

From Chatbots to Interfaces: Diversifying the

Application of Large Language Models for Enhanced

Usability

Jonathan Sparks

Hewlett Packard Enterprise

Bloomington, USA

jonathan.sparks@hpe.com

Pierre Carrier

Hewlett Packard Enterprise

Bloomington, USA

pierre.carrier@hpe.com

Gallig Renaud

Hewlett Packard Enterprise

Grenoble, France

gallig.renaud@hpe.com

Abstract—This paper explores the application of Large

Language Models (LLMs) in three distinct scenarios,

demonstrating their potential use to aid user experience and

efficiency. Firstly, we examine the application of LLM models

such as OpenAI's GPT -3 or Llama in chatbots to assist in

programming environments, providing real-time assistance to

developers. Secondly, we explore using LLMs and Python to

search internal document corpus for performance engineering,

significantly improving the retrieval of relevant information from

extensive technical documentation. Lastly, we investigate using

LLMs as an interface to system batch schedulers, such as Slurm

or PBS, replacing domain-specific languages and prompts with

natural text. This approach democratizes access to complex

systems, fostering ease of use and enhancing the user experience.

Through these use cases, we underscore the versatility and

potential of LLMs, highlighting their role as an aid to system

operation and user experience.

Keywords—LLM, RAG, assistant, chatbot, performance,

development, scheduler, HPC, services

I. INTRODUCTION

New users may find using a supercomputer daunting; the
system's complexity and diversity can overwhelm even the most
knowledgeable person. To navigate the system, they often turn
to support personnel, emails, instant message channels, or even
"call a friend." This high entry bar can lead to frustration,
prompting them to seek alternate systems with a lower barrier of
entry or to create documentation on system usage. The challenge
for users becomes even more problematic as these systems have
different management and configurations, causing portability
and time to solve difficulties. Imagine if we had a set of tools to
guide the user through the system and provide a top-tier
knowledgeable agent capable of answering and interacting with
the system. This agent could assist the user on a wide range of
topics, focusing on the architecture and environment the user
encounters. We might now have a solution: generative AI and
Large Language Models (LLMs).

The advent of Large Language Models (LLMs) has marked
a paradigm shift in artificial intelligence, particularly in natural
language processing (NLP). These sophisticated models, such as
OpenAI's ChatGPT [1] and Llama [2], have been trained on

extensive text corpora, enabling them to generate coherent and
contextually relevant language outputs. The ability of LLMs to
understand and produce human-like text has opened new
avenues for human-computer interaction, making them a pivotal
asset in the technological landscape.

We cannot overstate the importance of LLMs, as they play a
crucial role in automating and enhancing tasks that require
language understanding. LLMs are revolutionizing our
approach to problem-solving and decision-making processes,
from powering customer service chatbots to driving advanced
analytics in data science [3]. Their versatility enables
applications in various domains, delivering efficient but also
intuitive and user-friendly solutions.

In the paper, we present the practical applications of LLMs
using three exemplary use cases, each highlighting the use of
LLMs to improve user experience and operational efficiency.
We begin by examining the use of LLMs within specialized
programming environments, where they provide developers
with real-time assistance and information about the HPE
programming environment and general HPC coding practices
and system use, thereby streamlining application building and
execution. The second scenario investigates the application of
LLMs and Python interfaces [4] in searching internal document
corpora for application performance engineering, where their
ability to surface relevant information from a vast dataset
quickly is invaluable. Lastly, we explore using LLMs as
interfaces for complex systems, where they interpret natural text
inputs, eliminating the need for users to learn domain-specific
languages and commands. Through these use cases, we aim to
demonstrate the transformative impact of LLMs on system
operation and user experience, emphasizing their role in
democratizing access to technology.

The following sections will offer an in-depth analysis of the
challenges and methods to address the use case. Section II will
establish the definitions and background knowledge essential for
thoroughly comprehending this paper. Section III will furnish a
comprehensive overview of the related works. Subsequently, in
sections IV and V, we will explain the use cases and criteria by
which we selected models and methods used in the proposed
solutions and dive into our development specifics. Later, we will

explain our findings in Section VI and open problems in Section
VII, respectively. Lastly, we will provide our concluding
remarks in Section VIII.

II. BACKGROUND

Throughout the paper, we will interchangeably use the terms
large language models (LLMs), Models, and service platforms,
such as GPT-4 and OpenAI. Similarly, we will assume software
developers and users are the same entity. The following defines
short forms and standard definitions used throughout the paper.

