
Early Application Experiences on Aurora at ALCF:
Moving From Petascale to Exascale Systems

Colleen Bertoni, JaeHyuk Kwack, Thomas Applencourt, Abhishek Bagusetty, Yasaman Ghadar, Brian Homerding,
Christopher Knight, Ye Luo, Mathialakan Thavappiragasam, John Tramm, Esteban Rangel, Umesh Unnikrishnan,

Timothy J. Williams, Scott Parker
Leadership Computing Facility
Argonne National Laboratory

Lemont, IL, USA
Email: {bertoni, jkwack, tapplencourt, abagusetty, ghadar, bhomerding, knightc, yeluo, mthavappiragasam, jtramm,

erangel, unnikrishnan, zippy, sparker}@anl.gov

Abstract—Aurora, installed in 2023, is the newest system being
prepared for production at the Argonne Leadership Computing
Facility (ALCF). Throughout multiple years of preparation, the
ALCF has tracked the progress of over 40 applications from the
Exascale Computing Project and ALCF’s Early Science Project
in terms of ability to run on Aurora and performance on Aurora
compared to other systems. In addition, the ALCF has been
tracking bugs and issues reported by application developers. This
broad tracking of applications in a standardized way as well as
tracking of over 1100 bugs and issues via source code reproducers
has been essential to ensuring the usability of Aurora. It has also
helped ensure a smoother transition for applications that can run
on past or current production systems, like Polaris, the ALCF’s
current production system, to Aurora. To gain insight into the
current state of applications which were ported to Aurora on
both Aurora and Polaris, a set of applications are compared in
terms of single GPU and single node performance on Aurora and
Polaris. On average the Figure-of-Merit performance for the set
of applications was 1.3x greater on a single GPU of Aurora than
a single GPU of Polaris. The intra-node parallel efficiency of the
set of applications was similar between Aurora and Polaris.

Index Terms—Polaris, Aurora

I. INTRODUCTION

The Argonne Leadership Computing Facility (ALCF) is a
United States Department of Energy computing facility at
Argonne National Laboratory. In the past, the ALCF has
transitioned from one large-scale system to another roughly
every 4 - 5 years. In the ideal scenario, users who can run on
current production systems, like Polaris at the ALCF, would be
able to smoothly transition their application to new systems,
like Aurora, the next largest system at the ALCF, without too
much effort and get reasonable performance.

This is difficult as vendors, hardware, and software stacks
often change between different systems, and application devel-
opers often have to port their code to be able to run. For Aurora
this was in particular challenging for application developers
since the GPUs Aurora is based on, Intel Data Center Max
Series GPUs, are the first of their kind from Intel. Although
Intel has been developing integrated GPUs for many years
[1], this is the first time Intel has developed discrete GPUs
for high performance computing (HPC) systems. In addition

to new hardware being developed, Intel also was developing
a new software stack (Intel oneAPI) [2] to allow application
developers to effectively target the hardware. In contrast to
Aurora, Polaris, the current production resource at ALCF, is
based on Nvidia A100 GPUs, which is a much more common
GPU for HPC systems to be based on. For example, about 50%
of the top 100 computers on the November 2023 Top500 list
are Nvidia GPU-based, while only three are Intel GPU-based
[3]. Although many open source and portable programming
models are supported on Aurora, many applications had pre-
viously ported to CUDA, which is not supported by Intel since
it is Nvidia’s proprietary programming model.

In addition to newer hardware and software stacks, the
scale of the new systems available often increases signifi-
cantly. To give a sense of the scale of Aurora compared to
Polaris, Polaris ranks 27th on the Top500 list while Aurora
is currently 2nd, even with only part of the system [3]. The
large increase in computing resources can enable application
developers to implement methods which previously were not
feasible with smaller computing resources. In particular, many
of the application developers targeting Aurora were part of
the Exascale Computing Project (ECP) [4] and the ALCF’s
Early Science Program (ESP) [5] and were implementing
new algorithms and methods to be able to take advantage
of exascale-level computing resources and run simulations
that were not previously possible. Thus ensuring a smooth
transition to Aurora from other systems like Polaris was
complicated since not only was the software and hardware of
the pre-production Aurora systems changing (since the GPU
and software stack were new and being developed by Intel) but
many application developers were also implementing exascale-
ready algorithms and porting their code to new programming
models.

One approach by the ALCF staff to ensure the progress
of application development and address issues affecting ap-
plications was to create an Aurora Applications Working
Group, which was formed with application developers and
ALCF and Intel staff. This group tracked application progress
in terms of functionality and performance on a quarterly

basis, starting in 2021 and continuing through 2024. The
application tracking included over forty applications from ECP
and ESP. Additionally, the ALCF staff maintained a growing
test repository with bug reproducers reported by application
developers. Tracking applications helped assess the the overall
status and issues for the collective set of applications, and was
essential for identifying wide-spread issues. Tracking bugs via
a shared repository with the vendor, Intel, allowed for a clear
determination of how well a version of the Software Devel-
opment Kit (SDK) from the vendor would fix known bugs (or
lead to regressions) which was essential for communication
about how useful a new SDK was.

In addition to discussing application and bug tracking, to
gain insight into the current state of how applications are run-
ning on pre-production Aurora and production-level Polaris,
this work also evaluates the performance of 11 of the tracked
applications on a single-GPU and single-node basis between
Aurora and Polaris. Challenges, workarounds, or limitations
encountered when porting to Aurora are discussed as well.

This paper is organized as follows: Section II presents
information about two systems used. Section III provides
the strategy used to track progress in science applications as
well as early software from the vendor as the Aurora system
was being prepared. Section IV presents the computational
details and setup for a set of applications run on Aurora and
Polaris, and Section V compares the results on Aurora and
Polaris. Section VI discusses notable modifications or tuning
that helped with successfully running on Aurora, and any
workarounds or limitations that were encountered. Section VII
summarizes this study.

II. SYSTEM ARCHITECTURES

The following sections give details on the two systems used,
Polaris and Aurora.

A. Polaris

Polaris is composed of 560 nodes, where each node has one
AMD EYPC 7532 32C 2.4GHz CPU and four NVIDIA A100
SXM4 40 GB GPUs [6], for a total of 560 CPUs and 2,240
GPUs. Each GPU has a peak theoretical performance of 19.5
Tflop/s in double precision (DP), giving the whole system a
theoretical peak of 44 Pflop/s in DP.

Each node has 512 GiB DDR4 and 1.6TB of SSD local
storage. The four GPUs on a node are connected via Nvlink.

Polaris is a petascale computer which is 27th on the Top500
list with a max LINPACK performance achieved of 25.81
PFlop/s as of November 2023.

A node-level diagram of Polaris is shown in Fig. 1a.

B. Aurora

Aurora is composed of 10,624 nodes, where each node has
6 Intel Data Center Max Series GPUs [9] (also called Ponte
Vecchios or PVCs) and and 2 Intel Xeon CPU Max Series
CPUs with HBM.

