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Abstract—Real-time processing of radio astronomy
data presents a unique challenge for HPC centers.
The science data processing contains memory-bound
codes, CPU-bound codes, portions of the pipeline that
consist of large number of embarrassingly parallel
jobs, combined with large number of moderate- to
large-scale MPI jobs, and IO that consists of both
parallel IO writing large files to small jobs writing a
large number of small files, all combined in a workflow
with a complex job dependency graph and real-world
time constraints from radio telescope observations.
We present the migration of the Australian Square
Kilometre Array Pathfinder Telescope’s science pro-
cessing pipeline from one of Pawsey’s older Cray XC
system to our HPE-Cray EX system, Setonix. We also
discuss the migration from bare-metal deployment of
the complex software stack to a containerized, more
modular deployment of the workflow. We detail the
challenges faced and how the migration unearthed
issues in the original deployment of the EX system.
The lessons learned in the migration of such a complex
software stack and workflow is valuable for other
centers.

I. INTRODUCTION

High Performance Supercomputing (HPC) cen-
ters have historically dealt with the challenge of
efficiently scaling monolithic workflows, e.g. a
single simulation using as much of the system as
possible, and running as many of them as possible.
Now HPC centers are asked to run more diverse
workflows, some of which consist of many different
subtasks with a complex inter-dependency.

The Pawsey Supercomputing Research Centre
has been at the forefront of non-traditional HPC
workflows due to our relation with radio astronomy
telescopes. Pawsey provides critical infrastructure

and assistance to the operations of the Australian
Square Kilometre Array Pathfinder (ASKAP) Tele-
scope [1].

Science data processing for radio astronomy tele-
scope presents an unique challenge:

• The software stack is diverse: memory-bound
codes; CPU-bound codes; serial codes used in
an embarrassingly parallel fashion; and codes
that use the Message Passing Interface (MPI,
[2]) library to run on many nodes.

• IO patterns that range from parallel IO writing
large TB-scale files to writing larger number
of small files.

• A workflow where files are written as inter-
mediate data products for a number of other
components, some with inefficient access pat-
terns.

• Complex job dependency graph with thousands
of jobs, able to stress standard HPC job sched-
ulers

• Real-world time constraints from radio tele-
scope observations.

We present the migration of the ASKAP Science
Data Processing (SDP) pipeline to Exascale systems
like Pawsey’s HPE-Cray EX system Setonix, dis-
cuss challenges faced and lessons learned. The first
section describes outlines the ASKAP telescope’s
overall workflow, the science processing and the
migration of this processing to an EX system. We
then discuss the challenges we faced migrating and
scaling the workflow and the solutions solutions.
We end with a summary of lessons learned followed
by what the future may hold.
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II. SCIENCE DATA PROCESSING WORKFLOW OF
RADIO ASTRONOMY DATA

A. ASKAP Telescope

The ASKAP telescope consists of 36 dish anten-
nas working together as one giant interferometer.
These dishes are 12 meters in diameter and provide
a wide field of view of the sky, roughly 30x larger
than conventional radio telescope receiver. The
dishes are distributed in a radio-quiet zone, with the
longest distance between two antennas being 6 km.
The radio-quiet zone is located in "Inyarrimanha
Ilgari Bundara" or Murchison Radio-astronomy Ob-
servatory (MRO), WA. The traditional owners of the
land are the Wajarri Yamaji people.

Interferometers require significant computational
resources to be operational and ASKAP is no
exception. For ASKAP, these resources consist of
an onsite computational infrastructure composed of
a large number of FPGA’s, which does the initial
processing of the radio signals by correlating them,
and Pawsey supercomputing infrastructure which
ingests this partially processed data for further pro-
cessing to produce science-ready data products used
by the radio astronomy community. An outline of
the telescopes operational pipeline is presented in
Fig. 1 along with a sample radio astronomy image.

The entire process of ingesting raw telescope data
and producing science results is managed by several
tools:

a) askap-cpmanager:
Communicates with TOS (Telescope Operating

System) to start observation raw data ingest. Coor-
dinates/orchestrates CP services / applications - con-
sumes events and produces new events in response.

b) askap-tosconnector:
Listens for scheduling block state change events

in the TOS ICE environment, and re-emits these
events using clink (Python library and CLI
tool which wrapes a few tools: cloudevent,
amqp, rabbitmq.). Generates JSON metadata for
scheduling blocks from TOS ICE interface.

c) askap-datamanager:
Manages two copy queues (high and standard

priority) to move scheduling block data from ingest-
related filesystem to processing-related filesystems

when enough space at the destination is available.
The high priority queue is used for calibration and
time sensitive observations, and requires less of a
free-space buffer to be available.

d) askap-processingmanager:
Launches initial calibration processing. Manages

calibration observations which have been processed
and the queue of science observations which require
processing. Launches science processing (ASKAP
SDP pipeline) when the required matching calibra-
tion observations are available.

e) askap-arwen:
Generates diagnostic plots from the unprocessed

ingested data, once it has been copied to the pro-
cessing related filesystems and archives the plots.
Plots are used to ensure telescope is operating as
expected, and to look for signs of RFI/ducting/re-
ceiver issues.

In this paper we focus on ASKAP SDP, which is
the primary portion of the HPC workload.

B. ASKAP SDP

The ASKAP SDP pipeline was previously de-
ployed on a dedicated Cray XC system, Galaxy.
The roughly 0.7 PFLOP provided by Galaxy meant
that the ASKAP Telescope could not run in a real-
time processing mode, the telescope always being
able to produce data at faster rates than Galaxy
could analyze. It did, however, provide an almost
fully isolated system (in both compute and parallel
filesystems) from all other users. This isolation
meant identifying and debugging issues, particu-
larly those related to filesystem performance was
significantly simpler than it would be with shared
resources. Nevertheless, the migration of the SDP
to our new HPE Cray EX system, Setonix, was
necessary to move towards real-time processing,
even if it might introduce complexity in an already
complex pipeline. The time-scale in which this
migration needed to happen was compressed as
Galaxy was nearing it’s end-of-life.

The SDP software stack is dominated by
askapsoft [3], a C++ package. It also makes
extensive use of Python packages. The workflow
itself is complex: the processing path taken depends
on the science goal and the input data quality. Some



Fig. 1. (Top) Outline of ASKAP telescope operational pipeline, showing ingest from rado telescopes to correlator, transmission to
Pawsey infrastructure and processing on said infrastructure. (Bottom) Example of radio emission of the sky with emission from our
Galaxy highlighted, from the Rapid ASKAP Continuum Survey.

processing will run several 100 node MPI jobs,
each of which will read and write TB of data. These
jobs also can have large computational and mem-
ory imbalances between different MPI processes,
meaning that these jobs are most efficiently run as
heterogeneous jobs by the HPC job scheduler (like ,
[4]). Other processing will consist of large number
of small shared-memory jobs. The number of these
jobs can quite quickly stress slurm.

An example of the imaging pipeline is presented
in Fig 2. This particular processing will generate
several groups of tasks, one for each beam, 36
of which are produced by the ASKAP telescope.
The memory footprint and computational time to

solution per beam is not uniform as the data quality
can vary between beams. Additionally, the process-
ing involves a large number of IO operations. All
tasks require reading of reference data, and often
separate tasks are stitched together not by making
use of memory but with files. There is a final larger
processing job combining the data from all the
beams, followed by analysis to produce diagnostic
information and a radio source catalog.

This imaging stage is also not the only processing
that can occur and is also by no means the most
complex. However, this example highlights the base-
level complexity of processing radio astronomy
data.



Fig. 2. ASKAP imaging pipeline. Of note is the number of slurm processes and the job dependency structure shown in this figure
as implied by the number of slurm jobs, here highlighted as rectangular boxes. This process is one of the simpler ones in terms
of variety of tasks and complexity of job dependency.