A. Short Forms

• LLM – Large Language Model

• SLM – Small Language Model

• RAG – Retrieval-Augmented Generation

• Agent – An LLM-powered intelligent program

• Chatbot – Interactive LLM program

• Retriever – Unstructured data query interface

• Corpus – A collection of public/private sources used

to enhance the LLM.

• Vector store – A database that stores vectors and

associated data items.

B. Definitions

• Large Language Model – Specialized Generative AI

trained on extensive datasets can produce various

artifacts from natural language prompts.

• Small Language Model – A small language model is

a lightweight generative AI model. It uses a small

neural network, has significantly fewer parameters

than a traditional LLM, and trains on tiny amounts of

data.

• RAG – Retrieval-Augmented Generation is a process

that optimizes the response of a Large Language

Model (LLM) by referencing a knowledge base

outside of its training data sources before generating

a response.

• Agent – An LLM agent is an artificial intelligence

system that utilizes a large language model (LLM) as

its core computational engine to exhibit capabilities

beyond text generation, including conducting

conversations, completing tasks, reasoning, and

demonstrating some autonomous behavior.

• Chatbot – A computer program that simulates and

processes human conversation.

• Retriever – An interface that returns documents

based on an unstructured query, making it a more

general tool than a vector store. Unlike a vector store,

a retriever does not need to be able to store

documents. Instead, its primary function is to return

or retrieve them.

• Corpus – A corpus refers to the large body of text

data on which the model is trained. This corpus can

encompass various textual content, including books,

articles, websites, and other written materials.

• Vector store – A vector store, also known as a vector

database, is a specialized database that can store

vectors (fixed-length lists of numbers) and other data

items used in RAG tasks.

III. EXISTING WORKS

Since the inception of LLM models, researchers have
continuously evaluated LLM use cases to aid the understanding
of complex systems [5].

It is well-documented that performance correlates with their
training data quality. In general, most of the training dataset
comes from publicly available software sources [3], and often,
this data can be of questionable quality or riddled with
vulnerabilities. The table below is an excerpt from the above
reference: Language Models are Few-Shot Learners. It shows
the datasets used to train GPT-3., the base model for ChatGPT.
This information was not easy to find, and I expect that this will
get more difficult in time. It is also interesting to note that this is
a small amount of data, approximately 570GB, after filtering.
Similar corpora data breakdowns can be found for other LLMs,
such as Aleph-Alpha Luminous [6].

Table 1 excerpt from "Language Models are Few-Shot Learners.".

In addition, LLMs cannot infer what they are producing.
They produce an output that calculates the probability of each
token generated next. Therefore, they are often impacted by
bias. If the training data contains poor-quality references, it is
unlikely that LLM will produce good results.

Furthermore, the unpredictable nature of LLMs indicates
that they can produce varying outputs for identical prompts [7].
These variations are often more comprehensive than the
semantic structure and the overall idea. The privacy implications
concerning these models also require attention [8]. Developers
are now concerned about public exposure to their questions and
responses and the possible effect on system internals via security
and Intellectual property leaks. In addition, the generated
responses often do not consider the context of the question being
asked, leading to user’s mistrusting responses.

Moreover, developing such AI tools and predicting their
behaviors pose significant challenges. Unlike many traditional
non-AI systems, AI systems rely on complex deep learning-
based transformer models, which are inherently difficult to
assess. In conventional software development, we typically
utilize deterministic test cases to evaluate against specific and
predictable behaviors. However, given LLMs' nondeterministic
nature, testing them with such deterministic test cases is a
significant challenge, as the LLM returned responses may vary
between the same inquiries [9], [10].

IV. USE CASES

To investigate the promise of LLM augmented learning, we
create three distinct use cases (UCn) to illustrate the different
approaches for using LLMs:

• UC1: Create an assistant to help with questions on HPC
best practices, such as HPE Programming Environment,
virtualization, and workflow creation.

• UC2: Create an assistant to support internal engineers'
access to and retrieval of performance data on various
topics from a center corpus.

• UC3: Create an agent that understands an HPC system
environment and can interact with the system in real-
time to support workflow orchestration.

A. Corpus

As already mentioned, LLMs are trained on a variety of
source materials. To augment this knowledge base, we use a
collection of focused materials on various specialized subjects,
programming models, such as C, C++, and Fortran, internal
HPE training materials, open-source workflow systems, such as
ExaWorks [11], Slurm [12], and virtualization systems and HPC
application execution runtimes, such as Apptainer [13], Podman
[14]. The following table, Table 2, lists the sources used for the
specific use cases, UC1-3.