Each CPU socket has 64 GB HBM and 512GB DDR5. Each
GPU socket has 128GB HBM. The six GPUs on a node are

(a) Polaris Node Diagram [7]

(b) Aurora Node Diagram [8]

Fig. 1: Node Diagrams

connected via XeLink in an all-to-all topology. Each GPU has
two stacks (or tiles), which can be targeted as independent
GPUs.

Aurora is currently 2nd on the Top500 list with a max
LINPACK performance achieved of 585.34 PFlop/s. However,
only part of the Aurora system was used for this Top500 entry,
as it is expected to be updated with the entire system before
its production.

A node-level diagram of Aurora is in Fig. 1b.
Additionally, Aurora has a Test and Development System

called Sunspot which consists of 128 nodes. The hardware and
SDKs on the nodes are identical to what is on Aurora.

III. TRACKING APPLICATION AND PRE-PRODUCTION
SOFTWARE PROGRESS ON AURORA

A multi-year effort was undertaken to prepare over forty
applications for Aurora from the Argonne Early Science
Program (ESP) and the Exascale Computing Project (ECP).
This work generally consisted of several activities:

• Implementation of new algorithms to enable new types
of scientific simulations.

• Porting to a programming model available on Aurora
• Resolution of all issues preventing an application from

running in the Aurora development environment
• Tuning to achieve good performance on one, or a small

number of nodes
• Scaling to a significant fraction of the Aurora nodes with

good performance
The applications work for Aurora was coordinated through

the Aurora Applications Working Group which brought to-
gether Aurora application developers and Argonne and Intel
staff. The group met regularly to review the progress of
individual applications and to assess the overall status of the
applications development effort with an eye to understanding
and mitigating the overarching problems in readying applica-
tions. On a quarterly basis Aurora application development
teams were surveyed to quantify the status of their efforts and
the results of these surveys are presented here to provide an
overview on the progress through the above steps over time.

Exascale computing represents a significant increase in
computing power over previous generations of large scale sys-
tems. To take advantage of this new capability many research
teams sought to develop and implement more complex and
novel algorithms to enable the simulation of physics that was
previously not possible. An initial challenge was therefore the
development and implementation of these algorithms. Figure 2
shows the status of applications science implementations from
the fourth quarter (Q4) of 2020 to the first quarter (Q1) of
2024. Some of this work may have been performed on plat-
forms other than Aurora, and a complete implementation does
not necessarily indicate that an application has been ported or
was running on the Aurora development platforms, only that
the code was running somewhere. While many applications
reported a complete implementation of their algorithms in
the response to the first survey it still took several years
before virtually all applications had completed this step. In the
early quarters many applications were still refining, altering,
or expanding their plans which in some quarters resulted in the
number of applications reporting a complete implementation
dropping from the previous.

The Aurora system contains Intel GPUs which represent
a new variant of GPU accelerated heterogenous hardware.
While the hardware is similar in many ways to what is
seen in NVIDIA based systems, such as Polaris, enabling
applications to utilize a programming model supported on
Aurora was another significant task that many applications
had to address. In many cases this work was overlapped with
other work, such as implementing new algorithms, or tuning

other already ported kernels for performance. While Aurora
does not support CUDA, which is an NVIDIA proprietary
programming model, however it does provide a number of
open and portable programming models including SYCL,
OpenMP, Kokkos, RAJA, and HIP. Figure 3 show the progress
in porting applications over time to one of the programming
model available on Aurora. Initially only approximately a
quarter of the applications were implemented in a supported
programming mode (typically via Kokkos or OpenMP). A
large increase in the number of fully ported applications, from
30 to 37, was observed in the second quarter (Q2) of 2023
which was same quarter in which a larger scale test and
development system (Sunspot) which had the same hardware
as in Aurora became available. This likely catalyzed the final
porting steps for applications which were close to being fully
ported. While most applications made steady progress some
initial backwards progress was reported by some applications
as they altered their plans, and for most applications porting
was a multi-year effort.

Fig. 2: Application Science Implementation Status

Fig. 3: Application Porting Status

Given the novelty of the Intel GPU hardware and associated
software environment, enabling applications to run and achieve
good performance involved a close multi-year collaboration
between Intel, Argonne, and application developers to resolve
issues and improve performance. Progress in these areas at
the node level is shown in Figure 4, which covers from Q2 of
2022, when developers generally obtained initial access to the
Intel GPUs used on Aurora, to the most recent assessment at

2022 Q2
2022 Q3
2022 Q4
2023 Q1
2023 Q2
2023 Q3
2023 Q4
2024 Q1

5 10 15 20 25 30 35 40

Fig. 4: Status of Applications on Aurora Over Time

the end of Q1 of 2024. Figure 4 shows a high level assessment
of application functionality and performance, which each box
represents an application and successfully running applications
colored in differing shades of green depending on the level of
performance achieved. Dark green denotes applications run-
ning with a high degree of performance, where only incremen-
tal performance gains likely remain. Medium green represents
applications where reasonable performance has been achieved
but significant performance increases may still be achievable,
and light green indicates application where performance is low
or where performance has not been evaluated. Yellow denotes
applications that are partially running, which may represent
some but not all codes paths working, or that the code is
only partially ported. Orange denotes application running to a
lesser degree with only select kernels ported or functional.
Red denotes applications that have not run successfully to
any degree, and Grey indicates the applications that were
not yet tested on the Aurora Intel GPUs. Progress on scaling
applications to run at larger scale on Aurora is ongoing with
multiple applications having successfully scaled up to two
thousand nodes.

The development of a novel HPC software stack requires
long term effort and in many cases application development
work is gated by the functionality of this software environ-
ment. To facilitate the resolution of issues in the Aurora
software stack Argonne staff constructed an easy-to-use bash
based testing framework based on bats-core [8]. The basic
bats-core functionality was augmented with additional func-
tionality and features, such as robust test timeouts and device
resetting when tests hung, utility functions for figure-of-merit
performance recording, and archiving of test run artifacts. The
simplicity of the test framework presented a low barrier to
the development of tests and reproducers, which was essential
to enabling application developers to add reproducers. The
testing framework began with only a few initial tests and
grew to contain over 1100 tests and reproducers. In order to
add a reproducer, the reporter would need to make a new
subdirectory in the test set with the files needed to reproduce
the issue and add bats file with commands to reproduce the
issue. An example of a bats file is shown in Fig. 5.

1 # User code to be added by the bug reporter .
2 # This bash function contains the commands to test .
3 @test ” compile run test ” {
4 # test init creates a working directory
5 # and copies test files inside .
6 test init
7

8 # Commands from a user to reproduce the bug.
9 # For example here, a file is compiled and run.

10 # If both commands exit with a zero exit code,
11 # the test passes .
12 # Otherwise the test will fail on the first command
13 # that exits with a non−zero exit code.
14 # Thus, it will fail if either compile or run fail .
15

16 icpx ... main.cpp
17

18 ./ a . out
19 }

Fig. 5: Example of a simple bats file used in the test set

The test set is in a private git repository which is shared
with Intel and run by their engineers internally. Additionally, a
portion of the tests were incorporated into the internal compiler
testing at Intel. The testing framework was run with each new
pre- production Aurora software drop which allowed Argonne
staff to monitor bug fixes and regressions, and quickly identify
if a bug was fixed or not. Tests were kept in the test set after a
fix was delivered in order to monitor for possible regressions.

For Aurora the development of a common testing framework
that was used to consistently report and track issues proved to
be highly beneficial in maturing the software stack, which in
turn was critical to enabling applications to run successfully
on the Aurora testbeds. The use of the test framework was
found to help reduce the time from bug identification to
resolution, which was critical to enabling application progress.
In particular, the use of a shared standard test framework
allowed Intel to quickly access issue reproducers packaged in
a form that was convenient for compiler developers to work
with. The test set was also found to facilitate communication
and discussions about bugs with the vendor, since concrete

data from the same test and source code could be referred to
when resolving differences between what the vendor and the
facility were seeing. Once a sufficient number of tests were in
the framework it became a useful tool for validating systemic
underlying changes in the environment, such as firmware
changes, or software environment, such as the switch from
OpenCL to Level Zero for the underlying runtime. Fig. 6
shows the number of total bugs in the test set from 2019 to
2023 for a subset of the software drops from Intel and an
increase from an approximately 30% pass rate to a close to
90% pass rate.

Fig. 6: Reproducers In the Test Set Over Time (2019 to 2023)

IV. CONFIGURATIONS FOR APPLICATION BENCHMARKING

In this section, details of the applications studied are pre-
sented. The eleven applications here are a subset of appli-
cations from the ECP and ESP projects which were tracked
by the ALCF in the Aurora Applications Working Group,
discussed in Section III. Table I shows the employed appli-
cations in this study and their science domain, base language,
programming models/portability layers, and Figure-of-Merit
(FOM) definition.

A brief description of each code as well as details on the
build/runtime environment is:

A. AMR-Wind

AMR-Wind [10] is a massively parallel, block-structured
adaptive-mesh, incompressible flow solver for wind tur-
bine and wind farm simulations built on top of the AM-
ReX [11] framework. The version of AMR-Wind used in
this study is v0.9.0-4-g885f4137 with the AMReX ver-
sion 23.11-5-gd36463103dae, and it was built with Intel
oneAPI DPC++/C++ Compiler 2024.0.0 on Aurora
and NVIDIA CUDA compiler release 11.8 on Po-
laris. abl_godunov.i input is used to solve atmospheric
boundary layer flows in a cubic box with periodic boundary
condition in yz and xz planes, wall boundary conditions on the
bottom xy plane, and slip boundary conditions with a constant
temperature gradient on the top xy plane. Each GPU solves
512∗2562 cells for 2000∗10002 geometry with the maximum
grid size of 256 for 3 time steps. On Aurora, 2 MPI ranks (1

MPI rank per stack) were assigned to each GPU while a single
MPI rank per GPU was used on Polaris.

B. CNS-libParanumal

CNS is a high-order, discontinuous Galerkin-based, com-
pressible flow solver, and is one of the components built on top
of the libParanumal library [12]. The CNS application uses the
OCCA portability library [13] that enables runtime translation
and compilation of targeted kernels to programming model-
specific backend codes (SYCL/CUDA) for execution across
different hardware architectures. The version of libParanumal
used for this study is v0.5.0 with OCCA version v1.6.0.
The input file setupBoxHex3D.rc is used for the study
which sets up a cubic box with hexahedral elements with a
polynomial order of 5, with an initial Gaussian pressure wave
in the flowfield, and uses the low-storage Runge-Kutta time-
integrator to solve for 10000 time steps. The total runtime for
the time integration phase is measured. For the weak scaling
study, each GPU is setup to solve for 64∗32∗32 elements. On
Aurora, CNS was built with the Intel oneAPI 2024.0
SDK, and run with one MPI rank assigned to each PVC tile,
i.e. 2 MPI ranks per PVC GPU using the SYCL backend of
OCCA. On Polaris, CNS was built with the GNU 11.2.0
SDK along with the CUDA 11.8.0 standalone toolkit and
run with one MPI rank assigned to each A100 GPU using the
OCCA CUDA backend.

C. DCMesh

DC-MESH (divide-and-conquer Maxwell-Ehrenfest-Surface
Hopping) combines non-adiabatic quantum molecular dynam-
ics (NAQMD) with Maxwell equations for light with a divide-
and-conquer scheme [14]. The commit ad381f6 of DC-
MESH is used in this study on both Aurora and Polaris. The
benchmark uses the Local Field Dynamics (LFD) miniapp
simulating PbTiO3 material consisting of 40 atoms. Each MPI
rank, 288 Kohn-Sham wave functions are represented using the
plane-wave basis, while each orbital in LFD is represented
on 70×70×72 finite-difference mesh. On Polaris, LLVM 17
compiler was used for OpenMP offload features and one MPI
rank per A100 GPU was used. On Aurora/Sunspot, Intel
oneAPI 2024.0 release was used and one MPI rank per
GPU tile, namely two MPI ranks per PVC GPU was used.

D. FlashX

Flash-X [15] is a multi-physics simulation software
instrument written in Fortran, and uses parallel programming
model OpenMP as well as OpenACC to port the code
on heterogeneous systems. In this study, Flash-X is used
underneath Thornado which computes transport of neutrinos
and their interaction with matter. Thornado approximates the
neutrino radiation field by solving for angular moments of the
kinetic distribution function in a multi-species spectral two-
moment approach [16], [17]. The benchmark uses streaming
sine wave (SSW) that models the free-streaming of neutrinos
in phase-space with 16 neutrino energy elements, 4 moments,
2 neutrino species, and 2 nodes. The workload for each GPU

is set to a domain size of 100 x 100 x 50 and 24 blocks with
512 cells per block. On Aurora, Flash-X using OpenMP target-
offloading was built with the Intel oneAPI 2024.0 and
magma-2.7.0 and on Polaris, Flash-X using OpenACC
was built with nvhpc/23.3. For both systems, the commit
623c452973da110b4917f2cc80d9fe440881b51f
was used for this build. One MPI rank is set per tile on PVC
and per GPU on A100.

E. GAMESS

GAMESS [18], [19] is an electronic structure code with
many different quantum chemistry methods implemented.
GAMESS is mainly written in Fortran, with some C++ li-
braries. To target GPUs from the main Fortran code, GAMESS
uses OpenMP offload. The port from CPU OpenMP to GPU
OpenMP is discussed in Ref. [20]. The problem chosen for this
study is to compute the RI-MP2 energy of a cluster of 2,880
water molecules with the EFMO/RI-MP2 method [21]. The
EFMO/RI-MP2 method use multi-level parallelism (coarse-
grained parallelism via MPI groups and OpenMP CPU threads
and OpenMP offload to GPUs inside each MPI group) to
achieve a high level of parallelism. The input file studied here
is a water cluster: water.inp and can be found in Ref. [22].

On Aurora, GAMESS was built using commit 73a76205b
from branch ‘tsatta/w2-efp-offload-TF intel‘ with the Intel
oneAPI 2024.0 SDK. GAMESS is run with 12 compute
ranks (one per PVC tile) and 8 OpenMP CPU threads.

On Polaris, GAMESS is built using commit 7f2ba73 from
branch ‘buu/w2-polaris‘ with Nvidia HPC SDK 23.3.
GAMESS is run with 4 compute ranks (one per A100 GPU)
and 8 OpenMP CPU threads.

F. CRK-HACC

HACC (Hardware/Hybrid Accelerated Cosmology Code) is
a cosmological simulation code used for studying the forma-
tion of large-scale structure in the universe. Extended with
a modern smoothed particle hydrodynamics (SPH) approach
called CRKSPH [23], CRK-HACC [24] adds the ability to
resolve gas physics to HACC’s N-body gravitational solver.
The long-range gravity force solver is written in C++ and
MPI. The short-range gravity and hydro solvers are written
using programming models for GPU acceleration, currently
having CUDA, HIP, and SYCL implementations.

The configuration for this study is a cosmological adiabatic
(gravity+hydrodynamics) simulation with two species (dark
matter and baryon) of particles, ∼ 2563 per GPU, respectively.
Due to application configuration constraints, a fixed number
of MPI ranks was used for the test problems on each system:
12 MPI ranks on Sunspot/Aurora and 8 MPI ranks on Polaris.
Scaling was achieved by increasing the simulation volume and
maintaining a fixed particle density.

On Sunspot/Aurora, the SYCL implementation of CRK-
HACC was built using the Intel oneAPI DPC++/C++
Compiler 2024.1.0. On Polaris, the CUDA imple-
mentation of CRK-HACC was built using the NVIDIA
cuda_11.8.r11.8/compiler.31833905_0.

G. LAMMPS

The Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) is a general-purpose molecular simulation
code with a focus on molecular dynamics [25] . LAMMPS
supports potentials for a wide range of systems, including
solid-state materials, soft matter, liquids, and coarse-grained
or mesoscopic systems.

LAMMPS runs on a single processor or in parallel using
message-passing techniques and a spatial-decomposition of
the simulation domain. LAMMPS is written in C/C++ and
includes support for OpenMP on CPUs, a GPU package with
CUDA, HIP, and OpenCL backends, and a Kokkos package.
Kokkos is the primary programming model for this work with
SYCL backend on Aurora and CUDA backend on Polaris.

This work targets molecular dynamics simulation of materi-
als related to nuclear fusion and fission using SNAP potential
which stands for Spectral Neighbor Analysis Potential. In this
work 26 neighbors were used for each atom and 9 descriptors
used to describe the energy of the atom with respect to its
surrounding, using LAMMPS version Nov-2023. To make sure
each GPU on A100 or tile on PVC has enough work to do,
16,000 atoms per tile or 32,000 atoms per GPU were used.
The run time was 100 time steps. 1 MPI rank per PVC tile was
used on Aurora, and 1 MPI rank per A100 was used on Po-
laris. On Aurora LAMMPS was built with Intel OneAPI
2023.05.15.006 and on Polaris, LAMMPS was built with
cuda_11.8.r11.8/compiler.31833905_0.

H. NWChemEx

NWChemEx’s [26] component TAMM [27] focuses on ten-
sor algebra operations such as contractions in computational
chemistry which contributes to a significant fraction of the
computing time. The widespread use of tensor contractions be-
tween large multi-dimensional tensors in describing electronic
structure theory has motivated the development of multiple
tensor algebra frameworks targeting heterogeneous computing
platforms. In addition, a single-source, cross-platform C++ ab-
straction layer programming model, SYCL backend in TAMM
was already tested for this computational chemistry methods
such as CCSD(T) coupled-cluster formalism. [28]

A primitive runtime launch configuration involves launching
number of MPI ranks per node same as the number of Intel
PVC tiles per node plus one and Nvidia A100 GPUs per node
plus one for Aurora and Polaris respectively. This additional
MPI rank was used to support PGAS configurations from
Global Arrays project. [29] Benchmarks were performed with
NWChemEx configured with GCC 11.2, CUDA 11.8 and
cray-mpich-8.1.25 for Polaris and Intel oneAPI
compiler version 2023.12.15.002 for Aurora.

An interesting software formalism for Aurora is to explicitly
use High Bandwidth Memory (HBM) component via numactl
APIs [30] from the CPUs on node as a staging buffer for
faster host-device data transfer and standard DDR component
for large-scale distributed memory operations.

I. OpenMC

OpenMC [31] is an open source Monte Carlo neutral
particle transport application. It is used extensively for the
simulation of nuclear fission reactors and fusion energy de-
vices, as well as for more general radiation transport analysis.
An exascale-focused GPU version of OpenMC has recently
been developed [32] and has demonstrated highly efficient
performance at scale on NVIDIA, Intel, and AMD GPU
supercomputers [33] via C++ OpenMP target offloading. On
Intel GPUs, OpenMC was launched in 4 CCS mode with 4
MPI ranks per tile (8 MPI ranks per GPU), while on NVIDIA
GPUs OpenMC used 4 MPI ranks per GPU with the NVIDIA
multi-process service (MPS) enabled.

The benchmark simulation problem used in this study
represents a realistic small modular reactor with around
195,000 unique depleted fuel regions. The figure of merit
for performance is the active batch particle tracking rate
in terms of millions of particle histories per second. No-
tably, this figure includes costs for reaction rate tallies for
each uniquely depleted fuel region. For offloading to Intel
GPUs, OpenMC utilized the Intel oneAPI compiler
version 2023.12.15.002. For offloading to NVIDIA
GPUs, OpenMC utilized the LLVM 17.0.6 compiler with
CUDA 11.8.0.

J. SW4

SW4 (Seismic Waves, 4th Order) is a summation-by-parts,
explicit time-stepping, fourth order finite difference program
for simulating seismic wave propagation [34]. The SW4 code
is written in C++ and utilizes RAJA [35] to enable parallel
kernel execution on GPUs. This work utilizes the ‘berkeley-
r.in‘ test input with nx=701. For both Aurora and Polaris, SW4
was built using RAJA (v2023.06.01).

On Aurora, SW4 targets the SYCL backend of RAJA and
was built using the Intel oneAPI 2024.0 SDK. This
work executes SW4 with a single MPI rank per PVC tile on
Aurora.

On Polaris, SW4 was built using the cuda 11.8.0 toolkit
with the GNU 11.2.0 compiler to target the RAJA CUDA
backend. This work execute SW4 with a single MPI rank per
A100 GPU on Polaris.

K. XGC

XGC is a gyrokinetic particle-in-cell code for simulating
magnetically confined fusion plasmas in toroidal devices [36].
The primary language is C++. XGC uses Kokkos [37] for
GPU offloading and performance portability in general. XGC
also uses parts of the Cabana [38] library. The test problem
is XGC1Example [39] (electrostatic, full-f , with drift kinetic
electrons), keeping 9397 particles per grid vertex in each
radial-poloidal plane. Weak scaling increases the number of
radial-poloidal planes (toroidal grid points) proportional to the
number of MPI ranks.

