
Performance and scaling of the LFRic weather and
climate model on different generations of HPE Cray

EX supercomputers
J. Mark Bull

EPCC, The University of Edinburgh
Edinburgh, UK

m.bull@epcc.ed.ac.uk

Andrew Coughtrie
Met Office
Exeter, UK

andrew.coughtrie@metoffice.gov.uk

Deva Deeptimahanti
Pawsey Supercomputing Research Centre

Perth, Australia
Deva.Deeptimahanti@csiro.au

Mark Hedley
Met Office
Exeter, UK

mark.hedley@metoffice.gov.uk

Caoimhı́n Laoide-Kemp
EPCC, The University of Edinburgh

Edinburgh, UK
C.Laoide-Kemp@epcc.ed.ac.uk

Christopher Maynard
Met Office
Exeter, UK

christopher.maynard@metoffice.gov.uk

Harry Shepherd
Met Office
Exeter, UK

harry.shepherd@metoffice.gov.uk

Sebastiaan Van De Bund
EPCC, The University of Edinburgh

Edinburgh, UK
S.VanDeBund@epcc.ed.ac.uk

Michèle Weiland
EPCC, The University of Edinburgh

Edinburgh, UK
m.weiland@epcc.ed.ac.uk

Benjamin Went
Met Office
Exeter, UK

benjamin.went@metoffice.gov.uk

Abstract—This study presents scaling results and a perfor-
mance analysis across different supercomputers and compilers
for the Met Office weather and climate model, LFRic. The
model is shown to scale to large numbers of nodes which
meets the design criteria, that of exploitation of parallelism to
achieve good scaling. The model is written in a Domain-Specific
Language, embedded in modern Fortran and uses a Domain-
Specific Compiler, PSyclone, to generate the parallel code. The
performance analysis shows the effect of choice of algorithm, such
as redundant computation and scaling with OpenMP threads.
The analysis can be used to motivate a discussion of future work
to improve the OpenMP performance of other parts of the code.
Finally, an analysis of the performance tuning of the I/O server,
XIOS is presented.

Index Terms—performance analysis, I/O, DSL, OpenMP,
weather model

I. INTRODUCTION

Understanding performance and scaling of applications
on current supercomputers is important information when
considering how to scale applications to Exascale systems.
Comparing application performance across multiple systems
can provide helpful insight. Three current machines, different
generations of HPE Cray EX systems and XC40 systems, are
considered here. The first is ARCHER2, the UK National
High Performance Computing service hosted by EPCC, the
supercomputing centre at the University of Edinburgh. It has

5860 nodes of dual socket, 64-core AMD EPYC “Rome”
processors. They are connected by the HPE Cray Slingshot
(version 10) network. The second machine is Setonix, hosted
by the Pawsey Supercomputing Research Centre. It has 1592
nodes of dual socket, 64-core AMD EPYC “Milan” proces-
sors. These are connected by the HPE Cray Slingshot (version
11) network [1]. The third machine is the Met Office Cray
XC40. It has dual socket, 18-core Intel Xeon “Broadwell”
processors and the Aries networks.

Weather and climate applications are significant users of
HPC resources. Moreover, the predictive power of both Nu-
merical Weather Prediction (NWP) and climate models are
limited by the availability of HPC resources and the ap-
plications ability to exploit them. Thus, understanding the
performance of such models on current HPC architectures can
help prepare the applications for Exascale systems. The Met
Office is developing a new weather and climate model, named
LFRic [2], part of the Unified Earth Environmental Prediction
Framework - Momentum®. Both time to solution and energy
efficiency are important for weather and climate applications.
Moreover, for a data-intensive application the performance of
the I/O system is an important factor in both these metrics.
The XML Input Output Server (XIOS) [3] provides LFRic
with a server-client file interaction capacity for HDF5 encoded
netCDF files.

In Section II, the model and its components, including the
I/O server library XIOS, are described. Section III contains
the performance results and scaling analysis of the dynamical
core, GungHo, running at up to approximately 10km global
resolution (the current Met Office operational resolution) and
beyond on several hundred nodes. Both strong and weak
scaling of the model are presented. Comparisons between
different compilers, architectures and domain sizes are made.
In particular, the scaling of model components for different
numbers of OpenMP threads and MPI ranks at fixed resource
is examined with different compilers.