Table 2 Corpus Sources.

Doc Name No.

Documents

Format Public Private

Cray Classic C and C++
Reference Manual

1 PDF ✓

HPE Cray Fortran Reference
Manual

1 PDF ✓

OpenACC 1 PDF ✓

OpenMP-API-Specification 1 PDF ✓

HPE Parallel Programming
Tutorial

16 PowerPoint ✓

HPE Virtualization
Presentations

164 Mixed
1
 ✓

HPC containers
 Web ✓

Workflow environments
 Web ✓

HPE Performance library
 Web ✓

B. Data Collection

The use cases use LangChain [14] infrastructure for data
collection and processing. LangChain is an open-source
framework for developing applications using language models.
Using LangChain, it was possible to create interfaces to various
LLMs and supporting functions to test the validity of different
use cases, UC1-3.

1 Mixed documents: PDF, Markdown, Web, Confluence and Text

C. Methodology

For UC1, we investigate different methods of augmenting
LLM training data, and we look to understand how LLMs can
provide correct responses and explanations to our dataset of test
questions and to determine how the LLM performs, how
accurate the responses, given the input queries are not part of the
foundational models training input dataset? We aim to
demonstrate methods to characterize the degree of correctness
of the response given by the LLM. For UC2, we study different
data retrieval methods to augment LLM training data. We look
to understand how LLM can provide correct answers and
explanations to our test questions and to determine how the
LLM performs when questions are asked in a single chat context
one by one, compared to when they are asked in cached contexts.
Another aspect of this use case is to investigate the optimal way
to create the input to the corpus of knowledge and measure the
consistency of responses. Lastly, for UC3, we aim to determine
whether the LLM can assist the user in navigating HPC system
operations and usage by providing an agent acting as a human
interface to system interactions.

 We discuss the core technologies for (1) augmenting LLM
training data, (2) retrieval mechanisms, (3) prompt engineering,
(4) LLM-based agents for system interaction, and (5) LLM
correctness test methodology.

1) Augmenting LLM training data: Commonly known as

Retrieval-Augmented Generation (RAG), provides additional

data for LLM reasoning, avoiding the expense of retraining the

foundational model. RAG aims to improve the performance of

language models in tasks that require access to external

knowledge or information. RAG typically involves two main

components: retrieval mechanisms and a generator. Figure 1

shows the processing of a user query using a local data store,

passing the new context to the LLM and the response.

A. Input query: Process an input query and prompt.

B. Query: retrieving relevant information from a data store

seeded from a corpus.

C. Enhanced context: the information retrieved is now used

as context for the generative component of the model.

This context provides the model with the necessary

background knowledge.

D. The generator takes the retrieved information and the

original input query to generate a response. This step is

typically performed using a language model,

E. The response from the language model is returned to the

user.

Fig. 1. Retrieval-Augmented Generation – RAG.

2) Retrieval mechanisms: To utilize RAG, we must bring

appropriate information and insert the data into the model

prompt. A typical RAG system has two main components:

indexing, retrieval, and generation. Indexing is ingesting data

from sources/corpus and indexing the data, typically using a

vector store database. Indexing sub-tasks can be further

characterized by loading documents using various document

loaders, such as web-based, CVS, text, PDF, etc., and then

splitting these documents into smaller chunks, as shown in

Figure 2. This is useful for indexing data and passing it into a

model since large chunks are more complicated to search and

won't fit in a model's finite context window. Finally, the split

data is stored for later search. This is often done using a vector

store database with various embedding models.

Fig. 2. Document Transform and Retrieval.

3) Prompt engineering: Prompts are the inputs LLMs

provide to produce a desired response. Well-designed prompts

are crucial to get useful outputs from LLMs. Prompt

engineering aims to construct prompts that deliver accurate,

relevant, and helpful LLM responses. The simplest form of

prompt engineering is where the developer crafts the user

(query) and system (context) prompts to serve a better response

and limit the ability of the LLM to hallucinate. By carefully

crafting the system prompt, the developer can create a set of

guardrails [15] to protect the application against hallucinating

and help guide the responses to the developer's intent. Another

viewpoint is that the user doesn't know what the query should

be; by using a new concept, RAG-Fusion [16], we will show the

model can produce better and more consistent answers to user

queries by using an LLM to generate similar queries based on

the user input, and rank the responses, selecting the best fit. As

shown Figure 3, RAG-Fusion will generate additional input

queries based on the original input, pass all these queries to the

LLM, and then rank-sort the responses, giving the topmost

response back to the user.