On Aurora, XGC was built from commit 090639c8 from
the main branch using the Intel oneAPI 2024.0 SDK.

It was run using 1 MPI rank per PVC tile and 16 OpenMP
CPU threads per rank.

On Polaris, XGC was built from commit 090639c8 from
the main branch using the GNU 11.2.0 compiler with
cudatoolkit 11.8.0. It was run using 2 MPI ranks per
A100 GPU and 16 OpenMP CPU threads per rank.

V. PERFORMANCE COMPARISON OF APPLICATIONS ON
AURORA AND POLARIS

To evaluate performance of the applications on Aurora and
Polaris, we considered the FOM of the applications running
on a single PVC vs. a single A100, as well as the parallel
efficiency on a single node of Aurora (1,3,6 PVCs) and Polaris
(1,2,4 A100s).

Figure 7 shows the FOM performance of the applications
on a PVC on Aurora relative to the FOM performance on an
A100 on Polaris. Most of the applications are over a ratio
of 1, meaning that they perform better on PVC than A100.
The change in performance on A100 vs. PVC will depend
on algorithm, as different algorithms will expect different
bottlenecks (compute, bandwidth, cache, latency-bound, etc.).
Further investigation of what performance is expected for each
application will be done in the future. The pre-production
Aurora GPU shows approximately 1x to up to 2x performance
better than the production-level Nvidia GPUs at ALCF, and on
average 1.3x speedup.

NWChemEx has the smallest ratio of PVC performance
to A100. This is expected due to a limitation of the current
version of SYCL which resulted in needing to add in extra
synchronization to the Aurora version which was not needed
on Polaris. This is discussed in more detail in Section VI.

Fig. 7: FOM Performance on a PVC, Relative to A100. The
asterisk denotes that the runs were done on a slightly earlier
version of the firmware and driver than the results without the
asterisk.

A comparison of the FOMs for each application on Polaris
and Aurora is shown in Table II. Note that the FOM from
different applications have different units, so the comparing
between applications is not meaningful.

TABLE I: Applications tested across Polaris and Aurora

Application Science Domain Base language Programming FOM definition Scaling
model or
Portability layer

AMR-Wind Computational Fluid Dynamics C++ AMReX (SYCL,CUDA) Ncell/WT-per-step/106 Weak scaling
CNS-libParanumal Computational Fluid Dynamics C++ OCCA NDoFs*Nsteps/WT/106 Weak scaling
DCMesh Electronic Structure C++ OpenMP Offload MPI ranks/Total time Weak scaling
FlashX Steller Explosion Fortran OpenMP Offload/OpenACC DOFs*Ntsteps/Evolution Time/109 Weak scaling
GAMESS Electronic Structure Fortran OpenMP Offload 1/(Wall Time)/105 Strong scaling
CRK-HACC Cosmology C++ SYCL particles*steps*subcycles /time /1e6 Weak scaling
LAMMPS Chemistry/Material Science C++ Kokkos (#of atoms)*(# of steps) / Weak scaling

(Loop time (sec))/1e6
NWChemEx Electronic Structure C++ SYCL 1/(Wall Time) Strong scaling
OpenMC Particle Transport C++ OpenMP Offload million neutrons/second Weak scaling
SW4 Earth Science C++ RAJA (f max4̂)/(solver time × 7.6) Strong scaling
XGC Tokamak Plasma Kinetics C++ Kokkos (1/(Wall Time per particle Weak scaling

per ion timestep))/1e6

TABLE II: FOM Within a Node on Aurora and Polaris. The asterisk denotes that the runs were done on a slightly earlier
version of the firmware and driver than the results without the asterisk.

1 PVC 1 A100 Half-node (3 PVC) Half-node (2 A100) 6 PVC 4 A100
AMR-Wind 33.88 24.35 92.61 43.05 178.30 73.54
CNS-libParanumal 162.93 157.21 459.53 308.31 938.81 603.71
DCMesh* 2.08 1.05 6.28 2.09 12.37 4.14
FlashX 0.50 0.49 1.40 0.91 2.70 1.97
GAMESS* 13.34 9.41 39.31 18.66 79.52 36.82
CRK-HACC* 3.79 2.55 10.94 5.22 21.54 10.23
LAMMPS 2.04 2.14 5.42 4.24 10.60 8.43
NWChemEx* 0.83 1.02 2.43 2.05 4.78 4.03
OpenMC 0.35 0.19 1.04 0.37 2.03 0.73
SW4* 0.0015 0.0014 0.0036 0.0027 0.0064 0.0050
XGC 4.65 3.54 13.61 7.10 25.92 12.84

To investigate the single-node scaling, the parallel efficiency
inside a single node of Aurora is shown in Fig. 8 and the
parallel efficiency inside a single node of Polaris is shown in
Fig. 9. The parallel efficiency is similar on both systems for
most of the applications. However, there several differences to
discuss.

AMR-Wind on Polaris loses its parallel efficiency quickly
via weak scaling with 4 GPUs (i.e., 75.5%) compared to
its efficiency with 6 GPUs (i.e., 87.7%) on an Aurora node.
According to performance profiling with tools (e.g., NVIDIA
Nsight System on Polaris, and Intel VTune on Aurora), the
PCIe traffic behavior with multiple GPUs differs between
Aurora and Polaris. On an Aurora node, PCIe bandwidth
increased linearly with 3 GPUs and 6 GPUs compared to a
single GPU. However, on a Polaris node, PCIe traffic took
2.3 times longer with 4 GPUs than with a single GPU, while
traffic with 2 GPUs took only 7% longer than with a single
GPU. Further investigation will be carried out to identify the
root cause of the intra-node efficiency drop on Polaris.

SW4 shows lower parallel efficiency running on Aurora
compared to Polaris. From looking at a timing breakdown,
this is from a difference in performance for the communication
routines in SW4. For single node execution, there is additional
communication between the 12 MPI ranks per node on Aurora
compared to the 4 ranks per node on Polaris. There is ongoing
work to optimize the communication routines for SW4 on
Aurora.

CRK-HACC shows super-linear scaling on Polaris. The
code is weak-scaled by keeping the amount of work per
GPU constant but also keeping the number of MPI ranks
constant (12 for Aurora and 8 for Polaris). Thus, the overhead
of oversubscribing MPI ranks to GPUs is greatest on the
reference case of 1 GPU. For multi-node scaling, this would
not occur since the number of ranks per GPU is constant in
that case.

Note that the two results from OpenMC on 6 PVC and 4
A100 were taken from Ref. [33].

VI. DISCUSSION OF PORTING TO AURORA

This section discusses any challenges to porting and achiev-
ing performance on Aurora. Additionally, any specific tuning
or modifications that the applications needed to make to be
able to run and perform well on Aurora are discussed.

A. AMR-Wind

AMReX framework has been ported to Intel GPUs with the
SYCL programming model, and AMR-Wind uses the AMReX
framework as the portability layer. At the beginning, Intel
IRIS Gen9 integrated GPU was the target platform, and AMR-
Wind performance was around a half million cells per second
(i.e., FOM was around 0.5). Once an early Intel discrete GPU
was available for the development, the performance increased
around 6 times (i.e., FOM was above 3.0). The first silicon of
PVC doubled AMR-Wind performance (i.e., FOM was around
7.5). With the dual stack design of the latest PVC on Aurora

Fig. 8: Parallel Efficiency on a Single Node of Aurora. The
asterisk denotes that the were done on a slightly earlier version
of the firmware and driver than the results without the asterisk.

Fig. 9: Parallel Efficiency on a Single Node of Polaris

and a myriad of progress in the oneAPI software over the
last few of years, AMR-Wind performance on a single PVC
increased more than 4 times from the earlier version of PVC
and corresponding oneAPI software.

The oneAPI software has several knobs for obtaining better
application performance, and the use of immediate command
lists [40] is beneficial to improve AMR-Wind performance
on Aurora. With this feature, multiple command lists can
run concurrently on a single hardware queue and batching
of kernels on the GPU is allowed, while it generates more
host overhead on appending an operations to the command
list. It has been the default submission mode on Aurora since
oneAPI/2023.2 release, and AMR-Wind gains around
10% more performance with the same workloads on an Aurora
node with the feature.

B. CNS-libParanumal

The first step involved in porting CNS to Aurora was
to implement the SYCL (DPC++) backend in the OCCA

portability library. This was a major effort undertaken as
part of the ECP project in order to port other downstream
applications such as nekRS as well. Since all the core kernels
in the CNS application and libParanumal libraries are ported
using OCCA, porting and running it on Aurora did not require
any major code modifications to the application itself. There
were some code modifications required to remove the use of
variable length arrays (VLA) that are not allowed in C++11
standard as per the Intel SDK. Through the implementation
of new test cases and validation efforts, some bugs were
also found and fixed with the help of the developers. In
order to tune the performance, there were several efforts
undertaken. In particular, enforcing SIMD16 instructions us-
ing the IGC_ForceOCLSIMDWidth environment variable,
along with the compiler flag to automatically choose the
register file size (128kB or 256kB), enabled a larger register
file per thread for some of the kernels with a large register
pressure and thereby avoid register spilling.

C. DCMesh

Unlike a lot of applications having NVIDIA GPU port
far ahead of the support on Intel GPUs, DCMesh adopted
the portable OpenMP programming model and made its
GPU porting almost fully vendor agnostic. Some calculations
involving matrix-matrix multiplications still rely on calling
vendor optimized libraries with minimal source codes using
vendor specific programming models. This porting strategy
maximized portability without sacrificing performance on ei-
ther GPUs.

D. FlashX

During the porting of Flash-X on Intel-based HPC sys-
tems, initially, Thornado was identified as a computing
intensive module that consumes 80% of FLOPS. Hence,
Thornado was the target for performance optimization and
enhancement on PVC. Several compiler-related bugs were
reported and they have been resolved timely by Intel.
Controlling device memory via Level Zero specifica-
tions by tuning an OpenMP offload environment variable,
LIBOMPTARGET_LEVEL_ZERO_MEMORY_POOL, helped to
obtain significant performance improvement (2x on SSW).
Further, switching from JIT to AOT compilation reduced total
time of Thornado by 2.2x on SSW. One kernel in Thornado
initially failed to compile due to needing to use more bytes
than allowed to pass parameters to a kernel. However, this was
overcome by increasing the limit allowed by setting an envi-
ronmental variable IGC_OverrideOCLMaxParamSize.

E. GAMESS

A large effort was carried out to port GAMESS to OpenMP
Offload for GPUs during ECP. Compared to other vendors,
there were no large structural changes needed to be able to
run on Aurora. However, there were several parameters we
needed to tune to improve performance on Aurora, as well as
multiple bugs in the early software.

The GAMESS team found that tuning the number of
OpenMP threads, OpenMP teams, and using compiler flags to
decrease register spilling was essential to getting performance
on Aurora. For example, the tuned options can be up to 4x
faster than the default options.

One of the biggest performance issues early on was that
the routines that called ‘omp atomic‘ were significantly slower
than on other architectures. This was isolated and added as a
stand-alone test in the bug repository, and it was fixed by Intel.

F. CRK-HACC

The CRK-HACC codebase was, and is currently, under
active development using CUDA. To prepare for Aurora, effort
was made on automating the migration from CUDA source
files to SYCL using SYCLomatic [41], [42] and developing
customized Clang-based tools for fine tuning the source-to-
source translation. Five of the most intensive kernels were
identified and the focus of a performance optimization ef-
fort [43], where SYCL sub-group “shuffle“ operations were
identified to be a performance bottleneck. Solutions using
shared local memory and inline assembly were developed for
the Intel PVC GPU.

G. LAMMPS

In this work LAMMPS with Kokkos using SYCL backend
was used, which resulted in having to manage multiple depen-
dencies and the combination of early versions of KOKKOS,
Intel software and tools, and early hardware. Most of the
work was done on a proxy application that executed the main
kernels. The first published work [44] focused on a direct
OpenMP 4.5 implementation of the mini app and understand-
ing how source code modifications impacted the performance
across three vendor’s GPUs at the time. Testing the full
LAMMPS application on early hardware was enabled in 2022
and that brought new challenges with respect to evolving
software stack and understanding performance relative to other
architectures. This work was a collaborative effort with Intel,
Kokkos, and LAMMPS developers to understand observed
vs. expected performance aided by tools, such as VTune.
Some changes that were done to improve the performance
are as follow: a) Manually casting shared memory pointer
from global to local address space b)Tuning of workgroup
size for different kernels c)Experimental Kokkos interface to
set workgroup size on per-kernel basis.

H. NWChemEx

NWChemEx is one of the co-design projects of ECP to be
written using modern C++ and Python to take advantage of
the potential of exascale computing era. The code was initially
developed for Nvidia GPUs using CUDA and then ported
to HIP and SYCL for AMD and Intel GPUs respectively.
The porting strategy involved using SYCLomatic [41] to port
CUDA kernels to SYCL.

A current issue related to SYCL’s host_task function-
ality limits the performance on Intel GPUs. As a work-
around, the application enforces a synchronization of the

SYCL event returned by the host_task for the Level-Zero
plugin associated with Intel GPUs.

I. OpenMC

On both Intel and Nvidia GPUs, a “unity” build with
cmake was used, wherein all source code was treated as
a single compilation unit to reduce the need for link time
optimization. Full details of the OpenMC porting and opti-
mization effort are available in [32], [33]. To improve per-
formance on the Intel system, the Intel oneAPI compiler’s
IGC_ForceOCLSIMDWidth environment variable was set
to 16.

J. SW4

SW4 utilizes RAJA for GPU acceleration by implementing
RAJA execution policies targeting a compatible backend. The
porting of SW4 for Aurora was developed alongside the de-
velopment of the SYCL backend of RAJA. The existing RAJA
execution policies for the CUDA backend were ported to target
the SYCL backend. Beyond the development of the RAJA
SYCL backend support, a workaround was implemented to
remove function pointer usage on the device since it wasn’t
supported at the time of porting (although it is now).

