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Abstract—- The Swiss National Supercomputing Centre
(CSCS) is enhancing its computational capabilities through the
expansion of the Alps architecture, a Cray HPE EX system
equipped with approximately 10000 Grace-Hopper GH200, in
addition to the pre-existing 1000 nodes of diverse combination of
CPUs and GPUs. This scale-up introduces significant challenges
in monitoring and observability, particularly due to the increased
hardware heterogeneity encompassing AMD Rome CPUs, AMD
Mi250x and Mi300 GPUs, Nvidia A100 GPUs, and the Arm-based
superchip GH200. Effectively managing the vast amounts of data
produced in modern supercomputing, from hardware to software
to facilities, poses a significant challenge. This paper introduces
EMOI, a scalable architecture that simplifies observability for
large clusters. EMOI offers a flexible and reliable solution,
seamlessly integrating with existing HPE monitoring applications
while adhering to HPE guidelines. We demonstrate EMOI’s
effectiveness by analyzing energy consumption across different
architectures within the Alps supercomputer, providing insightful
analysis.

I. INTRODUCTION

Managing large clusters presents a significant challenge:
efficiently collecting, ingesting, and analyzing vast amounts
of data from diverse sources. Operators require a platform
capable of handling massive data loads while remaining adapt-
able to various data types. This includes logs, metrics, and
traces originating from a wide range of sources, encompassing
everything from hardware sensors to user activity data.
This paper proposes the EMOI platform, a flexible and scalable
observability and monitoring solution designed specifically for
large clusters. Crafted to integrate seamlessly with the HPE-
CRAY native monitoring application and adhering to HPE
guidelines, EMOI offers a robust solution. While the paper
details specific software components, these can be readily
replaced with equivalent tools that better suit the specific needs
of a different facility.
The EMOI platform addresses the challenges presented by
next-generation supercomputers like ALPS, the new CSCS
machine. ALPS retrieves a wide variety of data, including logs,
metrics, and sensor data, for both analytics and storage. Its
runtime partitioning allows for multiple virtual clusters [12] to
run concurrently. EMOI tackles the complexities of collecting,
segmenting, and presenting this data to different stakeholders.
Flexibility, scalability based on workload, and minimal mainte-
nance effort are core design principles for the EMOI platform.
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This ensures it can effectively handle the ever-growing data
demands of modern supercomputing.
In the second part of this paper, II EMOI Infrastructure,
we will show how can we leverage the EMOI infrastruc-
ture to analyze a critical business case - monitoring the
energy consumption of our production machines. In modern
supercomputers, electricity is a major operational cost. The
top500.org list has been tracking power usage alongside peak
performance (FLOPs/sec) since 1993 and 2013, respectively.
Even though the current top systems in the Green500 list
are highly efficient, there still remains a considerable power
consumption.
Our case aims to understand and report energy consumption
across different architectures, at both the node and cabinet
level. Accurate and timely power data monitoring is essen-
tial for controlling system energy usage. Additionally, this
information can raise user awareness about their own con-
sumption, fostering a culture of energy responsibility in High-
Performance Computing (HPC).
The paper is structured as follows:

• in Section II we present EMOI’s architecture, focusing
on its key components. We highlight how the integration
of GitOps and Kubernetes enables dynamic deployment
and efficient service management;

• Section III details the seamless integration of Cray Sys-
tem Management (CSM) and Cray System Monitoring
Application (SMA) within EMOI. We discuss how the
Kafka-centric approach fosters enhanced system interop-
erability;

• in Section IV we delve into the structure and quality
of the energy datasets collected, with a specific focus
on power consumption data and its relevance in today’s
rising energy cost environment. We share our practical
experience in crafting an energy dataset that facilitates
effortless correlation between telemetry and job-level
data. We showcase results obtained by comparing power
consumption across various CPU and GPU node archi-
tectures within the ALPS system.

In closing, this paper explores best practices for data sharing
between internal and external stakeholders. This collaborative
approach fosters not only improved operational efficiency but
also the creation of valuable datasets for developing machine
learning models dedicated to infrastructure analysis. We then
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conclude by discussing the achieved results, key takeaways
from our development journey, and outlining our future plans
for EMOI’s continued development.

II. EMOI INFRASTRUCTURE

One of our main objective is to minimize the burden on
human operators while ensuring the deployment, monitoring,
maintenance, and upgrading of the observability infrastructure.
To achieve this, we have adopted common software engineer-
ing best practices, such as DevOps and GitOps, and integrated
a set of technologies together, in a cloud-like environment.

Terraform [5] is used to instantiate Kubernetes clusters,
which form the core of our infrastructure. Kubernetes, the
industry standard for container orchestrations, allows for a
declarative description of necessary services, provides scala-
bility and high availability, and reduces downtime of services
during rolling upgrades.

Although Kubernetes is an excellent tool for orchestration, it
still requires human supervision and coordination efforts when
multiple operators are responsible for deploying and upgrading
different services. To further automate the process, we use
Argo CD [1], a declarative continuous delivery tool for Kuber-
netes that follows the GitOps pattern and uses Git repositories
as the source of truth to define the desired application state.
It also automates the deployment of the desired application,
monitors running applications, and compares the current, live
state against the desired target state.

The primary component of the monitoring and observability
solution is Elastic Stack, a toolset that combines metrics, logs,
and traces, providing unified visibility into system behaviour.
Elastic Stack includes agents for data collection (Beats), trans-
formation (Logstash), a database for storage and search (Elas-
ticsearch), and a visualization tool (Kibana). Elastic Cloud on
Kubernetes (ECK) extends the basic Kubernetes orchestration
capabilities to deploy, secure, and upgrade the components of
the stack natively on Kubernetes.

Apache Kafka serves as a decoupled, fault-tolerant, and
asynchronous intermediary for communication between mi-
croservices, agents, and Elasticsearch. Kafka offers a buffer for
log storage and data replication for fault tolerance, ensuring
a smooth flow of metrics, logs, and traces for centralized
analysis and system monitoring.

When working with collected data, it may be necessary
to enrich it further in order to extract more information.
This process may involve querying an API for additional
resources or information. It is important to keep in mind
the limitations of the API, as making too many requests in
a short period of time can lead to slowdowns or temporary
blocks from accessing the API. The use of Memcached [7], a
high-performance key-value store for small chunks of arbitrary
data, can help overcome this issue. By regularly querying the
API, the Memcached database can be updated with up-to-
date information, and Memcached can handle high-frequency
queries from agents responsible for data enrichment.

The rest of this section describes in detail the components
that constitute EMOI.

A. Infrastructure for massive data analytics

In order to cope with the massive amount of telemetry data
to be analyzed and to ensure configuration and deployment
flexibility, we leverage the hyper-converged cloud infrastruc-
ture already adopted at CSCS to fulfill several use cases
and focus on the integration of Kubernetes (specifically the
RKE2 distribution), ArgoCD, Rancher [10], Harvester [4], and
Terraform. The integration of these technologies collectively
forms the backbone of a scalable and adaptable private cloud
infrastructure.

Rancher plays a crucial role in our infrastructure by serving
as a central tool for managing and deploying RKE2 clusters
across our environment. We use Ubuntu MAAS (Metal as
a Service), to manage commodity hardware and Rancher
allows for direct deployment on MAAS-managed nodes as
well as specialized HPC nodes designed for high-intensity
workloads. This flexibility allows for efficient resource allo-
cation and management of diverse workloads. Harvester, is an
orchestrator for Kubernetes distributions deployed on virtual
clusters. Rancher integrates seamlessly with Harvester which
enhances our platform’s flexibility and simplifies orchestration.
This integration empowers us to manage diverse workloads
efficiently while ensuring optimal resource utilization.

Through the use of Terraform, an Infrastructure as Code
(IaC) approach has been implemented by providing a declara-
tive approach to infrastructure management. Using Terraform,
we can easily create and manage new clusters, facilitating
rapid deployment and scaling of our cloud infrastructure. This
deep integration allows us to leverage the full capabilities
of ArgoCD, Rancher, and Harvester into our infrastructure
setup. By interfacing directly with Rancher and Harvester,
Terraform ensures smooth coordination throughout the en-
tire lifecycle of cluster creation, management, and deletion.
The use of Infrastructure as Code principles not only im-
proves reproducibility and consistency but also streamlines
collaboration between teams accelerating the pace of the
design/implementation/deployment cycle.

We adopted a GitOps Configuration Management approach
featuring ArgoCD as a key component of our configuration
and deployment strategy, automating processes and ensur-
ing consistency across different environments. We achieve
this by creating repositories on Git with cluster definitions,
streamlining workflows and enabling continuous delivery. This
automated approach accelerates the deployment of updates
and new features, while minimising the risk of configuration
drift, thereby increasing operational stability and ensuring
that cluster configuration remains consistent and reproducible
across the environment.

In our GitOps workflow, all configurations for each cluster
and associated components are stored in a Git repository. This
repository serves as a single source of truth for the desired
state of the cluster. Any changes to the configurations such as
updates, settings or deployment of new applications are made
via Git commits.

Argo CD continuously monitors the Git repository and



Fig. 1: Deployment Infrastructure

automatically synchronises the state of the cluster with the
desired state defined in the repository. In addition, ArgoCD
provides a centralised dashboard for visualising cluster health
and managing deployments making it easier for operators to
track changes and troubleshoot problems.

The combination of Kubernetes, ArgoCD, Rancher, Har-
vester, and Terraform creates a hyper-converged infrastructure
that is stable, scalable, adaptable, and operationally efficient.
By using these tools together we achieve several operational
benefits:

• Agility: Rapid provisioning and scaling allow us to re-
spond quickly to changing workload demands, making
our operations more agile.

• Stability: Automated deployment processes and consis-
tent configuration management reduce the risk of errors
and improve operational stability.

• Efficiency: Streamlined workflows and centralized man-
agement tools optimize resource utilization and increase
operational efficiency.

• Innovation: Infrastructure as Code principles and contin-
uous delivery practices enable rapid iteration and innova-
tion, allowing for seamless delivery of new features and
updates.

This hyper-converged cloud-like infrastructure at CSCS
demonstrates the synergy achieved through the integration of
Kubernetes, ArgoCD, Rancher, Harvester, and Terraform.

B. Elastic Cluster on Kubernetes

Although Kubernetes offers a powerful framework for or-
chestrating containerized workloads, managing complex ap-
plications like Elasticsearch, Kibana, Logstash, APM Server,
and Beats on Kubernetes can be difficult. Elastic Cloud on
Kubernetes (ECK) simplifies the deployment and management

of the Elastic Stack on Kubernetes. ECK is an official dis-
tribution of Elasticsearch, Kibana, APM Server, and Beats
that runs on Kubernetes. It automates deployment, scaling,
and management of the Elastic Stack allowing users to focus
on their applications instead of infrastructure management.
Our deployment of ECK utilises a GitOps workflow based
on ArgoCD as described in the previous section. The key
component of ECK is the Elastic Operator. A k8s Operator is
a software extensions to Kubernetes that make use of custom
resources to manage applications and their components. We
use k8s Operators to manage our deployment as it simplifies
the provisioning and management of Elasticsearch clusters,
Kibana instances, and other Elastic stack components on
Kubernetes. The Elastic Operator manages the lifecycle of all
Elastic application instances running on Kubernetes ensuring
that provisioning, scaling, and configuration management are
properly addressed.