Fig. 3. RAG-Fusion Method.

In Figure 4, we use Phi-2, a small language model (SML) from

Microsoft, to illustrate how different RAG retrieval methods

can enhance the LLMs response to a question on which the

foundation model has yet to be trained.

Fig. 4. SLM RAG Responses.

4) LLM-based agents for system interaction: An agent uses

a language model as a reasoning engine to determine which

actions to take and in which order. The agent executes these

actions. We look to understand 1) the ability of the LLM to

produce quality responses to the user's input query and whether

the response accurately encapsulates the intent and 2)

mechanisms to safeguard the agent execution of the code, such

as sandboxing and Unix permissions.

5) LLM Correctness Test Methodology: We evaluate

different strategies for evaluating LLM responses. Responses

generated by LLM agents produce variable outputs, contexts,

and meanings. The challenge is reconciling multiple responses

and grading the responses to a known ground-truth answer. We

could employ human evaluation, but this strategy would

consume too many resources. Instead, we adopted a pragmatic

approach. As illustrated in Figure 5, the evaluation framework

depicts the evaluation pipeline using benchmark question

datasets (GMS8k, Slurm, and HPE Development Environment).

Fig. 5. Multi-LLM Reasoning.

We use a question, q1, from several question datasets and

compare the LLM answer a' to the ground truth answer, a1, as

defined in the test dataset. For this comparison, we utilize an

evaluator LLM (LLMe) to apply correctness criteria to grade

the response from the LLM under test (GPT, Llama, etc.,) with

the ground-truth answer,

a) Naïve Evaluation methodology: To verify the

effectiveness of the LLM responses, we first adopted the

LangChain LLM comparator functions to evaluate how close

the answer is to ground truth, e.g. a’  a1; these results were

inconclusive on a sample set of GSM8K questions/answers.

Table 3. String Evaluation Criteria

Metric True False
cosine 0.0687042 0.0715222

euclidean 0.370687 0.378212

manhattan 11.5896 11.9183

chebyshev 0.0319455 0.0317866

mamming 1 1

 Using these stock criteria methods, we could not assign a

consistent value to the LLM response vs. ground truth, so we

developed better test criteria, as documented here.

b) LLM Evaluation Methodology: We use an LLM

evaluator (LLMe) that uses custom reasoning criteria (Table
5), which demonstrated better reasoning and evaluation for the

sample set of LLM Q&A. Table 5 shows the custom accuracy

criteria used to self-evaluate the LLM response to the input

question. We take any score greater than 3 as the LLM has

determined the positive response.

Table 4: Reason Criteria

Score 1 answer is entirely unrelated to the reference.

Score 3 answer has minor relevance but does not align with the

reference.

Scare 5 answer has moderate relevance but may contain inaccuracies.

Score 7 answer aligns with the reference but has minor errors or

omissions.

Score 10 answer is completely accurate and aligns perfectly with the

reference.

Table 5 shows the results from two LLMs using the above

reasoning criteria and samples from the GSM8K dataset.

Table 5: LLM Reasoning Score

GSM8K Question GPT-4 Reason Score Llama2 Reason Score

1 10 5

2 7 3

V. RESULTS

A. UC1: Evaluating the correctness of RAG-based queries

against stock LLMs. The first evaluation is to determine

the understanding of stock LLMs in the context of our use

cases.

1) LLM performance: The results for "explanation of

correctness.” We use the GSM8K (Grade School Math 8K)

dataset, containing 8.5K high-quality, linguistically diverse

grade school math word problems. Methods used: GMS8K is a

well-known benchmark dataset for evaluating LLM accuracy.

We created several LLM Chains using different models, as

shown below. The answers to the questions are then re-

evaluated using ground truth responses and another LLM to

score the response. The algorithm yields a 1 for correct and 0

for incorrect. As expected, the larger commercial LLMs

outperform the smaller Open LLM models. What is interesting

is how well the newer Open LLM models, such as Mixtral MoE,

are getting close to commercially available models.

2) Standard LLM Models GSM8K responses: We can use

the above testing methodology to determine the scores for the

UC1. Figure 6 illustrates how different LLM models responded

to questions using the GSM8K benchmark.

Fig. 6. GSM8K Sample Results

3) Enhanced Retrieval Process: While RAG can improve

the accuracy of LLM responses to user queries, additional

optimization methods exist for the different stages of RAG

pipelines. One area is semantic search. To improve the LLM

response's quality further, we introduce the concepts of RAG-

fusion [16]. The theory behind RAG-fusion is to generate

multiple versions of the user's original query using an LLM and

then re-rank the results to select the most relevant retrieved

parts. Again, we show a better return than standard RAG using

the abovementioned dataset. Figure 7 shows the performance

of using open-source LLM model’s reasoning capability using

a set of questions designed to test understanding of

development concepts.

