● Line 7: Sets the working directory
inside the container.

● When the container starts, this is the
directory from which it will operate.

Example EDF (non-exhaustive)

● Line 8: Disables the default
entrypoint script provided by the
container image.

● Override the start-up behavior of the
container.

Example EDF (non-exhaustive)

● Line 9: Allows the file system within
the container to be writable.

● By default containers are immutable
● Enable modifications at runtime

Example EDF (non-exhaustive)

● Lines 10-14: Specifies bind mounts,
mapping directories from the host
system into the container.

Example EDF (non-exhaustive)

● Lines 16-19: Sets environment
variables within the container.

● To configure how applications
behave inside the container.

Example EDF (non-exhaustive)

● Lines 21-23: Annotations that can be
used to trigger hooks.
○ CXI
○ NCCL

Example EDF (non-exhaustive)

Container Ecosystem Integration for HPC

● WLM integration and runtime based on Pyxis and Enroot project
● WLM enhancements

○ TOML parsing for EDF support
○ --environment option
○ EDF_PATH variable
○ Advanced feature support

● Runtime enhancements
○ Direct image deployment
○ Layer caching

● User workflow simplification
○ Extended tooling integration
○ Extended container capabilities via hooks

Running example

● On instantiation, statically linked SSH server starts as daemon in the container
● VS Code editor and debugger available

○ Edit, run, break and inspect the program state on CN

 $ srun --environment=pytorch.toml --pty bash

Enhancing functionality and usability

Type of Hook Description

Slurm Integrates Slurm workload management capabilities within containers, allowing for the use
of Slurm commands directly in containerized jobs.

Libfabric for
Slingshot 11

Ensures compatibility with the HPE Slingshot 11 high-speed network, enabling
high-performance networking capabilities.

NVIDIA GPU Provides access to NVIDIA GPUs, crucial for simulations and deep learning models.

OFI NCCL Plugin Integrates the NVIDIA Collective Communications Library (NCCL) with libfabric, for
inter-GPU communications for distributed computing tasks.

SSH Enables SSH access within containers, facilitating remote debugging and management of
containerized applications.

MPI Replacement Replaces the container's MPI installation with an ABI-compatible version from the host.

Use-cases

Use-cases

Weather and Climate

Use-cases

Machine Learning

Conclusion

Conclusion

● Addresses the current needs of User Environments
● Isolates user environments from the system software stack
● Reproducibility and streamlining deployment processes
● Current pathfinder implementation

○ Accessible,
○ Modular,
○ Immediate,
○ and extensible

● For details, examples, and discussion see the paper!

Thank you!
Felipe A. Cruz (cruz@cscs.ch)