SW4 required additional optimization to improve the per-
formance for Aurora. Several of the most computationally ex-
pensive kernels in SW4 create significant register pressure. For
SW4, compiling with use of the large register file option pro-
vides significantly improved performance by reducing spilling.
Additionally, SW4 performs a 125-point stencil computation
resulting in performance sensitivity to the default 3-D SYCL
kernel work group size selection. RAJA is designed to expose
these tuning knobs and additional performance improvements
were gained by optimizing these RAJA execution policies.

K. XGC

XGC uses Kokkos [37] and some parts of Cabana [38]
for performance portability. The earliest available usable
port of Kokkos for Intel GPUs was implemented with the
OpenMPTarget execution space, so that was used with early
integrated graphics and discrete GPU testbed hardware. Once
the SYCL execution space implementation of Kokkos matured,
the Kokkos development team recommended switching to
that. Working with the developers implementing Kokkos for
Intel GPU hardware was invaluable. In benchmarking PVC, it
became clear early on that the standard single-GPU test case
was too small to make good use of the amount of concurrency
supported by a PVC GPU. Increasing the number of particles
per mesh vertex by a factor of two or more improved the
relative performance w.r.t. an A100 GPU significantly. There
are still some performance knobs to tune for optimizing XGC
on PVC, such as adjusting the SIMD width and finding ways
to reduce register spills; this is ongoing work.

VII. CONCLUSIONS

The ALCF has been preparing for Aurora for the last several
years. As part of the preparation, one of the approaches the

ALCF took was tracking application status via a working
group with ALCF, Intel, and application developers, as well
as quarterly surveys sent to ECP and ESP application devel-
opment teams. Additionally, bugs and issues were tracked via
a shared git repository with source code reproducers. These
tracking strategies were essential to ensuring the usability of
Aurora by a wider range of applications, by helping the ALCF
identify wide-spread issues and communicate with the vendor
efficiently about bugs. To evaluate the current state of the
tracked applications on Aurora and Polaris, the single-GPU
and intra-node scaling performance for a subset of the tracked
applications was discussed. The intra-node scaling was similar
on both Polaris and Aurora, and on average the single GPU
FOM performance on pre-production Aurora was 1.3x that on
production-level Polaris.

Future work will also include applications from a wider
range of programming models and domains, like machine
learning. Additionally, the application performance differences
seen between Aurora and Polaris will be investigated in more
detail, as well as power measurement comparisons between
Aurora and Polaris.

ACKNOWLEDGMENT

This work was done on a pre-production supercomputer
with early versions of the Aurora software development kit.

This work was supported by the Argonne Leadership Com-
puting Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357, and by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office
of Science and the National Nuclear Security Administration).

REFERENCES

[1] “The compute architecture of intel processor graphics gen9.” [On-
line]. Available: https://cdrdv2-public.intel.com/774710/the-compute-
architecture-of-intel-processor-graphics-gen9-v1d0-166010.pdf

[2] “Inlte oneapi.” [Online]. Available: https://www.intel.com/oneapi/
[3] T. Lists, “Doe/sc/argonne national laboratory systems on the top500

list,” 2023. [Online]. Available: https://www.top500.org/site/47347/
[4] [Online]. Available: https://www.exascaleproject.org/
[5] [Online]. Available: https://www.alcf.anl.gov/science/early-science-

program
[6] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,

“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[7] B. Homerding, B. Lenard, C. Blackworth, C. Holohan, A. Kulyavtsev,
G. McPheeters, E. Pershy, P. Rich, D. Waldron, M. Zhang, K. Harms,
T. Leggett, and W. Allcock, “Polaris and acceptance testing.” CUG2023
Proceedings, 2023.

[8] J. Kwack, “The path to Aurora, GPU for Science Day.”
[Online]. Available: https://www.nersc.gov/users/training/past-training-
events/2023/gpus-for-science-day-2023/

[9] W. Gomes, A. Koker, P. Stover, D. Ingerly, S. Siers, S. Venkataraman,
C. Pelto, T. Shah, A. Rao, F. O’Mahony, E. Karl, L. Cheney, I. Rajwani,
H. Jain, R. Cortez, A. Chandrasekhar, B. Kanthi, and R. Koduri, “Ponte
vecchio: A multi-tile 3d stacked processor for exascale computing,”
in 2022 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 65, 2022, pp. 42–44.

[10] AMR-Wind Webpage. [Online]. Available: https://amr-
wind.readthedocs.io/en/latest/

[11] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan,
M. Day, B. Friesen, K. Gott, D. Graves, M. Katz, A. Myers, T. Nguyen,
A. Nonaka, M. Rosso, S. Williams, and M. Zingale, “AMReX: a
framework for block-structured adaptive mesh refinement,” Journal of
Open Source Software, vol. 4, no. 37, p. 1370, May 2019. [Online].
Available: https://doi.org/10.21105/joss.01370

[12] N. Chalmers, A. Karakus, A. P. Austin, K. Swirydowicz, and
T. Warburton, “libParanumal: a performance portable high-order
finite element library,” 2022, release 0.5.0. [Online]. Available:
https://github.com/paranumal/libparanumal

[13] D. S. Medina, A. St-Cyr, and T. Warburton, “Occa: A unified approach
to multi-threading languages,” arXiv preprint arXiv:1403.0968, 2014.

[14] T. Linker, K. ichi Nomura, A. Aditya, S. Fukshima, R. K.
Kalia, A. Krishnamoorthy, A. Nakano, P. Rajak, K. Shimmura,
F. Shimojo, and P. Vashishta, “Exploring far-from-equilibrium
ultrafast polarization control in ferroelectric oxides with excited-
state neural network quantum molecular dynamics,” Science
Advances, vol. 8, no. 12, p. eabk2625, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.abk2625

[15] A. Dubey, K. Weide, J. O’Neal, A. Dhruv, S. Couch, J. A. Harris,
T. Klosterman, R. Jain, J. Rudi, B. Messer et al., “Flash-x: A multi-
physics simulation software instrument,” SoftwareX, vol. 19, p. 101168,
2022.

[16] M. Shibata, K. Kiuchi, Y. Sekiguchi, and Y. Suwa, “Truncated Mo-
ment Formalism for Radiation Hydrodynamics in Numerical Relativity,”
Progress of Theoretical Physics, vol. 125, pp. 1255–1287, 2011.

[17] C. Y. Cardall, E. Endeve, and A. Mezzacappa, “Conservative 3+1 general
relativistic variable Eddington tensor radiation transport equations,”
Physical Review D, vol. 87, p. 103004, 2013.

[18] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su,
T. L. Windus, M. Dupuis, and J. A. Montgomery, “General atomic
and molecular electronic structure system,” Journal of Computational
Chemistry, vol. 14, no. 11, pp. 1347–1363, 1993.