Fig. 7. LLM Test Scores for HPE DE.

Figure 8 shows the performance of using open-source LLM

model’s reasoning capability using a set of questions

designed to test understanding of Slurm concepts.

Fig. 8. LLM Test Scores for Slurm.

The next two figures, Figure 9 and Figure 10, show the

performance of using open-source LLM model’s reasoning

utilizing RAG to enhance the accuracy of the LLMs response

to the same set of questions.

Fig. 9. LLM/RAG Test Scores for HPE DE.

Fig. 10. LLM/RAG Test Scores for Slurm.

B. UC2: Create an assistant to support internal engineers'

access to and retrieval of performance data on various

topics. For UC2, we leveraged much of the work used to

evaluate UC1. The difference for UC2 is that we

implemented a Chatbot-style interface using Streamlit API

and offered several RAG mechanisms. This use case delves

into fine-tuning document retrieval methodologies and

shows the correct results for answer explanation based on

private LLM instances. Given that we already have the

expected text in the performance corpora, validation of

answers is straightforward, albeit non-trivial. We

implemented several retrieval schemas for this use case.

Figures 11 and 12 show the difference in response

between a standard foundational model and a model

enhanced with RAG.

The question being asked was:

"describe how I would use Apptainer to launch an MPI

application."

Fig. 11. LLM Response to Question.

The response from a standard LLM is very generic and

misleading. Meanwhile, the RAG response, as shown in Figure

12, is augmented using data from HPE training documentation.

Fig. 12. LLM/RAG response to question

The same approach created an interface to search HPE

propriety information. The difference was how we constructed

the local document vector store from confluence pages rather

than documents and public web sources. Confluence access

tokens are supplied to enable the retrieval of private data using

the RAG methods. As before, results obtained using RAG were

more concise than those without.

C. UC3: Create an agent that understands an HPC system

environment and can interact with the system in real-time

to support workflow orchestration.

For UC3, we further expand on the previous use cases
(UC1,2), and we apply the lessons learned to develop a shell-
based assistant that interacts with the user and transforms LLM
responses to system inputs. We evaluate the correctness across
a sample set of answer-explanation pairs and investigate the
security and efficacy of such operations.

This use case created a CLI agent to assist the users in
navigating a complex HPC system environment. The agent was
evaluated to solve human-system interaction in the context of
workload management. The agent was often able to propose
plausible action and execute both individual and multiple-step
commands.

In this section, we describe the agent's ability to solve some

of the more challenging tasks in the suite to illustrate a range of

capabilities and limitations. Figure 13 illustrates how the agent

can transform a user’s question into system commands and

execute them. The response from the LLM is returned in a

format that is easily understandable to the users. This simplifies

the current process, where users have to write a series of

commands and scripts to obtain the same information.

Fig. 13. Assistant CLI

To mitigate user concerns about security and limit the scope
of interactions, we implemented several "guardrails" to impose
secure use boundaries. We implemented guardrails using three
gates: (A) sandbox, (B) validity, and (C) authentication.

A. Sandbox: Only run commands in a sandbox

environment, limiting the LLM from generating

commands outside the restricted availability set.

B. Validity: Limit the command set to known

utilities. For Slurm, these would be srun, sbatch,

etc.

C. Authentication: Use access to run commands

based on Linux access permissions.

 If the LLM-generated command passes the guardrails, the

command is executed in the user's context, and the response

will be returned to the agent, parsing the output and returning

an LLM representation to the user. The output returned is not

the same as the output from the actual Slurm command; instead,

it is a transformed representation. As can be seen in Figure 14,

responses to the user question.

Fig. 14. Slurm Agent Reasoning

VI. DISCUSSION

In this study, we examined and demonstrated the potential of
using LLMs as assistants to aid knowledge discovery and as a
tool to navigate complex systems. Furthermore, we created
several closed systems, using open-source models to provide
both security and mobility of the solutions. We found that
standard foundational model LLMs can provide correct or
partially correct answers of a sample from a standardized
benchmark GPT4:72%, GPT3:58%, luminous:0.0%,
llama2:38%, mixtral:74%, Phi-2:50%. In the Luminous case,
the model comprehension of the GSM8K questions was not

performing well, and we still need to understand why the text
caused the model issues today. