Performance and scaling of the LFRic weather and climate model on different generations of HPE Cray EX supercomputers

Mark Bull¹, Andrew Coughtrie², Deva Deeptimahanti³, Mark Hedley², Caoimhín Laoide-Kemp¹, Christopher Maynard², Harry Shepherd², <u>Sebastiaan van de Bund¹</u>*, Michèle Weiland¹, Benjamin Went²

[1] EPCC, The University of Edinburgh, Edinburgh (UK)
[2] Met Office, Exeter (UK)
[3] Pawsey Supercomputing Research Centre, Perth (AU)

[*] s.vandebund@epcc.ed.ac.uk

Why a new model? Unified Model scaling

Met Office

UM 11.6: current Met Office weather and climate modelling code

N2048 (3072 × 4096) ~ 6.5 km Cray XC40 intel Broadwell processors 36 cores per node 2048 nodes is 73,728 cores

Advection around poles inhibits scaling

The Finger of Blame ...

- At 25km resolution, grid spacing near poles = 75m
- At 10km reduces to 12m!

Semi-Lagrangian Advection → Large halos → Lots of communication near poles

ерсс

Next Generation Modelling Systems: LFRic

Met Office is developing new modelling system for Exascale computing

- Replacing (successful) Unified Model (Weather and Climate)
- With LFRic (Lewis Fry Richardson) model with Gung Ho dynamical core

Lon-lat grid (Poles) *structured* Finite-difference Semi-implicit Maintain accuracy

Improve scalability Exploit other programming models

Cubed-sphere mesh – unstructured Mixed finite element method Semi-implicit

GungHo dynamical core

Cubed Sphere \rightarrow no singular poles lon-lat Unstructured mesh in the horizontal Structured mesh in vertical with direct memory access Mixed finite element scheme – *C*-Grid Exterior calculus *mimetic* properties; semi-implicit in time

DOFs:

Domain Specific Language: PSyclone

PSyclone

Why?

Too many programming models Rapid evolution of diverse hardware Parallel/optimisation code pollution in science code

How?

Restore *separation of concerns* between algorithms, kernels and parallel code

→Automatically generated code for OpenMP, halo exchange (MPI, using YAXT), redundant computation

HPE Cray EX Machines: Overview

System	ARCHER2	Setonix
CPU model	AMD EPYC 7742 "Rome" 64 cores	AMD EPYC 7763 "Milan" 64 cores
CPU clock frequency	2.0GHz (capped)	2.45GHz
CPUs per node	2	2
No. of nodes	5600	1600
Level 3 cache per CPU	$16 \times 16 MB$	$8 \times 32 \text{MB}$
NUMA domains per CPU	4	4
Interconnect	Slingshot 10	Slingshot 11
Cray MPICH version	8.1.23	8.1.25
Cray Fortran compiler version	15.0.0	15.0.1
GNU Fortran compiler version	11.2.0	12.2.0

GungHo performance analysis: setup

- 3 different mesh sizes of the cubed sphere mesh: C256, C512 and C1024
- 120 vertical levels
- 96 timesteps
- I/O turned off
- 12 to 192 nodes, 1 to 16 threads
- C.f. operational config: C896 / 70 levels, running on 147 nodes

epc

Weak scaling

- Local volume:
 - 256 grid points (top)
 - 128 grid points (bottom)
- 1, 2, 4 threads/rank ideal
- Slightly better
 performance on
 Setonix

Strong Scaling

- 4 OpenMP threads (32 ranks per node)
- Comparison of Machines and Compiler Suite
- Higher deviation from ideal scaling for higher mesh sizes

CrayPat Profiling: comms vs compute

- C512, 48 nodes
- 2,4 threads:improvement:
 - Fewer redundant halo computations
 - Fewer ranks involved in global sums
- 4+ threads slowdown
 - USER time roughly const.
 - Thread synchronisation issues

CrayPat Profiling: fixed local volume

Constant local volume, 4 threads

- USER time roughly constant
- Loss of weak scaling due to increased collective comms

Compiler suite comparison

- Ratio of Cray vs GNU
- Lower → Cray performs better
- Small differences for 1,2,4 threads
- Higher thread counts:
 - GNU tends to be faster on ARCHER2
 - Cray tends to be faster on Setonix

Machine comparison

- ARCHER2 vs Setonix for same compiler suite
- Lower → ARCHER2 performs better
- Setonix generally performs better
- 8 thread differences possibly due to L3 cache differences
 - Shared between 8 cores on Setonix, but 4 on ARCHER2