Through the Elastic Operator, we deploy our setup including
the following Elastic Stack applications:

• Elasticsearch: a distributed search and analytics engine
designed for storing and analyzing large volumes of data

• Kibana: a tool for visualizing and exploring data in
Elasticsearch

• Logstash: a data processing pipeline that ingests, trans-
forms, and sends data to Elasticsearch

• Beats: Lightweight agents that gather various types of
operational data for shipping to Logstash or Kafka

Besides Elastic Stack components, we also deploy other
applications not provided by ECK:

• Strimzi Operator: a tool for managing Apache Kafka
clusters on Kubernetes. It simplifies the deployment and
management of Kafka brokers, topics, and other related
resources

• Helm Chart for Grafana: we use Helm, a package
manager for Kubernetes, to deploy Grafana, a popular
open source analytics and monitoring platform used to
visualise data from Elasticsearch. This tool is useful to
better integrate with external party data

Elastic Cloud on Kubernetes, when coupled with a GitOps
workflow powered by Argo CD, offers a robust solution for
deploying and managing the Elastic Stack on Kubernetes. By
utilizing the native capabilities of Kubernetes and the automa-
tion provided by ECK and Argo CD, CSCS can streamline
its operations processes and focus on delivering value through
their applications, while ensuring reliability, scalability, and
maintainability.

C. Apache Kafka on Kubernetes

Collecting metrics is an essential aspect of infrastructure
observability. Traditionally, some tools poll each device for the
relevant metrics on a regular interval using a GET operation,
with each device replying with the metrics requested. Although
effective, this method has inherent drawbacks. Firstly, only
a subset of the devices can be polled at the same time. In
large environments, this reduces the granularity of the data



Fig. 2: GitOps Schema

since there might be large intervals between consecutive polls
of a device. Secondly, to avoid overloading the network, the
communication might be based on an unreliable protocol such
as UDP. Finally, each poll returns all the data even when
nothing has changed since the last poll.
The introduction of streaming telemetry has been a shift in
the gathering paradigm and can mitigate these issues. Unlike
traditional polling, streaming telemetry relies on a push model,
where the entity being observed pushes the metrics to a sub-
scriber. An effective telemetry architecture relies on a robust
data streaming backbone that ensures a reliable data transport
mechanism, allows data enrichment or transformation, and
supports a microservice architecture.
Nowadays, the de facto standard for data streaming is Apache
Kafka [14]. Kafka is a distributed event streaming platform ex-
tensively used to build real-time data pipelines and streaming
applications. Kafka offers a distributed, highly scalable, and
fault-tolerant publish-subscribe messaging system. A Kafka
cluster comprises one or more servers, known as brokers,
that run Kafka. The processes that push events into Kafka
are called producers, while the events, which are organized
in categories known as topics, are stored in the brokers
and eventually replicated among brokers for reliability. The
processes that read messages from one or more topics are
called consumers. Topics are divided into several partitions
that contain a subset of the records and are located on different
Kafka brokers. This distributed placement of data is critical for
scalability because it enables client applications to read and
write the data from/to many brokers simultaneously.
Different Kubernetes operators are implementing Kafka,
among which are Confluent, Bitnami, BanzaiCloud and
Strimzi. Strimzi [11] was developed by Red Hat in 2017
and entered sandbox stage of the Cloud Native Computing
Foundation (CNCF) in August 2019. As of February 2024,
Strimzi reached the stage of a CNCF incubating project.
Strimzi follows the GitOps model, where all changes to the
system can be introduced via declarative Kubernetes resource
YAML files. In this sense, its integration with a GitOps
workflow such as the one ArgoCD provides is straightforward.

III. CSM AND SMA INTEGRATION WITH EMOI

A. CSM and SMA

HPE Cray System Management Software (CSM) is the
foundation upon which other software product streams for
the HPE Cray EX system depend. The CSM installation sets
up and launches a distributed system utilizing a cluster of
management nodes organized within a Kubernetes framework
and Ceph for utility storage.

System services on the management nodes are provided
as containerized micro-services packaged for deployment via
Helm charts. Kubernetes controls the orchestration of these
services, determining their placement on Kubernetes worker
nodes and enabling horizontal scaling. This scaling adjusts
the number of service instances based on demand fluctuations,
such as during the initialization of numerous compute nodes
or application nodes.

HPE System Monitoring Application (SMA) is a bundle of
software that runs on top of CSM with the aim to provide
a comprehensive set of tools enabling Cray Shasta adminis-
trators to analyze logs and metrics from multiple subsystems
using both GUI and CLI tools. SMA utilizes the HPE System
Monitoring Framework (SMF) to provide a cohesive solution
to collect and present monitoring information. SMA pro-
vides multiple monitoring and analysis tools including custom
graphs and tables, a CLI for non-GUI work flows, as well as
notifications and alarms.

SMF boasts a tightly-integrated monitoring system that
extracts detailed telemetry data from various subsystems. This
includes information from the fabric, environmental condi-
tions, network, storage, and operating systems, encompassing
metrics from vmstat and iostat. The collected data is channeled
into a centralized message bus, specifically Kafka, where it is
not only persisted but also made accessible through the UI
infrastructure.

