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Background

Login 
Node

/home /scratch

Worker nodes/ Partitions



What happens when there is
lack of proactive job failure 
detection mechanisms ?

❌ Wasted compute resources

❌ Increased wait times

❌ Reduced user productivity

❌ Inefficient troubleshooting

Understanding the problem statement



Proactive job failure detection
system

✓ Improved resource utilization

✓ Minimize downtime

✓ Improve system performance

✓ Enhanced troubleshooting
   capabilities

- accurately predict the likelihood 
of job failures in real-time

Solution



Proactive job failure
detection system

- accurately predict 
the likelihood of job 
failures in real-time

Solution to the user need

✓Why my job is running slow?



Hybrid Approach: Combining supervised and unsupervised learning for accurate predictions and deeper 
insights.

Oversampling Methodology: Addressing class imbalance in job failure data for reliable and 
accurate predictions.

User-Centric Design: Real-time results pipeline and user-friendly interface for actionable feedback to 
HPC stakeholders.

Post-Prediction Insights: Understanding failure causes through model's feature interpretation.

Continuous Retraining: Adaptable and self-improving predictive model that evolves with new data and 
system dynamics.

Value Proposition
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• System considered: Hotlum, with over 
1027 nodes and 9 groups

• Slurm Accounting (sacct): Offers 100+ 
fields for analysis

• Focused features:
o User ID, Job Name, State, CPU, Memory, Nodes, 

CPUTime, Submit Time, Start Time, End Time, GID

• Modelling predictions for state_jobs

Overview: System, Slurm and Data Collection



Skewness of the data



Labeling and Problem Framing: Encoding state_jobs labels

Preprocessing: Eliminating features unimportant to the 
prediction

Adding Derived Features: Job Profiles, User Segments

Data 
Ready!

Data Preprocessing



Snapshot of the data ready for modeling

User ID of the user 
running the job

CPU Time = Calculated using 
Elapsed time * CPU count 

Wait time = Submit 
time – Start time

Memory 
allocated to 
the job

Derived features from 
submit time

Derived features from 
User ID

Job Profiles

CPU allocated to the job

Nodes allocated to the job



Tree Based 
Models

• Capture complex relationships and 
patterns

• Work well with skewed data

• Robust to outliers 

• Low risk of overfitting

Oversampling Active 
Learning

• Helps in handling skewness by:

– Creating synthetic samples

– Duplicating existing samples

• Improves model performance by 
assisting underrepresented class

• Dynamically selects top N data 
points using clustering

• Works well with limited data

• Robust to changes in data

• Faster, uses less iterations to train

Modeling



Dataset

Get top N samples

Not selected

Discard 

Train ML Model

Selected

For n iterations

Active Learning
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Results

Method Results Accuracy

XG Boost
✓ Performs well on completed class
✓ Trains fast
❌ Incorrectly predicts failed jobs as completed

94%

Random Forest
✓ Performs extremely well on completed and failed classes
❌ Slow to train
❌ Overfits on the dataset

98%

XG Boost + Random 
Oversampling

❌ Performs extremely poorly on failed class
❌ Slow to train 58%

XG Boost + SMOTE 
Oversampling ❌ Performs extremely poorly on failed class

❌ Slow to train 70%

XG Boost + Active 
Learning

✓ Performs well on completed class
✓ Performs well on failed class
✓ Trains fast

97%



q Real-time visibility for proactive decision-making.
q Intuitive and accessible for all users.
q Allows customization and filtering.
q Provides a centralized platform to view and discuss.

q  Modify and customize the analysis workflow.
q  Streamline reproducibility, documentation.
q  Integration with Libraries.
q Rapid Prototyping and Iteration.

Model inference for end-user



Real-time analytics with dashboard



Real-time analytics with dashboard



Real-time analytics with dashboard



Real-time analytics with dashboard



Solving user pain points
Stakeholders Interests and Needs How Our Solution Offers

System Administrators
§ Minimize downtime
§ Efficient resource utilization
§ Need: Optimize system performance

ü Provides real-time insights
ü Proactive failure detection 
ü Actionable management 

information(future scope)

Users and Researchers § Reliability and performance of HPC jobs
§ Need: Minimize job failures and delays

ü Identifies potential issues
ü Proactive failure detection 

Data Scientists and ML Experts
§ Advanced analytics and modeling 

techniques
§ Need: Develop custom models

ü Facilitates Jupyter notebook integration
ü Enables data exploration and model 

experimentation

HPC Application Developers

§ Create and optimize software applications 
that run on HPC systems.

§ Need: Profile and debug their 
applications, identify performance 
bottlenecks, and optimize resource 
utilization.

ü Insights into job behavior and resource 
usage

ü Identification of potential failure points for 
app optimization(future scope)



q Expand data scope - system logs, network performance metrics, and application-specific telemetry

q Scalability assessments of our model across diverse HPC platforms.

q Prioritize user experience improvements by actively incorporating feedback.

q Implement cutting-edge machine learning techniques, including deep learning and transfer learning.

q Dynamic resource allocation recommendation.

Future Work



Thank you!