[19] G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva,
J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez,
T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li,
W. Li, J. J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata,
B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell,
L. B. Roskop, K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt,
J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari,
J. L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev,
and M. S. Gordon, “Recent developments in the general atomic
and molecular electronic structure system,” The Journal of Chemical
Physics, vol. 152, no. 15, p. 154102, 2020. [Online]. Available:
https://doi.org/10.1063/5.0005188

[20] F. Zahariev, P. Xu, B. Westheimer, S. Webb, J. Vallejo, A. Tiwari,
V. Sundriyal, M. Sosonkina, J. Shen, G. Schoendorff, M. Schlinsog,
T. Sattasatuchana, K. Ruedenberg, L. Roskop, A. Rendell, D. Poole,
P. Piecuch, B. Pham, V. Mironov, and M. Gordon, “The general atomic
and molecular electronic structure system (gamess): Novel methods on
novel architectures,” Journal of Chemical Theory and Computation,
vol. 19, 10 2023.

[21] B. Q. Pham, L. Carrington, A. Tiwari, S. S. Leang, M. Alkan, C. Bertoni,
D. Datta, T. Sattasathuchana, P. Xu, and M. S. Gordon, “Porting
fragmentation methods to gpus using an openmp api: Offloading
the resolution-of-the-identity second-order møller–plesset perturbation
method,” The Journal of Chemical Physics, vol. 158, no. 16, 2023.

[22] [Online]. Available: https://github.com/colleeneb/cug2024
[23] N. Frontiere, C. D. Raskin, and J. M. Owen, “Crksph–a conservative

reproducing kernel smoothed particle hydrodynamics scheme,” Journal
of Computational Physics, vol. 332, pp. 160–209, 2017.

[24] N. Frontiere, J. Emberson, M. Buehlmann, J. Adamo, S. Habib,
K. Heitmann, and C.-A. Faucher-Giguère, “Simulating hydrodynamics
in cosmology with crk-hacc,” The Astrophysical Journal Supplement
Series, vol. 264, no. 2, p. 34, 2023.

[25] [Online]. Available: https://github.com/lammps/lammps
[26] K. Kowalski, R. Bair, N. P. Bauman, J. S. Boschen, E. J. Bylaska,

J. Daily, W. A. de Jong, T. Dunning Jr, N. Govind, R. J. Harrison
et al., “From nwchem to nwchemex: Evolving with the computational
chemistry landscape,” Chemical reviews, vol. 121, no. 8, pp. 4962–4998,
2021.

[27] E. Mutlu, A. Panyala, N. Gawande, A. Bagusetty, J. Glabe, J. Kim,
K. Kowalski, N. P. Bauman, B. Peng, H. Pathak et al., “Tamm: Tensor

algebra for many-body methods,” The Journal of Chemical Physics, vol.
159, no. 2, 2023.

[28] A. Bagusetty, A. Panyala, G. Brown, and J. Kirk, “Towards cross-
platform portability of coupled-cluster methods with perturbative triples
using sycl,” in 2022 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2022, pp. 81–88.

[29] J. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and V. Tipparaju,
“Supporting the global arrays pgas model using mpi one-sided com-
munication,” in 2012 IEEE 26th International Parallel and Distributed
Processing Symposium. IEEE, 2012, pp. 739–750.

[30] A. Kleen, “A numa api for linux,” Novel Inc, 2005.
[31] P. K. Romano, N. E. Horelik, B. R. Herman, A. G.

Nelson, B. Forget, and K. Smith, “OpenMC: A state-of-the-art
Monte Carlo code for research and development,” Annals of
Nuclear Energy, vol. 82, pp. 90–97, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S030645491400379X

[32] J. R. Tramm, P. K. Romano, J. Doerfert, A. L. Lund, P. C. Shriwise, A. R.
Siegel, G. Ridley, and A. Pastrello, “Toward portable GPU acceleration
of the OpenMC Monte Carlo particle transport code,” in PHYSOR 2022
- International Conference on Physics of Reactors, May 2022.

[33] J. R. Tramm, P. K. Romano, P. C. Shriwise, A. L. Lund, J. Doerfert,
P. Steinbrecher, A. R. Siegel, and G. Ridley, “Performance portable
Monte Carlo particle transport on Intel, NVIDIA, and AMD GPUs,” in
SNA + MC 2024: Joint International Conference on Supercomputing
in Nuclear Applications + Monte Carlo, Paris, France, Oct. 2024,
submitted. Preprint available at https://arxiv.org/abs/2403.12345.

[34] N. A. Petersson, B. Sjögreen, H. Tang, and R. Pankajakshan, “Wave
propagation in anisotropic elastic materials and curvilinear coordinates
using a summation-by-parts finite difference method,” Journal of
Computational Physics, vol. 299, p. 820–841, Oct. 2015. [Online].
Available: http://dx.doi.org/10.1016/j.jcp.2015.07.023

[35] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“Raja: Portable performance for large-scale scientific applications,” in
2019 ieee/acm international workshop on performance, portability and
productivity in hpc (p3hpc). IEEE, 2019, pp. 71–81.

[36] S. Ku, C. Chang, and P. Diamond, “Full-f gyrokinetic particle
simulation of centrally heated global itg turbulence from magnetic
axis to edge pedestal top in a realistic tokamak geometry,” Nuclear
Fusion, vol. 49, no. 11, p. 115021, sep 2009. [Online]. Available:
https://dx.doi.org/10.1088/0029-5515/49/11/115021

[37] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[38] S. Slattery, S. T. Reeve, C. Junghans, D. Lebrun-Grandié, R. Bird,
G. Chen, S. Fogerty, Y. Qiu, S. Schulz, A. Scheinberg, A. Isner,
K. Chong, S. Moore, T. Germann, J. Belak, and S. Mniszewski,
“Cabana: A performance portable library for particle-based simulations,”
Journal of Open Source Software, vol. 7, no. 72, p. 4115, 2022.
[Online]. Available: https://doi.org/10.21105/joss.04115

[39] Testing xgc. [Online]. Available:
https://xgc.pppl.gov/html/kernels and tests.html#testing-xgc

[40] Level Zero Immediate Command Lists Webpage. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/guide/level-
zero-immediate-command-lists.html

[41] A. Huang, “Syclomatic compatibility library: making migration to sycl
easier,” in Proceedings of the 2023 International Workshop on OpenCL,
2023, pp. 1–2.

[42] Z. Wang, Y. Plyakhin, C. Sun, Z. Zhang, Z. Jiang, A. Huang, and
H. Wang, “A source-to-source cuda to sycl code migration tool: Intel®
dpc++ compatibility tool,” in International Workshop on OpenCL, 2022,
pp. 1–2.

[43] E. M. Rangel, S. J. Pennycook, A. Pope, N. Frontiere, Z. Ma, and
V. Madananth, “A performance-portable sycl implementation of crk-
hacc for exascale,” in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1114–1125.

[44] N. A. Mehta, R. Gayatri, Y. Ghadar, C. Knight, and J. Deslippe.,
“Evaluating perfor-mance portability of openmp for snap on nvidia, intel,
and amd gpu’s using the roofline methodology,” in IEEE International

Workshop on Accelerator Pro-gramming Using Directives, 2020, pp. 3–
24.