In Section IV an analysis of the sensitivity of XIOS I/O
performance to XIOS server and output file configuration
is presented. Significant I/O performance optimisations are
explored for LFRic running on the Met Office XC40.

II. THE LFRIC WEATHER AND CLIMATE MODELLING
SYSTEM

The dynamical core of the LFRic model, known as
GungHo [4], considers the fluid dynamics of the atmosphere,
and has been developed with both scientific accuracy and
computational performance and scaling as considerations. The
geometry of the domain is a thin layer of fluid on the surface
of a rotating sphere which is vertically stratified due to gravity.
It is thus natural to treat the vertical and horizontal degrees
of freedom separately. A cubed sphere mesh, treated as an
unstructured mesh across the horizontal degrees of freedom,
enables scalable communication patterns. The vertical degrees
of freedom are treated as a structured mesh, which allows
for direct addressing in the vertical dimension in order to to
amortise the cost of indirect addressing across the horizontal
dimensions [2]. Finally, a mixed-finite element scheme for the
dynamics equations allows for good accuracy of the discreti-
sation. For CPU architectures, data parallelism is employed
across the horizontal domain.

The full atmosphere model (LFRic) employs several phys-
ical parameterisation schemes for processes which are not
present in the dynamics (e.g. radiation) or are not resolved at
the scale the grid (e.g. microphysics). These have a finite dif-
ference representation and can in general be computed point-
wise across the grid, although there are some dependencies,
more often in the vertical dimension. Consequently, the full
model has more computation and communication than the
dynamics. However, the pattern and thus the scaling is similar.
The dynamical core can therefore give a good indication
of the performance of the full model on a given computer
architecture.

The code is written in a domain-specific language, embed-
ded in modern Fortran. It uses a domain-specific compiler,
called PSyclone [2], [5], which has been co-designed with
the dynamical core. A separation of concerns approach is
used to keep the science/maths code separate from the parallel
code. PSyclone is then able to generate the parallel code for
both distributed memory parallelism using MPI and shared
memory parallelism using OpenMP. To support the use of the
unstructured mesh, a library called Yet Another Exchange Tool

(YAXT) [6] is employed to determine the routing tables for
the halo-exchange communication pattern on the unstructured
mesh.

The application can be run with a choice of using redundant
computation to set or compute the values of the halos. This
computation is redundant as neighbouring MPI ranks both
compute the same values. There is then no need to communi-
cate data to update the halos, resulting in less communication.

III. PERFORMANCE OF GUNGHO

In this section we report on the performance of GungHo,
the dynamical core of LFRic, on both HPE Cray systems.
In all cases, nodes are fully populated with processes/threads
running on all 128 cores per node. We use three different
sizes of the cubed sphere mesh: C256, C512 and C1024,
all with 120 vertical levels. The total number of horizontal
grid points is the square of the mesh number multiplied by 6
(the number of faces of the cube): so, for example, a C512
mesh has 6× 5122 = 1, 572, 864 horizontal mesh points. We
refer the number of horizontal grid points per core as the
local area. In practice, the model timestep needs to satisfy
a weak Courant–Friedrichs–Lewy condition, such that halving
the model grid spacing (e.g. from C512 to C1024) also requires
a halving of the model timestep. However, for the purposes of
this study, we simply report the execution time per timestep,
rather than computing the model performance in, for example,
simulated seconds per second. In each case we run the model
for 96 timesteps, disable I/O, and do not time the initialisation
and finalisation phases.

A. Hardware and software environments

We have conducted our performance experiments on two
HPE Cray XE systems, ARCHER2 and Setonix. Table I shows
the important characteristics of the hardware and software
environments for the two systems and how they differ. The
CrayPAT profiling tool is used to measure the performance
of the application. As well as identifying the most time-
consuming routines, the profiles allow us to break down the
execution time into communication and computation times.
This split is straightforward and unambiguous for this code,
since it is written in master-only style (all MPI calls are outside
of OpenMP parallel regions, and all communications are
blocking: there is little scope for overlapping in the algorithms
used).

