
Enhancing High-Performance Computing with Early Job Failure Detection

Proactive precision

Presenter: Saptashwa Mitra
Authors: Dipanwita Mallick, Siddhi Potdar, Saptashwa Mitra, Charlie Vollmer, and Nithin Singh Mohan

© 2024 Hewlett Packard Enterprise Development LP

Problem Definition

Confidential | Authorized

Background

Login
Node

/home /scratch

Worker nodes/ Partitions

What happens when there is
lack of proactive job failure
detection mechanisms ?

❌ Wasted compute resources

❌ Increased wait times

❌ Reduced user productivity

❌ Inefficient troubleshooting

Understanding the problem statement

Proactive job failure detection
system

✓ Improved resource utilization

✓ Minimize downtime

✓ Improve system performance

✓ Enhanced troubleshooting
 capabilities

- accurately predict the likelihood
of job failures in real-time

Solution

Proactive job failure
detection system

- accurately predict
the likelihood of job
failures in real-time

Solution to the user need

✓Why my job is running slow?

Hybrid Approach: Combining supervised and unsupervised learning for accurate predictions and deeper
insights.

Oversampling Methodology: Addressing class imbalance in job failure data for reliable and
accurate predictions.

User-Centric Design: Real-time results pipeline and user-friendly interface for actionable feedback to
HPC stakeholders.

Post-Prediction Insights: Understanding failure causes through model's feature interpretation.

Continuous Retraining: Adaptable and self-improving predictive model that evolves with new data and
system dynamics.

Value Proposition

© 2024 Hewlett Packard Enterprise Development LP

Methodology

Confidential | Authorized

• System considered: Hotlum, with over
1027 nodes and 9 groups

• Slurm Accounting (sacct): Offers 100+
fields for analysis

• Focused features:
o User ID, Job Name, State, CPU, Memory, Nodes,

CPUTime, Submit Time, Start Time, End Time, GID

• Modelling predictions for state_jobs

Overview: System, Slurm and Data Collection

Skewness of the data

Labeling and Problem Framing: Encoding state_jobs labels

Preprocessing: Eliminating features unimportant to the
prediction

Adding Derived Features: Job Profiles, User Segments

Data
Ready!

Data Preprocessing

Snapshot of the data ready for modeling

User ID of the user
running the job

CPU Time = Calculated using
Elapsed time * CPU count

Wait time = Submit
time – Start time

Memory
allocated to
the job

Derived features from
submit time

Derived features from
User ID

Job Profiles

CPU allocated to the job

Nodes allocated to the job

Tree Based
Models

• Capture complex relationships and
patterns

• Work well with skewed data

• Robust to outliers

• Low risk of overfitting

Oversampling Active
Learning

• Helps in handling skewness by:

– Creating synthetic samples

– Duplicating existing samples

• Improves model performance by
assisting underrepresented class

• Dynamically selects top N data
points using clustering

• Works well with limited data

• Robust to changes in data

• Faster, uses less iterations to train

Modeling

Dataset

Get top N samples

Not selected

Discard

Train ML Model

Selected

For n iterations

Active Learning

© 2024 Hewlett Packard Enterprise Development LP

Results and Insights

Confidential | Authorized

Results

Method Results Accuracy

XG Boost
✓ Performs well on completed class
✓ Trains fast
❌ Incorrectly predicts failed jobs as completed

94%

Random Forest
✓ Performs extremely well on completed and failed classes
❌ Slow to train
❌ Overfits on the dataset

98%

XG Boost + Random
Oversampling

❌ Performs extremely poorly on failed class
❌ Slow to train 58%

XG Boost + SMOTE
Oversampling ❌ Performs extremely poorly on failed class

❌ Slow to train 70%

XG Boost + Active
Learning

✓ Performs well on completed class
✓ Performs well on failed class
✓ Trains fast

97%

q Real-time visibility for proactive decision-making.
q Intuitive and accessible for all users.
q Allows customization and filtering.
q Provides a centralized platform to view and discuss.

q Modify and customize the analysis workflow.
q Streamline reproducibility, documentation.
q Integration with Libraries.
q Rapid Prototyping and Iteration.

Model inference for end-user

Real-time analytics with dashboard

Real-time analytics with dashboard

Real-time analytics with dashboard

Real-time analytics with dashboard

Solving user pain points
Stakeholders Interests and Needs How Our Solution Offers

System Administrators
§ Minimize downtime
§ Efficient resource utilization
§ Need: Optimize system performance

ü Provides real-time insights
ü Proactive failure detection
ü Actionable management

information(future scope)

Users and Researchers § Reliability and performance of HPC jobs
§ Need: Minimize job failures and delays

ü Identifies potential issues
ü Proactive failure detection

Data Scientists and ML Experts
§ Advanced analytics and modeling

techniques
§ Need: Develop custom models

ü Facilitates Jupyter notebook integration
ü Enables data exploration and model

experimentation

HPC Application Developers

§ Create and optimize software applications
that run on HPC systems.

§ Need: Profile and debug their
applications, identify performance
bottlenecks, and optimize resource
utilization.

ü Insights into job behavior and resource
usage

ü Identification of potential failure points for
app optimization(future scope)

q Expand data scope - system logs, network performance metrics, and application-specific telemetry

q Scalability assessments of our model across diverse HPC platforms.

q Prioritize user experience improvements by actively incorporating feedback.

q Implement cutting-edge machine learning techniques, including deep learning and transfer learning.

q Dynamic resource allocation recommendation.

Future Work

Thank you!