C. Migration Process

The team at the Pawsey Supercomputing Re-
search Centre and the ASKAP Operations team took
an approach similar to AGILE for the migration.
With the number, complexity and inter-dependency
of components, migration of small modules of
the pipeline was not possible. However, through
weekly meetings, sprints, early access to the CPU
architecture used on Setonix, access to a HPE-
Cray EX Test and Development System (TDS), and
constant communication between the two teams, we
successfully migrated the pipeline.

The first stage not only involved rebuilding codes
with newer compilers and libraries. We imple-
mented algorithmic changes to be able to better
utilize nodes with more cores (e.g. Nyquist gridding
+ other memory reductions), not just running the
same code. We also moved from bare-metal builds
to a more reproducible and modular deployment
using containers. Moreover, the need to use a shared
filesystem with limits on the number of files per
project meant prior approach could encounter these
file limits and containers offered a simple solution.

III. CHALLENGES & SOLUTIONS

A variety of challenges were faced during the
migration processes, some of which were significant
blockers. The constant testing on the TDS allowed

some issues to be identified and addressed early
but some only occurred upon partial migration to
Setonix, when jobs could be run at production scale.

A the major issues encountered were:
• Issues with MPI.
• Issues with developing and running containers.
• Issues with the Lustre file system.
• Issues with job orchestration using slurm.

A. MPI

A number of MPI bugs that were missed in
standard acceptance testing were found during mi-
gration due to the more complex communication
patterns used in askapsoft. A key blocker was
discovered on Phase-1 Setonix running an older
libfabric library, which underpins the MPI on
HPE-Cray EX systems. Codes that had large time
between associated MPI send and receives would
just hang.

Only through development of related unit
tests and communication with HPE-Cray was a
workaround identified. The tests is now part of
our acceptance and regression tests and is vital in
checking for regressions of this bug.

B. Containers on EX systems

As part of the migration process, the ASKAP
team moved from bare-metal builds askapsoft



and all its dependencies to containers. The moti-
vation was to alleviated some of the dependency
challenges and also to improve reproducibility. This
process started on the XC system and then was
moved to the EX system. An outline of the current
development and deployment workflow is shown in
Fig. 3

The new container-based deployment immedi-
ately encountered several issues running with the
Singularity container engine [5] on the EX system.
The first was not specific to ASKAP but impacted
all containerized workflows relying on MPI: how
to inject host libraries into the container to enable
inter-node communication. The integration of basic
MPI required some development with little to no
guidance from the vendor.

Once this issue had been addressed, another issue
was encountered: incompatible libraries within the
container and the host arising from the need to inject
host libraries. askapsoft relies on a number of
lower level libraries to run some services, most
notably curl. The standard procedure had been to
install all possible packages in an Ubuntu image
using the package manager tool apt. This limits
the versions of a package that are available and also
the build options and this limitation was giving rise
to the conflicting packages, specifically when host
libraries need to run the MPI where injected into
the container.

The solution was to make use of the spack
package manager [6] to build most packages from
source. spack is able to determine the dependen-
cies of a large list of packages and build them from
source or use external pre-build packages. Again,
the conflicting libraries discovered here would have
impacted other workflows but was discovered first
during the migration.

A final issue was encountered when trying to
use parallel IO. Again, this required exploring what
libraries on the host needed to be injected into the
container and what to build in the base container
with no guidance from the vendor. We found it
was necessary to build the Lustre package [7]
and an Lustre-aware MPI inside the container,
something that was not necessary on the earlier
XC system. This solution is now present for all

containers running on Pawsey.

C. IO

Running at scale on Setonix stressed the Lustre
filesystems. The load placed on the filesystem was
higher with the pipeline running on our EX system
than it was running on the older XC system simple
because more compute resources were available.
Additionally, the filesystems on Setonix are shared
between ASKAP and all other Pawsey users, unlike
the filesystem available to the older XC system.
Thus, when ASKAP generated very high loads, it
impacted all users.

Some of the IO issues stem from the technical
debt in askapsoft, such as the data format and
the habit of using files to stitch together various
executables in the pipeline. The exact IO footprint
is variable as different science processing produce
different IO footprints. Some produce significant
number of large files and an even larger number
of small files containing metadata. Others produce
just an enormous number of small files. All can in
principle generate tens of thousands of open/close
operations per second reading reference data.

In this case, the migration offered the opportunity
to test new technologies and even flesh out proto-
types that could reduce the IO load of the pipeline.
For instance, a possible solution to the some of the
IO load is being explored by move to a new data
format using the adios2 library [8]. This on-going
work is discussed in other conference proceedings.

Another issue encountered arose from the large
number of IO operations per seconds per second
produced by certain science process workflows.
The larger number of writes that could occur also
presented a challenge, but not necessarily in the
obvious sense. The IO patterns exposed several
Lustre bugs, some of which are still in current
releases.

We are continuing to refine how to best work
around the bugs in Lustre. Some involve changes
to the Lustre configuration, as advised by HPE.
A more long-term solution is a work-in-progress is
focused on adding the use of compressed filesytems
using squashfs while running the ASKAP con-
tainers. The idea is to move all IO of small files



Fig. 3. The current ASKAP CD/CI using containers.

and the reference data sets to squashfs files that
are mounted at runtime, thereby heavily reducing
the load on the Lustre metadata servers.

The job orchestration relied on global file locks
to indicate tasks within the pipeline had completed.
The use of file locks triggered yet more Lustre
bugs. Turning of global file locks off and allowing
only local locks is the current workaround to the
Lustre bug. However, this is less than ideal as
all workflows on Setonix are impacted. Most work-
flows do not rely on global locks but those that do
will be negatively impacted. The orchestration was
also restructured so as to not make use of file locks.

It is important to reiterate that none of these
issues were present on smaller systems or when
running the pipeline at smaller scales. It was only
obvious when running at production scale.

D. Workflow orchestration

The primary pipeline workflow orchestration tool
is a collection of complex bash scripts that make
use of the in-built functionality of slurm for
generating and tracking job dependencies. Restarts
for processing are handled outside of slurm and
rely on files on the filesystem to indicate that some
portion of the processing has completed. The design

suffers from one surprising major flaw: the reliance
on slurm.
slurm was never designed to be a workflow

orchestration tool but rather a resource allocation
tool. This is evident in the stress that can be placed
on the slurm daemon if a center allows users to
submit thousands to hundreds of thousands of jobs,
with jobs having some dependencies on other jobs.

The complexity of real-world workflows can be
in an example from a rather standard DAG from the
Spectra and Polarisation in Cutouts of Extragalac-
tic sources from RACS (SPICE-RACS) survey in
Fig. 4. This processing would be just for a single
input data set and would be need to be run many
times, ideally concurrently for independent data sets.

The current default processing pipeline struggles
with managing these tasks, to say nothing of log-
ging, tracking and visualizing the progress of a
given bit of processing. That is not to say that it
is not functional. The orchestration uses Grafana to
monitor CPU and IO load on the HPC partition and
filesystems involved in the processing.

IV. LESSONS LEARNED

Complex workflows, such as present in radio
astronomy, are composed of many different soft-



Fig. 4. Job dependencies in a portion of the SPICE-RACS pipeline. This workflow would be run many times on each individual
observation from the radio telescope.

ware packages working together. Migration to new
CPU architectures and simply compiling the CPU
optimized software stack can be a challenge, even
with tools such as spack. The real challenge is
running workflows at scale on ever larger systems
and debugging the workflow when issues are en-
countered.

The standard approach of profiling a single mono-
lithic code to identify computational bottlenecks,
though useful, is not a solution. The diversity of
bottlenecks and issues that can arise, from job
scheduling, IO, along with sub-optimal usage of
available compute resources, simply requires exper-
tise in a variety of areas.

We find it necessary to adopt an AGILE approach
with both the HPC center staff with a variety of
expertise, domain scientists, developers of the work-
flow, and developers of the tools used working hand-
in-hand to ensure all components are migrated to
new architecture and scale to exascale and beyond.
We recommend understanding the current design of
the workflow at a high-level.

• What tool(s) are used to run the workflow?
Workflows now can consist of lots of steps
with a complex inter-dependency. This might
require a mix of tools as no single one might
be fit-for-purpose.