B. Results

1) Strong scaling: Figure 1 shows the strong scaling be-
haviour of GungHo on the two systems, ARCHER2 and
Setonix, with both Cray and GNU compilers. The figure shows
the execution time (in seconds) per model timestep against the
number of MPI ranks for different mesh sizes (C256, C512
and C1024). In all cases, we run 32 MPI ranks per node, each
with four OpenMP threads. Due to memory requirements, it is
not possible to perform the experiments across a wide range
of rank counts for a given mesh size, so there are a limited
number of points in each scaling curve. The principal trends

System ARCHER2 Setonix XC40
CPU model AMD EPYC 7742 “Rome” 64 cores AMD EPYC 7763 “Milan” 64 cores Intel Xeon E5 2695 v4
CPU clock frequency 2.0GHz (capped) 2.45GHz 2.1GHz
CPUs per node 2 2 2
No. of nodes 5600 1600 2000(+)
Level 3 cache per CPU 16 × 16MB 8 × 32MB -
NUMA domains per CPU 4 4 1
Interconnect Slingshot 10 Slingshot 11 Aries
Cray MPICH version 8.1.23 8.1.25 7.3.1
Cray Fortran compiler version 15.0.0 15.0.1 -
GNU Fortran compiler version 11.2.0 12.2.0 -

TABLE I
HARDWARE AND SOFTWARE CHARACTERISTICS OF THE HPE CRAY XE SYSTEMS ARCHER2 AND SETONIX AND THE MET OFFICE CRAY XC40. FOR

THE LATTER CASE THE INTEL17 COMPILER WAS USED.

0.6

1

2

3
4

Ti
m

e
pe

r t
im

es
te

p
(s

) ARCHER2 cce 15.0.0

Mesh
C256 C512 C1024

ARCHER2 gcc 11.2.0

12 24 48 96 192 384 768
Nodes

0.6

1

2

3
4

Ti
m

e
pe

r t
im

es
te

p
(s

) Setonix cce 15.0.1

12 24 48 96 192 384 768
Nodes

Setonix gcc 12.2.0

Fig. 1. Strong scaling behaviour of GungHo for different mesh sizes on
ARCHER2 (top row) and Setonix (bottom row) using Cray compilers (left
column) and GNU compilers (right column).

that can be observed are that the strong scaling deviates more
from the ideal (dotted lines) for larger mesh sizes, and that the
deviation is greater for all mesh sizes on ARCHER2 compared
to Setonix. We will examine the differences between systems
and compilers in more detail below.

2) Weak scaling and optimal thread count: Figure 2 shows
the performance in timesteps per second (high is good) for
different mesh sizes and node counts. In each row of the
figure the local area is kept constant: in the top row both
configurations have 256 horizontal grid points per core, while
in the bottom row they all have 128 horizontal grid points
per core. For each mesh size/node count combination, we also
vary the number of OpenMP threads and MPI ranks per node,
subject to the product of these two values always being 128,
the number of cores per node. Some of the C1024 mesh runs
on 192 nodes with one OpenMP thread per rank failed due to
insufficient memory.

We can observe that the weak scaling behaviour is rea-

sonably good. The performance does not decrease much as
we increase the mesh size and number of nodes, until we
reach the C1024 on 192 nodes case. We can also see that
the best performance is obtained by running either one, two
or four OpenMP threads per MPI rank, depending on the
configuration, but eight or sixteen threads per rank is never the
best choice. The reasons for this are examined in more detail
in Section III-B3. In general the differences in performance
between the systems and compilers are small, though the best
performance for any of the configurations is always obtained
on Setonix, and not on ARCHER2. Section III-B4 will focus
more closely on these differences.

3) Communication versus computation: We now consider
the breakdown of execution time into communication and
computation, as reported by the CrayPAT profiling tool. On
ARCHER2, we can further divide the communication time
into halo exchanges (MPI ISend, MPI Irecv and MPI Waitall
calls in the YAXT library) and collective communication
(predominantly MPI Allreduce calls require for global sums
in the semi-implicit solver). Unfortunately, this breakdown is
not obtainable for Setonix, as CrayPAT apportions time lower
down in the MPI call tree. CrayPAT also breaks down com-
putation in user code (USER) and system and runtime library
calls (ETC). Profiles on Setonix attribute small amounts of
time in different groups not present for ARCHER2. Thus, for
Setonix, in order to obtain comparable profiles, time reported
in FABRIC is apportioned to MPI and time in PTHREAD to
ETC. We also show the percentage of time that CrayPAT does
not account for (the reported percentages of samples do not
quite add up to 100%).