The data integration and infrastructure layer of the SMA [ 4]
uses a distributed streaming platform to publish and subscribe
to streams of records. Kafka’s architecture allows horizontal
scaling, supports multiple subscribers, and effectively balances
consumers during failures. Additionally, it persists messages
on disk and provides multiple client-side APIs for both con-
sumers and producers, commonly referred to as the ”Kafka
Bus”.

In its essence, SMA is a comprehensive solution that
collects and presents monitoring information and makes it
available in Kafka topics. With EMOI, we select some of the
Kafka topics of interest and redirect the information to our
data analytics platform, minimizing the effort on the SMA
side.

However, there are two challenges with the bundled Kafka
server. Firstly, it does not expose any external listener, which
means external applications can’t connect to the Kafka cluster.
Modifying the SMA configuration can become tedious work in
terms of maintenance, hence we decided to use an alternative
solution. Secondly, each message bundles the value for a set
of different sensors in the node. While this is a convenient



Fig. 3: Flow of data used to replicate the telemetry data of
Alps

Fig. 4: Kafka Bus

strategy for reducing message size by removing redundant
information, it is not suitable for ingestion into ElasticSearch
where we want to be able to inspect the value of every single
sensor.

To address these challenges, we developed a pipeline 3 for
extracting data that consists of a combination of Logstashes [2]
(alternatively Fluentbit [3]) and a KafkaStream [14]:

• a Logstash running in SMA and forwarding messages
to the Kafka server in EMOI. As an alternative, we
explored the usage of Fluentbit, a lightweight logging
and metrics processor and forwarder. Unfortunately, we
couldn’t make it stable for large throughputs;

• a KafkaStream, part of the Kafka instance running in
EMOI, that takes care of splitting the message bundle
in a message per sensor;

• a Logstash running in EMOI which further manipulates
and enriches the message. Finally, it ingests the message
into ElasticSearch. It is worth noting that in principle this
component could be replaced with a KafkaConnector.

B. CSM API and Memcached

As streams of telemetry data flow into Elasticsearch, there
arises the need to enrich the collected metrics with additional

information. Given the high frequency of telemetry data ar-
riving, enrichment needs to occur rapidly. Memcached [13],
available as a Logstash plugin has been identified as a suitable
tool for storing additional information due to its fast access
capabilities. Memcached is a powerful distributed memory
caching system initially designed to accelerate dynamic web
applications by alleviating database load. It stores data in key-
value pairs, offering flexibility for various applications.

A specific use case for Memcached emerges when we
seek to assess the energy consumption of individual jobs and
nodes. To accomplish this, we need to know which job is
running on which node, at which moment in time, and for how
long. This information about the job must then be correlated
with the energy consumption data gathered from each node.
Since nodes are identified by their nid in the former case
and by their xname in the latter, establishing a mapping
between nid and xname is needed to merge these data sources.
Furthermore, knowledge of a node’s vCluster affiliation is
required for calculating the energy consumption of an entire
vCluster. Mappings between xname, nid and vCluster can be
stored in Memcached and can be used to enrich telemetry data
flowing through Logstash. Consequently, each metric received
from Alps and processed through Logstash will contain this
supplementary information upon arrival in Elasticsearch.

Information regarding a node’s xname and nid, as well as
its vCluster affiliation, is obtainable through the HPE CSM
RESTful API. Serving as an alternative to directly running
commands from the management plane, the API offers flexible
access to the status and configuration of running compo-
nents. Details about component inventory, status, and hardware
specifications can be accessed through a series of exposed
endpoints.

We developed a Python application, Kafka2Memcached
App [6] with the aim to gather information about the rela-
tionship between xname, nid, and vCluster for each node
in Alps through the exposed API endpoints and transmitting
this data to a dedicated Kafka topic. As the affiliation of
a node in a vCluster can change dynamically, this process
is triggered periodically. Messages from the Kafka topic
are continuously consumed by a process spawned within
Kafka2Memcached, which then writes them to Memcached.
Subsequently, Logstash, can access this cached information to
enrich consumed telemetry data.

IV. ENERGY DATASET

CSCS is expanding its computational capabilities by up-
grading the Alps architecture with a Cray HPE EX system
equipped with approximately 10,000 Grace-Hopper GH200s,
in addition to the pre-existing 1,000 nodes with a diverse
combination of CPUs and GPUs.

Alps system infrastructure will replace CSCS’s existing Piz
Daint supercomputer and serve as a general-purpose system
open to the broad community of researchers in Switzerland
and the rest of the world. It will enable breakthrough research
on a wide range of fields, including climate and weather,



materials sciences, astrophysics, computational fluid dynam-
ics, life sciences, molecular dynamics, quantum chemistry and
particle physics, as well as domains like economics and social
sciences.

The expansion presents significant challenges in monitoring
and observability, notably attributable to the augmented hard-
ware diversity, including AMD Rome CPUs, AMD Mi250x
and Mi300 GPUs, Nvidia A100 GPUs, and the Arm-based
superchip GH200.

A. Introduction and Motivation

With the goal to raise awareness among users and manage-
ment about the job’s energy consumption, we began to con-
struct an energy dataset, where we will merge the informations
about the SLURM jobs and the telemetry data of the node at
the time of the jobs. To advise users is very important to better
grasp the energy impact linked to computational operations, to
optimize the energy-to-solution ratio. The strategic planning
and sustainable development of computational resources is
on the other hand equally important: The insights gained
from user awareness regarding the energy impact of their
computational tasks is needed as input for the management at
CSCS (Swiss National Supercomputing Centre) to proactively
plan and design future HPC systems. With this aim in the
background, we did in this section a node-level correlation
analysis to compare SLURM energy data with pm-counters-
file energy data and telemetry energy data, where we apply
our EMOI Infrastructure to collect telemetry data and verify
if these can be considered a source of truth.

B. Cray PM Energy data

The Cray EX platform incorporates Out-Of-Band (OOB)
data collection capabilities for monitoring power and energy
at the node level, as well as at system level. Collected
node level power and energy data are published via special
/sys/cray/pm counters/ sysfs files, as described by Martin
in [15] and [16]. The pm counters files are read-only and
available to (unprivileged) users for monitoring purposes and
to report energy usage. The energy usage of node, CPU and
memory of a compute node can be read from the energy,
cpu energy and memory energy pm files. The energy usage
of accelerators can be read from the accel[0,1,2,3] energy pm
files. On the GH200 nodes, the cpu energy pm file is split into
four cpu[0,1,2,3] energy pm files, one for each Grace CPU.
Other useful information including power cap settings are not
being discussed here. The raw scan hz counter informs the
user of the rate at which all counters should be updating.
Collection of aggregate power and energy telemetry data is
enabled by default with a default collection rate of 10 Hz.

1) Slurm Energy data: Slurm[17] is an open-source re-
source manager designed to schedule user jobs, monitor sys-
tem and job status and launch user applications. Slurm can be
configured to track energy used by jobs and tasks by adding the
energy label to the AccountingStorageTRES list of Trackable
RESources (TRES). Additional AccountingStorage parameters
allow to store the data in an accounting database. Energy

accounting data is included in accounting records, and can
be accessed through the sacct and sreport commands.

Slurm can also store energy data using the job completion
plugin. A major advantage of the plugin is that it integrates
natively with our ElasticSearch and Kafka interfaces. The
Account Gather plugin can be set to collect per job energy us-
age data by adding the acct gather energy/pm counters label
to the AcctGatherEnergyType parameter. Prior to SLURM
versions 23.11.1, the job completion plugin lacked the ability
to correctly report energy data. We proposed and successfully
merged a patch to rectify this issue.

C. Cray Telemetry Data

TABLE I: Kafka domains and topics

Domains Topics
System nodes cray-node
Fabric Telemetry cray-fabric-telemetry

Power, Energy and
Voltage

cray-telemetry-energy
cray-telemetry-voltage
cray-telemetry-power

Environmental
Telemetry

cray-telemetry-temperature
cray-telemetry-fan
cray-telemetry-pressure

System
Hardware

cray-dmtf-resource-event
cray-hsmstatechange-notifications

Kubernetes cray-logs-containers

SMA offers access to a wide range of telemetry metrics
encompassing power, energy, voltage, system environment,
and more. Table I lists the available Kafka topics and their
domains.

For energy consumption analysis, we can gather metrics
from the cray-telemetry-energy, cray-telemetry-voltage, and
cray-telemetry-power Kafka topics, and store them in our
EMOI infrastructure. Each stored message furnishes a compre-
hensive description of the sensor-measured value correspond-
ing to a specific component.

Appendix tables VII and VIII list the sensors available for
the topic message ids Power and Energy for the type of nodes
shown in table III.

D. Validation of Cray PM and Cray Telemetry Energy Data

One of our goals is to validate the accuracy of telemetry-
based energy measurements. To achieve this, we compare the
energy usage reported via Slurm data with the energy usage
reported via Telemetry data for several jobs executed over
multiple days, considering the four type of nodes listed in
Table III. While we extract the Cray PM energy data with
the Slurm sacct command, using the fields shown in Table II,
we extract the Cray Telemetry Energy data by querying our
Elasticsearch database. Considering the streaming nature of
the telemetry data, processing is necessary. For each request,
we get the energy in Joules at the beginning and end time
of the jobs, by adjusting the time range of the request to
align with the duration of the jobs. As the default timezone
in our Elasticsearch is set to UTC, we adjust our queries to
ensure synchronization with the timezone used in Slurm. As



TABLE II: Slurm sacct formatting fields

Field name Description
Cluster Cluster name
JobID Identification number of the Job/step
Start Initiation time of the Job
End Termination time of the Job
Elapsed Job(s) Elapsed time
NodeList List of nodes in Job/step
NNodes Number of nodes in a Job or step
ConsumedEnergy Total Energy of the Job (in Joules)

TABLE III: Alps Compute Node Specifications

Blade CPU(s) GPU(s)
architecture per node per node
EX-425 Windom (MC) 2 AMD 64-core 7742 0
EX-325A Bard Peak (AG) 1 AMD 64-core 7A53 4 AMD MI200
EX-325N Grizzly Peak (NG) 1 AMD 64-core 7713 4 NVIDIA A100
EX Blanka Peak (GH) 1 ARM 288-core Grace 4 NVIDIA GH200

TABLE IV: Job 2665753

node id Telemetry [J] Slurm [J]
nid001001 1’281’466 -
nid001182 1’471’533 -
nid001183 1’467’066 -
nid001184 1’443’091 -
sum 5’663’156 5’662’307
average 1’415’789 1’415’576.75

TABLE V: node statistics

Statistics job count correlation
MC node 251 0.9997357
AG node 229 0.9999999
NG node 305 0.9999997
GH node 199 0.9999837

Elasticsearch reduces memory usage by restricting the default
maximum number of searches per query, the Python script [9]
is retrieving data in batches of 104 hits. We consider using
the index.max result window parameter to raise that value.
The energy of each job can then be calculated by getting the
difference of the energy at the end and start times of the job:
Eend − Estart.

1) Energy data analysis: to find out whether Slurm and
Telemetry energy data exhibit congruence, we report in
Fig. 5a-d the measured energy of a number of jobs ran within a
specified time frame, excluding the jobs with a runtime lower
than 30 seconds. We occasionally encountered outliers in the
Slurm energy data, with unrealistic high values probably due
to buffer overflow or race condition, which were consequently
excluded from the overall analysis. Further investigations on it
will be done. In both energy datasets and across all (MC, AG,
NG and GH) types of node, we observe a strong correlation
between telemetry and Slurm energy values. Additionally, we
correctly see peaks corresponding to energy-intensive jobs.
Fig. 6 shows the difference between Slurm and Telemetry data,
defined as the energy ratio (Etelemetry−ESlurm)∗100

Etelemetry
. Most of

the delta values fluctuate around zero, confirming a minimal
difference between the measured Slurm and Telemetry energy
data. Occasionally, the energy values differ significantly. For
instance, we observe jobs with a -10% trough and a 30% peak
on the multicore (MC) node, a job with a -15% trough on
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(a) nid001001: MC node (18-31/12/2023)
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(b) nid002556: AG node (08-21/02/2024)
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(c) nid002792: NG node (08-21/02/2024)

0 50 100 150 200
0

1

2

3

4

5
·107

E
ne

rg
y

[J
]

Telemetry
Slurm

(d) nid002984: GH node (14/02/2024-12/03/2024)

Fig. 5: Energy Usage (in Joules) reported by Slurm and
Telemetry Measurements (984 Jobs, 4 types of compute nodes)
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Fig. 6: Energy usage δ% on the left and correlation plots
on the right of Telemetry Measurements relative to Slurm
Measurements (984 Jobs) of 4 types of compute nodes:
MC (nid001001), AG (nid002556), NG (nid002792), GH
(nid002984)

the AMD MI200 (AG) node, a job with a 27% peak on the
NVIDIA A100 (NG) node and a job with a -70% trough on
the Grace-Hopper (GH) node.
To illustrate these deviations, we can look at job with jobid
2665753 of Table IV that ran on 4 nodes for 106 minutes:
using the Telemetry value of nid001001 (1,281,466 J) and the
average energy per node of the Slurm value (5,662,307/4),
we compute a δ% of -10.465. However, relying only a single
telemetry value overlooks the variance in energy consumption
across nodes. By incorporating telemetry data from all nodes
used by the job, as shown in Table IV, we find a more
acceptable δ% of 0.015.

2) Energy data statistics: Finally, we first checked by
the means of Pearson correlation to see if there is a linear
mathematical relationship between this two different data
sources and next we tried to retrieve this function and
represent it graphically.
In table V we observed a correlation value very close to 1
between telemetry and Slurm energy data: this means that the
function between Telemetry energy data and Slurm energy
data is linear of type:

ESLURM = ETelemetry ∗ a+ b

In the following part we will dig a little deeper into
telemetry and Slurm relationship by the means of a linear
regression. If the a-coefficient is very close to 1 for all four
nodes and b is negligible, then our telemetry energy data are
a good representative for energy consumed at node-level.

With this goal in mind, we applied linear regression to
better define the relationship between telemetry energy data
with Slurm energy data for our four different kind of nodes.

For the multicore node we got the function:

ESLURM = ETelemetry ∗ 1.0195197− 5′669.

We also noticed a higher fluctuation of the points around
the regression line. This could be explained with the rough
energy estimation done for multi-node jobs. This kind of
node is also mainly used together with other nodes to perform
tasks at the same time. The offset parameter is around 6kJ,
but since it is mainly due to our rough average and the order
of the number of energy data that we get is generally much
higher, the function between telemetry and Slurm is still
comparable to the identity function.

For the AMD GPU node we got:

ESLURM = ETelemetry ∗ 0.999991 + 7.

This function is comparable to the identity function.
b0-coefficient can be considered to be 0 in this context,
because we are working with energy data with numbers of
a much higher order 107. The data are well aligned because
there is much less variance in it than for the multicore node.



For the NVIDIA GPU node we got:

ESLURM = ETelemetry ∗ 0.9999921 + 185.

This is also comparable to the identity function for the
same reason cited for AMD GPU node. This node behaves
similarly like the amd GPU node.

For the NVIDIA GH200 node we got:

ESLURM = ETelemetry ∗ 0.9998106− 1′459.

This kind of node is also mainly used together with other
nodes to perform tasks at the same time because it is still in
testing phase. The offset parameter b is around -1.5 kJ but
since it is mainly due to our rough average and the order
of the number of energy data that we get is generally much
higher, the relationship between telemetry and Slurm is still
comparable to the identity function.

We can conclude that our telemetry seems to be reliable
in matter of energy data at node level. We can see a strong
similarity between Slurm and telemetry energy data in the
correlation plots of Fig. 6. Thus, the energy differences that
we sometimes observed for some jobs could be omitted and
our telemetry energy data could be a valid replacement for
Slurm energy data with a correlation value close to 1. We
can then work with our telemetry data to better grasp the
energy workload of the supercomputer, with the future goal
to increase the staff-and user-awareness in terms of energetic
footprint of the jobs and to see how and where we can spare
energy. Slurm on the other hand, shows sometimes a weird
behaviour and cannot therefore always be trusted. For this
reason, we will dedicate the following section to read directly
the pm files of the nodes and compare them with our telemetry
components. The following experiment was also significant
to understand which telemetry component represents the total
energy of the node.

E. Classify Telemetry Data

In this section we compared the energy obtained running a
test-job for the different node-components described by the pm
files of the node with the energy measured by the telemetry.
The test-job was node-burn [8], duration:1 second. When we
refer to the energy of the node, we mean the energy measured
by the pm counters of the node and saved in the pm file
of the node. The various components in the node-telemetry
energy are listed in the appendix of the energy table. For
every node-architecture we ran the test-job first only on the
CPU, distinguishing every run by a different number of CPU-
cores charged with the job node-burn, and then on the GPU-
package, running each time on a different GPU. Our first
goal is to see how the energy of a node is divided between
its component on the pm file and if there is an equivalence
with some components of the telemetry data, to verify which
component of the telemetry corresponds to the total energy of
the node. Our second goal is to see if the source of Slurm,
which is the pm file on the node, is trustworthy.

In all resulting comparison tables a high correlation between
the pm file and the telemetry upon some small discrepancies
has been highlighted. The small differences can be explained
both with the different frequency of measurement used for
the energy data in the pm counter file, which would be 10 Hz
(≡ 10 measurements per second), and the one used for the
telemetry data, which is around 1Hz (≡ 1 measurement per
second), and the fact that pm file of the node is not scaled
with the node-Temperature and Telemetry-data are.
The energy data of the node for the CPU, respectively the
memory, correspond to the telemetry energy data given
by “Sensor.ParentalContext:CPU” and Sensor.Index:0,
and respectively “Sensor.ParentalContext:CPU” and
Sensor.Index:1. In case of two CPUs per node, like on
multicore processor, we get in the energy telemetry data two
times the Sensor.Index 0 for the two different sockets, the
CPU energy of the node would be given by their sum and
analogously, the two values for Sensor.Index:1 for the two
different sockets, sums up to give the energy used by the
Memory of the node.
In addition, for the AMD GPU case, the energy measured
for the four GPUs (≡ accelerator) in the node matches
one-to-one the energy given by the four different GPUs of
the node telemetry.

In conclusion, we demonstrated that the pm file is reliable
and that the energy of the telemetry data with attributes:

Energynode = Sensor.Location:xnamenode

& MessageId:CrayTelemetry.Energy

& Sensor.ParentalContext:Chassis
& Sensor.PhysicalContext:VoltageRegulator
& Sensor.PhysicalSubContext:Input
& Sensor.Index:0

corresponds to the total energy of the node that we read in
the pm file and which is then reported by Slurm.

V. CONCLUSION

In this paper, we have introduced the Extensible Monitoring
and Observability Infrastructure (EMOI) used at CSCS.

We started with a general description of the infrastructure
where we highlighted the advantages of adopting a GitOps
approach. By leveraging GitOps principles, organizations can
streamline the creation of versatile environments and facilitate
the seamless sharing of data among internal and external stake-
holders. This not only enhances collaboration and knowledge
sharing but also fosters agility and adaptability in responding
to evolving data requirements and analytical needs.

Then, we took the example of defining an energy dataset
for the new HPE Cray EX to address all the different aspect
of exploiting the EMOI infrastructure with such complex use
case. We have elucidated the disparities in how different
architectural handle exposure of hardware data. These dis-
crepancies underscore the need for adaptable solutions that



can accommodate varying infrastructural nuances to ensure
seamless integration and data accessibility across platforms.
One prevailing theme throughout our exploration is the inher-
ent difficulty in acquiring relevant data. Whether due to the
dispersed nature of the information or the differences in how
various architectures expose hardware data. HPE is working
in this direction, and the next versions of SMA demonstrate a
promising trajectory towards overcoming these challenges.

While not extensively covered in this paper, the criti-
cal aspect of performance tuning various components along
data pipelines remains of greatest importance, particu-
larly when dealing with massive datasets. Parameters such
as max poll records, fetch min bytes, fetch max wait ms
in Kafka, and pipeline.workers, pipeline.batch.size, and
pipeline.batch.delay in Logstash necessitate meticulous adjust-
ment. Custom dashboards have been developed to aid in tuning
and monitoring data pipeline ingestion. We also built custom
dashboards to help us tune and monitor our data pipelines
ingestion.

Now that we have a robust and flexible infrastructure in
place, we can explore further avenues for research. One pos-
sible avenue for exploitation of these data sets is to optimise
the code in accordance with energy usage and to model a more
efficient power supply.

In conclusion, we advocate for the adoption of the EMOI’s
approach within the community to integrate observability and
monitoring platforms effectively. The advantages of an easily
extensible platform are significant, particularly in scenarios
where observed systems can be partitioned or clustered, and
data are of interest to diverse actors and stakeholders.
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APPENDIX

TABLE VI: Sensors depth and name

Sensor Name Abbreviated Name
Sensor.ParentalContext S.ParCtx
Sensor.PhysicalContext S.PhyCtx

Sensor.PhysicalSubContext S.PhySCtx
Sensor.ParentalIndex S.ParIdx

Sensor.Index S.Idx
Voltage Regulator VR
CPU Subsystem CPUS

GPU Subsystem GPUS

Memory Subsystem MEMS

GPU Module GPUM

System Board BoardS

TABLE VII: Telemetry data structure (MessageId:Energy)

EX-425 Windom (AMD 7742 cpus)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU INVALID - 0 0,1
1 0,1

Chassis
CPUS Output - 0

MemoryS Output - 0
VR Input - 0

EX-325A Bard Peak (AMD CPU+AMD MI200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU INVALID - 0 0,1
1 0,1

Chassis
CPUS Output - 0

MemoryS Output - 0
VR Input - 0

Accelerator VR - 0-3 0,0,0,0

EX-325N Grizzly Peak (AMD CPU+NVIDIA A100 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU INVALID - 0 0,1
1 0,1