• What tools are used across the workflow?
Workflows might consist of a variety of tech-
nologies, from containers to bare-metal builds.
Some tools might be rapidly developing while
others provide slowly evolving API and func-
tionality.

• What is the file footprint? Workflows will
produce many different sizes of files, some of
which are temporary and others need to be
archived. Workflows might also try accessing
lots of input files, possibly in less than ideal

fashion.
• How are failures identified? With a full work-

flow, identifying underlying issues is far more
involved.

Updating the workflow will consist of:
• Investigating IO operations across the entirety

of the workflow. Portions of a workflow are
well suited to parallel filesystems like Lustre,
while others are the optimal worst case for
such file systems. Improving and enabling ex-
ascale scaling will require
– Code development of some specific tools.

Example is incorporation of adios2 into
askapsoft.

– Workflow development to use a variety of
technologies. Example is the testing of in-
tegrating Squashfs into the python heavy
diagnostic workflow of ASKAP. Other pos-
sibilities are the use of libraries like capio.

• Developing a detailed understanding of the
variety of tools and their possible bottlenecks.
Some packages will be memory bound while
others will be compute bound, requiring vary-
ing resource requests to optimally distribute
the workflow on compute resources. Improving
and enabling exascale scaling will require
– Code development of specific computation-

ally heavy tools. Example is exploration of
offloading specific portions of the ASKAP
processing to GPUs, like the gridding and
degridding of data.

– Workflow development to accommodate het-
erogeneous architecture and resource foot-
print. Example is

• Investigation of workflow orchestration tool
itself and it’s ability to scale. Often older tools
would rely on slurm or pbworks, neither
of which are designed purely as an orchestra-

https://github.com/High-Performance-IO/capio


tion tool. We recommend investigating tools
like Prefect, Nextflow and prototyping a
pipeline.

• Investigation of a variety of deployment tech-
nologies. Often bare-metal builds are run on
HPC systems. Building some packages can
be a challenge and does not lend itself to
reproducible environments. Containers offer a
means of solving both issues. However, it also
has its draw-backs since the rigidity does not
lend itself to a fast development process. It
may be necessary to use both approaches and
explore other options as well.

The migration and improvement on new EX
systems does not end with the direct collaboration.
We have found it very valuable to take a proactive
approach to community training, identifying the do-
main scientists who could help improve maintance
of the new workflow with said training. Without
this additional, more passive interaction, the work-
flow again might accumulate significant technical
debt and encounter the same issues when the next
migration occurs.

We also recommend revising the acceptance tests
run on HPC systems to better mimic these complex
workflows. A number of blockers we faced in our
migration could have been identified earlier with
a more exhaustive testing regime. Case in point,
a significant fraction of the tests we now run on
Setonix are inspired or directly taken from the
issues we faced migrating the ASKAP pipeline.

V. FUTURE OF EXASCALE RADIO ASTRONOMY,
THE SKA AND EXASCALE WORKFLOWS

The future of radio astronomy is the Square
Kilometre Array (SKA), an international collabora-
tion involving 15 countries, will ultimately boast
a square kilometer of collecting area, making it
the most sensitive radio telescope globally. Its con-
struction is underway in Australia (low-frequency)
and South Africa (mid-frequency), with the SKA
Observatory (SKAO) headquartered in the United
Kingdom. Once completed, the SKA will oper-
ate over a wide range of frequencies, providing
unprecedented sensitivity and enabling rapid sky
surveys and will be an order of magnitude larger

in scope and complexity than current telescopes.
The workflow is still in its design phase. The
migration of the ASKAP pipeline demonstrates that
the incorporation of a variety of technologies and
approaches is the only path forward for running this
complex instrument.

This project also shows that similar approaches
will be needed for other science domains with
complex workflows. The issues we encountered are
often generic enough that these issues will be seen
again. If the same approach is taken for updating
these workflows, and HPC centers take a similar
holistic approach, we will be ready for exascale
workflows, not just exascale codes.
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