Figure 3 shows the breakdown of execution time of GungHo
on ARCHER2 and Setonix for a C512 mesh on 48 nodes (this
corresponds to the centre plot on the top row of Figure 2,
but here we are showing execution time per timestep rather
than performance in timesteps per second). We can observe
that the generally small benefit (i.e. lower execution time) of
using two or four threads per MPI rank comes from small
reductions in user code time and MPI collective time. These
can be attributed respectively to a reduction in the amount of
redundant computation in halos, and to fewer MPI processes
being involved in the global sums. The benefit on using more
than one thread is larger on Setonix with the Cray compiler,

1 2 4 8 16
0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

es
te

ps
 p

er
 se

co
nd

12 nodes | C256

1 2 4 8 16

48 nodes | C512

1 2 4 8 16
Threads

0.0

0.2

0.4

0.6

0.8

Ti
m

es
te

ps
 p

er
 se

co
nd

24 nodes | C256

1 2 4 8 16
Threads

96 nodes | C512

1 2 4 8 16
Threads

192 nodes | C1024

gcc11.2.0-A2
cce15.0.0-A2
gcc12.2.0-STX
cce15.0.1-STX

Fig. 2. Weak scaling and threading performance of GungHo for a local areas of size 256 grid cells per core (top row) and 128 grid cells per core (bottom
row).

1 2 4 8 16
Threads

0

1

2

3

4

5

6

Ti
m

e
pe

r t
im

es
te

p
(s

)

0.4 0.3 0.3 0.6 0.70.3 0.3 0.3
0.5

1.01.6 1.5 1.5
1.6

1.60.3 0.4 0.5
1.2

2.3

cce 15.0.0
ARCHER2

USER
MPI (collectives)

ETC
MPI (point to point)

other
MPI (all)

1 2 4 8 16
Threads

0.5 0.4 0.3 0.3 0.3
0.2 0.4 0.5 1.1 1.5
1.5 1.3 1.3

1.3
1.40.4 0.4 0.5

0.6
0.9

gcc 11.2.0
ARCHER2

1 2 4 8 16
Threads

1.1
0.4 0.4 0.5 0.6

1.3
1.4 1.3 1.4 1.4

0.7
0.6 0.6 0.9

2.0

cce 15.0.1
Setonix

1 2 4 8 16
Threads

0.7 0.7 0.9 1.4 1.7
1.5 1.3 1.3

1.3
1.40.4 0.4 0.5

0.6
0.9

gcc 12.2.0
Setonix

Fig. 3. Breakdown of execution time of GungHo for a C512 mesh on 48
nodes, on ARCHER2 (left) and Setonix (right) using the Cray compiler and
GNU compiler.

but is not clear why the MPI time is so much longer with one
thread.

As the number of threads per MPI rank is increased to 8 and
16, the execution time increases significantly. While the USER
time remains approximately constant, the MPI point-to-point
time increases. With fewer MPI ranks, despite the fact that
the total amount of halo data decreases, the size of the halos
increases, and fewer cores are involved in the halo exchange.
For example, as the number of threads per MPI rank increases
from 4 to 16, the total amount of halo data reduces by a factor
of two, but the individual halos are doubled in size, and the
number of MPI ranks involved in the exchange is reduced by
a factor of four. The net result is that the halo exchanges take
longer as the number of threads per process increases.

For the collective communication, using the GNU compiler,

the time taken continues to reduce as the number of threads
per MPI rank is increased above 4, as we might expect, since
the number of MPI ranks involved in the global sum continues
to reduce. However, the opposite is true for the Cray compiler,
and the reason for this is unclear. It is also interesting to
note that the total time spent in MPI is larger for the GNU
compiler, but for one, two and four threads per rank, this is (co-
incidentally) compensated for by a lower USER time, resulting
in very similar total execution times for the two compilers.
Since the MPI library version is the same, the differences
must be result of building the library with the two different
compilers.

Also of note is the increase in ETC time as the number of
threads per rank increases. For the GNU compiler this can be
attributed to the cost of the barriers used to synchronise threads
at the end of OpenMP parallel loops. This additional barrier
cost is also present for the Cray compiler on both systems,
but the larger ETC times also include POSIX mutex lock
and unlock calls. We have not so far been able to determine
the source of these, but memory allocation/deallocation is one
possibility.