Summary: GungHo performance

- Good scaling up to 768 nodes on C1024/120 levels
 - Operational config: 147 nodes, C896/70 levels
- 2 or 4 threads per MPI/rank gives modest performance gains over MPI only
- Cray/GNU compiler performance broadly similar
- Slightly better performance on Setonix than ARCHER2

XIOS and I/O performance

- LFRic uses XIOS (XML I/O Server), released/maintained by Institut Pierre-Simon Laplace
- Asynchronous clientserver data transfer (XIOS2)
- Buffers data and manages parallel reads/writes to netCDF files: try to hide I/O from simulation

16

epc

XIOS Scenarios

- Results run on Met Office Cray XC40 using XIOS2
- Lustre-based disk storage (similar to ARCHER2/Setonix)

• 3 test cases:

- C768: Varying Processor Numbers and Buffer Sizes
- C192: Diagnostic Load Tests
- C896: Operational config

Measures:

- Wall clock time
- XIOS Client buffer wait %
- XIOS server write rate (MiB/second)

C768: Server PEs and buffer size

Much more impact from changing buffer size

18

C192: Diagnostic Load Tests

- 48 model hours: write 5329 fields (approx. 400 GiB), with 864 LFRic PEs
- Baseline: 72 XIOS PEs:
 - 43.9 mins write time
 - 15 mins buffer wait time(!)
- Use XIOS "level 2" servers
- 8 level 1 / 8 level 2 (4 pools of 2 servers each)
 - 21 mins compute
 - 0.7 mins buffer wait time

- Pool size affects performance
- 2 servers/pool optimal

C896 performance sensitivity

- Writing 1.1TiB of diagnostic data
- Nodes either for simulation or I/O
- Lustre striping leads to significant performance boost

- 25% improvement in wall clock time
- 253% increase in server write rate
- 5× reduction in client wait %

	Baseline	Performance Run
Characteristics		
XIOS Nodes	22 / 153 (14.4%)	24 / 156 (15.5%)
XIOS Ranks per Node	17.81	19
Lustre Striping	None	Full
Log Levels	XIOS:50, LFRic:Info	XIOS:1, LFRic:Warn
Measures		
Test Wall Clock Time:	5140.67 s $\pm \sigma$ 52.12	$3861.52 \text{ s} \pm \sigma 21.36$
Data Intensity	0.15 GB per core hour	0.20 GB per core hour
Server Process av. write rate	377.04 MiB/s $\pm \sigma$ 12.23	953.43 MiB/s ±σ 64.87
Client Time Buffer Wait %	7.56 % $\pm \sigma$ 1.60	$1.44 \% \pm \sigma 0.66$
Client time Buffer Wait	$382.24 \text{ s} \pm \sigma 81.25$	53.49 s $\pm \sigma$ 24.63

ерсс

XIOS performance: conclusions

- I/O significant factor in model performance: more proportional impact for high diagnostic loads/high horizontal model resolutions
- Two level server config shows promise
- Significant performance improvements through minor configuration changes

Future work:

 XIOS performance sensitivity testing on Archer2 EX architecture shown promising tuning opportunities

Acknowledgements

- GungHo performance analysis work was undertaken as part of the Met Office Academic Partnership, and used the ARCHER2 UK National Supercomputing Service (<u>https://www.archer2.ac.uk</u>).
- This work was also supported by resources provided by the Pawsey Supercomputing Research Centre <u>https://pawsey.org.au</u> with funding from the Australian Government and the Government of Western Australia.

Summary

GungHo performance:

- Good scaling up to 768 nodes on C1024/120 levels
 - Operational config: 147 nodes, C896/70 levels
- 2 or 4 threads per MPI/rank gives modest performance gains over MPI only
- Cray/GNU compiler performance broadly similar
- Slightly better performance on Setonix than ARCHER2

XIOS performance:

- Significant performance improvements through minor configuration changes to model interactions with storage systems.
- Two level server config shows promise
- Significant performance gains and tuning opportunities from testing on ARCHER2

epc

XIOS: Wall clock time

XIOS: Buffer Wait %

XIOS Client Buffer Wait (%)

'lustrestripe': None 'lfric_log': 'info' 'num_server1': 392 'num_xios_nodes': 22 'num_xios_ranks': 392 'totalNodes': 153 'totalTasks': 5508 'xios_log': 50 'lustrestripe': 'full' 'lfric_log': 'info' 'num_server1': 392 'num_xios_nodes': 22 'num_xios_ranks': 392 'totalNodes': 153 'totalTasks': 5508 'xios_log': 50 'lfric_log': 'warn' 'lustrestripe': 'full' 'num_server1': 456 'num_xios_nodes': 24 'num_xios_ranks': 456 'totalNodes': 155 'totalTasks': 5580 'xios_log': 1

XIOS: Server Write Rate

26