Chassis
CPUS Output - 0

MemoryS Output - 0
VR Input - 0

EX Blanka Peak (ARM Grace+NVIDIA H200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

Chassis
VR Input - 0

CPUSubsystem Output - 0



TABLE VIII: Telemetry data structure (MessageId:Power)

EX-425 Windom (AMD 7742 cpus)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU INVALID - 0 0,1,2,3,4
1 0,1,2,3,4

VR Input 0 4
1 4

Output 0 3,4
1 3,4

Chassis CPUS Output - 0
MEMS Output - 0

VR Input - 0

MEMS VR Input 1 0
1
5
6

CPUS VR Input - 3
4

EX-325A Bard Peak (AMD CPU+AMD MI200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU INVALID - 0 0,1,2,3,4
VR Input 0 6

Output 0 0,1,5,6
Chassis CPUS Output - 0

MEMS Output - 0
VR Input - 0,2

Output - 0
MEMS VR Input 0 7,8

Output 0 2,3,7,8
Accelerator VR Input 0,1,2,3 0,0,0,0

CPUS Accelerator - - 0,1,2,3

EX-325N Grizzly Peak (AMD CPU+NVIDIA A100 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU INVALID - 0 0,1,2,3,4
VR Input 0 6

Output 0 0,1,5,6
Chassis CPUS Output - 0

MEMS Output - 0
VR Input - 0

Output - 0
MEMS VR Input 0 7,8

Output 0 2,3,7,8
GPUS Accelerator - - 0,1,2,3

EX Blanka Peak (ARM Grace+NVIDIA H200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

- CPU - - 0,1,2,3
Chassis CPUS Output - 0

VR Input - 0,1,2,3,4,5
Output - 0

- - - - -
- GPU - - 0,1,2,3
- GPUM - - 0,1,2,3

TABLE XII: Telemetry data structure (MessageId:Power)

ALPS - CHASSIS
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

- Rectifier

Input -
0
1
2

Output -
0
1
2

PREALPS - CHASSIS
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

- Rectifier

Input -

0
1
2
3

Output -

0
1
2
3

TABLE IX: Telemetry data structure (MessageId:Voltage)

EX-425 Windom (AMD 7742 cpus)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR
Input 0 2,3,4

1 2,3,4

Output 0 2,3,4
1 2,3,4

Chassis VR Input - 0
Output - 0

MemoryS VR
Input 0 0,1,5,6

1 0,1,5,6

Output 0 0,1,5,6
1 0,1,5,6

CPUS VR Input - 3,4
Output - 3,4

EX-325A Bard Peak (AMD CPU+AMD MI200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR Input 0 0,1,4,5,6
Output 0 0,1,4,5,6

Chassis VR Input - 0,2
Output - 0,2

MemoryS VR Input 0 2,3,7,8
Output 0 2,3,7,8

CPUS VR Input 0,1,2,3 0
Output 0,1,2,3 0

EX-325N Grizzly Peak (AMD CPU+NVIDIA A100 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR Input 0 0,1,4,5,6
Output 0 0,1,4,5,6

Chassis VR Input - 0
Output - 0

MemoryS VR Input 0 2,3,7,8
Output 0 2,3,7,8

EX Blanka Peak (ARM Grace+NVIDIA H200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

Chassis VR Input - 0,1,2,3,4,5,6
Output - 0



TABLE X: Telemetry data structure (MessageId:Current)

EX-425 Windom (AMD 7742 cpus)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR
Input 0 2,4

1 2,4

Output 0 2,3,4
1 2,3,4

Chassis VR Input - 1
Output - 0

MemoryS VR
Input 0 5,6

1 5,6

Output 0 0,1,5,6
1 0,1,5,6

CPUS VR Output - 3,4

EX-325A Bard Peak (AMD CPU+AMD MI200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR Input 0 4,6
Output 0 0,1,4,5,6

Chassis VR Input - 2
Output - 0

MemoryS VR Input 0 7,8
Output 0 2,3,7,8

Accelerator VR Input

0 0
1 0
2 0
3 0

EX-325N Grizzly Peak (AMD CPU+NVIDIA A100 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR Input 0 4,6
Output 0 0,1,4,5,6

Chassis VR Output - 0

MemoryS VR Input 0 7,8
Output 0 2,3,7,8

EX Blanka Peak (ARM Grace+NVIDIA H200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx
Chassis VR Output - 0,1,2,3,4,5,6

TABLE XI: Telemetry data structure (Mes-
sageId:Temperature)

EX-425 Windom (AMD 7742 cpus)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR - 0 2,3,4
1 2,3,4

Chassis VR - - 0
2

MemoryS VR -

0

0
1
5
6

1

0
1
5
6

CPUS VR - - 3
4

EX-325A Bard Peak (AMD CPU+AMD MI200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR - 0 0,1,4,5,6

Chassis VR - - 0,1,2
GPUS - - 0-7

Accelerator VR -

0 0
1 0
2 0
3 0

GPUS GPU - - 0-7

EX-325N Grizzly Peak (AMD CPU+NVIDIA A100 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

CPU VR - 0 0,1,4,5,6

Chassis VR - - 0
1

GPUS - - 0,1,2,3

GPUS
GPU - - 0,1,2,3

BoardS - - 0
MemoryS VR - 0 2,3,7,8

EX Blanka Peak (ARM Grace+NVIDIA H200 GPU)
S.ParCtx S.PhyCtx S.PhySCtx S.ParIdx S.Idx

- CPU - - 0,1,2,3
Chassis VR - - 0,2,3,4,5,6

- GPU - - 0,1,2,3
GPU Memory - - 0,1,2,3