Figure 4 shows the same breakdown of execution time, for
mesh size and node counts configurations that all have the
same local area (256 grid cells per core), and four threads per
MPI rank. Here we can clearly see that on ARCHER2 the loss
of weak scaling (i.e. the increase in execution time as the grid
size and node count increase) is almost all due to an increase
in MPI collective communication time. This is a result of the
increase in the number of MPI ranks involved in the global
sums. The computation time remains constant, and there is a
small increase in the MPI point-to-point (halo exchange) time.

C256-n12
C512-n48

C1024-n192
0

1

2

3

Ti
m

e
pe

r t
im

es
te

p
(s

)

0.1 0.3 0.70.2 0.3
0.3

1.5 1.5
1.6

0.5 0.5
0.5

cce 15.0.0
ARCHER2

USER
MPI (collectives)

ETC
MPI (point to point)

other
MPI (all)

C256-n12
C512-n48

C1024-n192
0.1 0.3

0.90.4
0.5

0.61.3
1.3

1.30.5
0.5

0.5
gcc 11.2.0
ARCHER2

C256-n12
C512-n48

C1024-n192
0.2 0.4 0.7
1.3 1.3

1.3
0.5 0.6

0.7

cce 15.0.1
Setonix

C256-n12
C512-n48

C1024-n192
0.4 0.7 0.9
1.2

1.1
1.1

0.7
0.9

0.9

gcc 12.2.0
Setonix

Fig. 4. Breakdown of execution time of GungHo on ARCHER2 for a fixed
local area of 256 grid cells, on ARCHER2 (left) and Setonix (right) using the
Cray compiler and GNU compiler.

On Setonix, it would be reasonable to assume that the same
increase in collective time is also responsible for the loss of
scaling. Execution times on Setonix are a little lower than
on ARCHER2. On Setonix CrayPAT records less MPI time
than on ARCHER2 but more USER time, but this could be a
profiling artefact.

4) Comparison of systems and compilers: To better visu-
alise the differences between systems and between compilers,
we compute ratios of execution times. Figure 5 shows the
ratio of execution time of GungHo using the Cray compiler
to that using the GNU compiler (so values larger than one
indicate that the GNU compiler has better performance). On
ARCHER2, the performance with the GNU compiler is equal
to, or better than, the Cray compiler in most cases, and
the difference tends to become larger with higher numbers
of threads per MPI rank. This is likely due to the mutex
lock/unlock overheads identified in Section III-B3. On Setonix,
we observe the opposite trend: GNU is faster for low numbers
of threads per rank. However, for the optimal thread numbers
(1, 2 or 4), the differences between the two compilers are quite
small.

Figure 6 shows the ratio of execution time of GungHo on
ARCHER2 to that on Setonix (so values larger than one indi-
cate that Setonix has better performance). This shows a rather
mixed picture: in the majority of cases Setonix performs better,
but there are few clear trends. With the Cray compiler, the
difference in performance between the two systems is largest
(for most mesh/node configurations) at 8 threads per rank. This
could be because the L3 caches on Setonix are shared between
8 cores, compared to 4 on ARCHER2. However, this effect is
less marked for the GNU compiler.

C. Summary

To summarise the findings in this Section, we can say
that GungHo scales acceptably well up to 768 nodes (24576
MPI ranks, 98304 cores) for relevant mesh sizes (the initial
operational forecasting configuration is expected to be a C896
mesh with around 70 levels running on 147 nodes). We have
also seen that the main factor limiting scalability is the global
sums in the semi-implicit solver.

We have shown that running with 2 or 4 threads per
MPI rank gives some modest performance gains over MPI
only, and that, with some variations depending on model
configuration and node count, the performance of the Cray
and GNU compilers does not differ very much. We also
observe slightly better performance on Setonix compared to
the older ARCHER2 system overall, but again the differences
are generally quite small.

IV. I/O PERFORMANCE

LFRic uses XIOS (XML I/O Server), released and main-
tained by Institut Pierre-Simon Laplace (IPSL [3]) to manage
file interactions for loading and saving data. XIOS buffers data
and manages parallel reads and writes to netCDF files to hide
I/O from simulation processes as much as possible. This limits
the impact of I/O on simulation ranks.

To maximise the benefit of using the I/O server, we must
ensure that the ratio of time spent by XIOS waiting for a free
buffer to the total compute time is close to zero. There are
several ways to minimise this ratio, including:

• Increase the rate of writing data, to free buffers up more
quickly.

