

Proactive precision

Enhancing High-Performance Computing with Early Job Failure Detection

Presenter: Saptashwa Mitra

Authors: Dipanwita Mallick, Siddhi Potdar, Saptashwa Mitra, Charlie Vollmer, and Nithin Singh Mohan

Problem Definition

Confidential | Authorized © 2024 Hewlett Packard Enterprise Development LP

Background

Understanding the problem statement

What happens when there is lack of proactive job failure detection mechanisms ?

XWasted compute resources

X Reduced user productivity

X Inefficient troubleshooting

Solution

Proactive job failure detection system

 accurately predict the likelihood of job failures in real-time

- Improved resource utilization
- Minimize downtime
- ✓ Improve system performance
- Enhanced troubleshooting capabilities

Solution to the user need

Proactive job failure detection system

accurately predict
 the likelihood of job
 failures in real-time

Why my job is running slow?

Value Proposition

Hybrid Approach: Combining **supervised** and **unsupervised** learning for accurate predictions and deeper insights.

Oversampling Methodology: Addressing **class imbalance** in job failure data for reliable and accurate predictions.

User-Centric Design: Real-time results pipeline and **user-friendly interface** for actionable feedback to HPC stakeholders.

Post-Prediction Insights: Understanding failure causes through model's feature interpretation.

Continuous Retraining: Adaptable and self-improving predictive model that evolves with new data and system dynamics.

Methodology

Confidential | Authorized © 2024 Hewlett Packard Enterprise Development LP

Overview: System, Slurm and Data Collection

- System considered: Hotlum, with over 1027 nodes and 9 groups
- Slurm Accounting (sacct): Offers 100+ fields for analysis
- Focused features:
 - User ID, Job Name, State, CPU, Memory, Nodes,
 CPUTime, Submit Time, Start Time, End Time, GID
- Modelling predictions for state_jobs

job_id	job_name	user_id	start_time	end_time	state_jobs
502	shared_coll	mmoore	2022-11-08 10:28:50	2022-11-08 10:28:51	FAILED
503	shared_coll	mmoore	2022-11-08 10:32:12	2022-11-08 10:32:23	FAILED
504	shared_coll	mmoore	2022-11-08 10:34:11	2022-11-08 10:34:16	COMPLETED
505	hpl_sweep	jbaron	2022-11-08 11:04:08	2022-11-08 11:04:09	COMPLETED
506	hpl_sweep	jbaron	2022-11-08 11:06:26	2022-11-08 11:11:12	COMPLETED
507	shared_coll	mmoore	2022-11-08 11:10:03	2022-11-08 11:10:08	COMPLETED
508	shared_coll	mmoore	2022-11-08 11:33:08	2022-11-08 11:33:12	COMPLETED
509	shared_coll	mmoore	2022-11-08 11:33:50	2022-11-08 11:34:02	COMPLETED
510	shared_coll	mmoore	2022-11-08 11:34:54	2022-11-08 11:35:03	COMPLETED
511	shared_coll	mmoore	2022-11-08 11:37:40	2022-11-08 11:37:52	COMPLETED
512	shared_coll	mmoore	2022-11-08 11:39:49	2022-11-08 11:40:02	COMPLETED
513	shared_coll	mmoore	2022-11-08 11:40:55	2022-11-08 11:42:10	COMPLETED
514	shared_coll	mmoore	2022-11-08 11:43:27	2022-11-08 11:44:43	COMPLETED
515	shared_coll	mmoore	2022-11-08 11:44:56	2022-11-08 12:01:42	COMPLETED
516	shared_coll	mmoore	2022-11-08 12:01:43	2022-11-08 12:02:32	COMPLETED
517	hpcg_sweep	jbaron	2022-11-08 11:48:55	2022-11-08 12:09:00	COMPLETED
518	hpcg_sweep	jbaron	2022-11-08 11:53:32	2022-11-08 12:17:06	COMPLETED
519	hpcg_sweep	jbaron	2022-11-08 11:58:49	2022-11-08 12:18:59	CANCELLED by 213865
520	hpcg_sweep	jbaron	2022-11-08 12:05:52	2022-11-08 12:16:44	OUT_OF_MEMORY
521	hpcg_sweep	jbaron	2022-11-08 12:20:11	2022-11-08 12:52:20	CANCELLED by 213865
522	hostname	dchrist	2022-11-08 12:20:46	2022-11-08 12:20:46	COMPLETED
523	shared_coll	mmoore	2022-11-08 12:52:25	2022-11-08 12:53:12	COMPLETED
524	interactive	mmoore	2022-11-08 13:10:57	2022-11-08 13:11:06	FAILED
525	shared_coll	mmoore	2022-11-08 13:11:29	2022-11-08 13:12:59	COMPLETED
526	shared_coll	mmoore	2022-11-08 13:12:59	2022-11-08 13:13:55	COMPLETED
527	shared_coll	mmoore	2022-11-08 13:17:58	2022-11-08 13:18:02	CANCELLED by 14759

Skewness of the data

Data Preprocessing

Labeling and Problem Framing: Encoding **state_jobs** labels

Preprocessing: **Eliminating features unimportant** to the prediction

Adding **Derived Features**: Job Profiles, User Segments

Data Ready!

Snapshot of the data ready for modeling

Nodes allocated to the job

Modeling

- Capture complex relationships and patterns
- Work well with skewed data
- Robust to outliers
- Low risk of overfitting

Oversampling

- Helps in handling skewness by:
 - Creating synthetic samples
 - Duplicating existing samples
- Improves model performance by assisting underrepresented class

- Dynamically selects top N data points using clustering
- Works well with limited data
- Robust to changes in data
- Faster, uses less iterations to train

Active Learning

Results and Insights

Confidential | Authorized © 2024 Hewlett Packard Enterprise Development LP

Results

Method	Results	Accuracy
XG Boost	 Performs well on completed class Trains fast Incorrectly predicts failed jobs as completed 	94%
Random Forest	 Performs extremely well on completed and failed classes Slow to train Overfits on the dataset 	98%
XG Boost + Random Oversampling	 Performs extremely poorly on failed class Slow to train 	58%
XG Boost + SMOTE Oversampling	 Performs extremely poorly on failed class Slow to train 	70%
XG Boost + Active Learning	 Performs well on completed class Performs well on failed class Trains fast 	97%

Model inference for end-user

- □ Real-time visibility for proactive decision-making.
- □ Intuitive and accessible for all users.
- □ Allows customization and filtering.
- □ Provides a centralized platform to view and discuss.

- □ Modify and customize the analysis workflow.
- □ Streamline reproducibility, documentation.
- Integration with Libraries.
- **Rapid Prototyping and Iteration.**

0

Slurm Job Information

Job	ID 🗘	User ID	¢ S [.]	tart Time	Job C	luster 🗢	Prediction	Confidence
Aafilter d	lat: 🖪							
436	281	26	2024-03-04	08:36:29		1	Fail	83.5
436	283	26	2024-03-04	08:36:29		1	Complete	50.87
436	293	26	2024-03-04	08:36:38		1	Fail	67.53
436	295	26	2024-03-04	08:36:38		1	Fail	74.04
436	297	26	2024-03-04	08:36:41		1	Fail	55.6
436	315	26	2024-03-04	08:36:55		1	Fail	79.05
436	332	14	2024-03-04	10:13:12		1	Fail	58.54
436	337	19	2024-03-04	11:31:41		1	Fail	80.23
436	339	21	2024-03-04	12:01:31		1	Complete	87.41
436	840	21	2024-03-04	12:06:07		1	Complete	77.58

< 2 / 346 > >>

Job Profiles								
Job Cluster	CPU Usage	Memory Usage	Job Duration	User Activity	User Types	Job Status	Job Failures	Job Types
0	Low	Low	Short	Low	Infrequent	Successful	Rare	Balanced
1	High	High	Diverse	High	ΑΙΙ	Mixed	Significant	Diverse
2	Moderate	Moderate	Short to Medium	Moderate	ΑΙΙ	Successful	Few	Mostly Balanced

Solving user pain points

Stakeholders	Interests and Needs	How Our Solution Offers		
System Administrators	 Minimize downtime Efficient resource utilization Need: Optimize system performance 	 Provides real-time insights Proactive failure detection Actionable management information(future scope) 		
Users and Researchers	 Reliability and performance of HPC jobs Need: Minimize job failures and delays 	 ✓ Identifies potential issues ✓ Proactive failure detection 		
Data Scientists and ML Experts	 Advanced analytics and modeling techniques Need: Develop custom models 	 Facilitates Jupyter notebook integration Enables data exploration and model experimentation 		
HPC Application Developers	 Create and optimize software applications that run on HPC systems. Need: Profile and debug their applications, identify performance bottlenecks, and optimize resource utilization. 	 ✓ Insights into job behavior and resource usage ✓ Identification of potential failure points for app optimization(future scope) 		

Future Work

Expand data scope - system logs, network performance metrics, and application-specific telemetry

- Scalability assessments of our model across diverse HPC platforms.
- Prioritize user experience improvements by actively incorporating feedback.
- □ Implement cutting-edge machine learning techniques, including deep learning and transfer learning.

Dynamic resource allocation recommendation.

Thank you!