• Increase the number of XIOS servers, although this may
compromise the above if not done carefully.

• Increase the XIOS buffer size, although this may increase
the memory footprint.

A. Measures

The key measures for analysing I/O performance identified
and used here are:

• Wall clock time (in seconds).
• XIOS Client buffer wait %

– The amount of time that XIOS client ranks spend
waiting for an available buffer divided by the total
time XIOS clients are active.

– This gives an indication of how well the XIOS
servers are enabling simulation ranks to offload data.

• XIOS Server write rate (MiB/second)
– The overall write rate of all XIOS server ranks to

write all of the data on demand.
Performance measurements are quite variable on supercom-

puter hardware, with many factors influencing I/O perfor-
mance. It is important that sufficient I/O load is provided for
performance runs, to give a reasonable chance of recognising
signals for performance change within the noise of overall
platform variation.

B. Processor Numbers and Buffer Sizes for XIOS

Using the Met Office XC40s and an iodev miniapp from
the LFRic repository trunk, we explore the sensitivity to
processor numbers and buffer sizes. These results are shown in
Figure 7. We see that increasing the number of XIOS servers
only gets us so far in improving performance, but to really
minimise the wait ratio we have to keep an eye on the buffer
size.

0.6

0.8

1.0

1.2

1.4

1.6

Ra
tio

 t c
ce

/t g
cc

ARCHER2 | C256 ARCHER2 | C512 ARCHER2 | C1024

1 2 4 8 16
Threads

0.6

0.8

1.0

1.2

1.4

1.6

Ra
tio

 t c
ce

/t g
cc

Setonix | C256

1 2 4 8 16
Threads

Setonix | C512

1 2 4 8 16
Threads

Setonix | C1024

nodes
12
24
48
96
192
384
768

Fig. 5. Ratio of execution time of GungHo using the Cray compiler to that using the GNU compiler on ARCHER2 (top row) and Setonix (bottom row).

0.8

1.0

1.2

1.4

1.6

Ra
tio

 t A
2/t

ST
X

GNU | C256 GNU | C512 GNU | C1024

1 2 4 8 16
Threads

0.8

1.0

1.2

1.4

1.6

Ra
tio

 t A
2/t

ST
X

Cray | C256

1 2 4 8 16
Threads

Cray | C512

1 2 4 8 16
Threads

Cray | C1024

nodes
12
24
48
96
192
384
768

Fig. 6. Ratio of execution time of GungHo on ARCHER2 compiler to that on Setonix, using the GNU compiler (top row) and Cray compiler (bottom row).

Fig. 7. The effect of increasing the number of XIOS servers (L) and buffer size factor (R) on the waiting ratios for the iodev miniapp. Our target is to be as
close to zero as possible - as this means data writing is hidden completely from the model. We see that for these two parameters, there is much more impact
from increasing the buffer size. On the right hand plot, the orange line represents 16 PEs, and the blue line 32 PEs for XIOS.

C. C192 Diagnostic Load Tests

A low resolution C192 configuration was used on the Met
Office XC40 to investigate enhanced diagnostic load impacts
on I/O performance. The C192 test runs for 48 model hours,
and during that runtime writes the following fields at the
given output frequencies. The overriding concern is the output
frequency rather than the nature of each individual field.

• 38 fields at 18 hour output
• 6 fields at 12 hour output
• 9 fields at 9 hour output
• 27 fields at 3 hour output
• 99 fields at 1 hour output

In summary, in 48 hours a total of 5329 fields are written,
which comes to approximately 400 GiB of data in this
case. The job runs with 864 LFRic PEs, and 72 XIOS PEs
spread across 4 nodes - 28 nodes total for the job. The total
run time is 2857s, with 2632s spent in XIOS processing
events (writing data). More of a concern is that each
client spends on average 902s during the model run waiting
for a data buffer, time that cannot be spent doing computation.

1) C192 Initial test: Considering the optional XIOS
configuration of “level 2” servers, and an ansatz determined
results of detailed sensitivity analysis on XIOS stand alone
I/O tests, the following modifications were made: the total
number of XIOS servers was reduced to 16, distributed
into 8 “level 1” servers and 8 “level 2” servers, split into
4 pools of 2 servers each. We see poor write scaling for
large numbers of PEs, (smallish pools), we write about 30
files, of varying sizes, so a modest number of pools was
chosen, and we need enough memory to process the data
(hence remaining at 4 nodes). Using these modifications, the
total runtime is reduced to 1257s (2.3× speedup), and the
average time spent waiting for a free buffer is now 42s (4.5%
of the original case), using the same amount of HPC resource.

Fig. 8. Runtime of the C192 test on 864 LFRic PEs, when using XIOS
server across 4 nodes, with 16 individual servers, 8 level 1, 8 level 2.
We show the effect of increasing the number of server pools, (and hence
decreasing the number of servers per pool) on the total runtime. We see that
in this configuration having 4 or 8 servers per pool is not conducive to good
performance.

2) C192 Further consideration: The server pools are now
changed, keeping a 50% ratio between level 1 and level
2 servers, whilst still running across the 4 nodes with 16
servers. In this particular case, increasing the proportion of
level 2 servers, or decreasing the node count, leads to “out of
memory” errors. These results are shown in Figure 8. In this
case we run from 1 pool of 8 level 2 servers, to 8 pools of 1
server each. We see a significant sensitivity to the number of
pools, and processors per pool, leading to a very significant
reduction of runtime.

These experiments also show that simply giving more pro-
cessors to XIOS does not lead to an increase in performance

Baseline Performance Run
Characteristics
XIOS Nodes 22 / 153 (14.4%) 24 / 155 (15.4%)
XIOS Ranks per Node 17.81 19
Lustre Striping None Full
Log Levels XIOS:50, LFRic:Info XIOS:1, LFRic:Warn
Measures
Test Wall Clock Time: 5140.67 s ±σ 52.12 3861.52 s ±σ 21.36
Data Intensity 0.15 GB per core hour 0.20 GB per core hour
Server Process av. write rate 377.04 MiB/s ±σ 12.23 953.43 MiB/s ±σ 64.87
Client Time Buffer Wait % 7.56 % ±σ 1.60 1.44 % ±σ 0.66
Client time Buffer Wait 382.24 s ±σ 81.25 53.49 s ±σ 24.63

TABLE II
I/O PERFORMANCE RESULTS COMPARING A C896 (11KM) BASELINE AND A TUNED PERFORMANCE SCENARIO.

and we have therefore reduced the number of servers from 72
to 16. The increase in performance comes from understanding
the sensitivity of XIOS to parallel writing on multiple MPI
ranks, along with the ability to further parallelise using files
per server pool. It is likely that optimal configurations will
be different depending on the exact model configuration, and
the total HPC resource that will be used is dependent on the
volume of data, as sufficient memory must be available to
XIOS.

D. C896 Scenarios

I/O Performance test results for LFRic were run on Met
Office Cray XC40 architecture using Lustre disk based storage
and XIOS. The LFRic atmosphere C896 resolution provides
a 10km horizontal resolution for the model. A derivative of
the LFRic C896 test run was created with enhanced hourly
diagnostic load and run with multiple configuration changes
(3 runs per scenario) to assess IO performance sensitivity to
configuration factors whilst writing 1.1TiB of diagnostic data.

The baseline uses 153 nodes, 131 simulation nodes (35
ranks per nodes, 4704 ranks), and 22 separate XIOS I/O
server nodes (with 17/18 ranks per node). A node is either
hosting simulation ranks or XIOS server ranks. The baseline
and scenarios would benefit from future analysis, targeting EX
architectures, newer XIOS versions and Flash storage. There
are positive signals from isolated XIOS performance analyses
conducted on ARCHER2 exploring new XIOS developments
(that are not yet released) and XIOS level 2 server config-
urations, separating data gathering nodes and I/O interaction
nodes into pools and tuning pool configurations to data. These
configurations are not yet included in the presented scenarios,
but offer interesting opportunities for further optimisation
targeting.

E. C896 Performance Sensitivity Results

By tuning configuration parameters, a 25% improvement in
wall clock time, a 253% increase in server write rate and a 5×
reduction in client wait percentages were demonstrated for a
C896 run writing 1.1TB of data (see Table II for a numerical
summary of results). Figure 9 compares the wall clock time,
XIOS client buffer wait time % and averaged server write
rate for the baseline case, for adding Lustre striping, and
for a scenario with Lustre striping, reduced logging and

adjusted XIOS nodes and ranks. The error bars show standard
deviations for measured quantities, combining variation within
a scenario run, and across 3 independent scenario runs. The
largest benefit is from Lustre striping – without this, there
is little impact on I/O performance from other factors. This
is consistent with Lustre’s documentation on parallel writes to
large file objects. Figure 10 demonstrates the sensitivity of I/O
performance measures to the choice of number of XIOS nodes
and XIOS ranks per node. The variability within runs and
across runs is large compared to the difference in performance
measures. Thus, whilst there is some benefit in fine tuning
numbers of nodes and ranks for XIOS, the sensitivity of I/O
performance to these choices is not large.

V. CONCLUSIONS AND FUTURE WORK

A. GungHo performance

GungHo, the dynamical core of LFRic, shows good scala-
bility up to, and beyond the mesh size and node counts that
will form the initial operational forecasting configuration. The
benefits of the more recent generations of CPU model and
network on Setonix are detectable, but quite modest for this
part of the application.

There are, however, ongoing efforts to further improve
performance. We are investigating code and data layout re-
structuring to improve vectorisation of loops over vertical
levels. There are opportunities to improve locality and re-
duce synchronisation overheads by restructuring the OpenMP
parallel loops over horizontal grid cells, and also to attempt
to realise overlapping of halo exchanges with computation.
Performance anomalies uncovered in this study (e.g. time spent
in POSIX lock routines using the Cray compiler, and the
higher cost of MPI calls using the GNU compiler) will be
further investigated.

B. I/O Performance

I/O is a crucial factor in model performance, with more pro-
portional impact for high diagnostic loads and high horizontal
model resolutions. Significant performance improvements can
be achieved through minor configuration changes to model
interactions with storage systems. XIOS’s two level server
configurations show real promise for performance gains, but
these do add implementation complication. For the C896 I/O

Fig. 9. I/O Performance Enhancements from Configuration Tuning.

Fig. 10. I/O Sensitivity to Number of XIOS Nodes & Ranks.

scenarios, some issues on ancillary loading are unresolved, so
the benefits are not yet as well analysed, however this is a
focus for the near future.

XIOS performance sensitivity testing on ARCHER2 has
shown significant performance gains and promising tuning
opportunities for XIOS, including development versions of
XIOSv3, XIOS level 2 servers and use of flash-based storage.
These configurations have not yet been combined with the
LFRic I/O performance sensitivity analysis that was conducted
on the Met Office XC40s with the C896 configuration. Future
work will target extending the C896 performance sensitivity
analyses to I/O performance runs of LFRic on the Cray EX
architecture with further XIOS/LFRic configurations explored.

ACKNOWLEDGMENT

This GungHo performance analysis work was under-
taken as part of the Met Office Academic Partnership and
used the ARCHER2 UK National Supercomputing Service
(https://www.archer2.ac.uk). This work was also supported by
resources provided by the Pawsey Supercomputing Research
Centre with funding from the Australian Government and the
Government of Western Australia.

REFERENCES

[1] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and T. Hoefler,
“An in-depth analysis of the slingshot interconnect,” in SC20: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, 2020, pp. 1–14.

[2] S. Adams et al., “Lfric: Meeting the challenges of scalability and perfor-
mance portability in weather and climate models,” Journal of Parallel and
Distributed Computing, vol. 132, pp. 383–396, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731518305306

[3] XIOS-Community, “XML IO server,” 2024. [Online]. Available:
https://forge.ipsl.fr/ioserver

[4] T. Melvin, T. Benacchio, B. Shipway, N. Wood, J. Thuburn, and C. Cotter,
“A mixed finite-element, finite-volume, semi-implicit discretization for
atmospheric dynamics: Cartesian geometry,” Quarterly Journal of the
Royal Meteorological Society, vol. 145, no. 724, pp. 2835–2853, 2019.

[5] R. Ford, J. Heinrichs, I. Kavcic, C. Maynard, A. Porter, and
A. Siso, “Psyclone: A code generation and transformation system
for weather and climate models,” 2024. [Online]. Available:
https://psyclone.readthedocs.io

[6] J. Behrens, M. Hanke, and T. Jahns, “Yaxt,” 2023. [Online]. Available:
https://swprojects.dkrz.de/redmine/projects/yaxt

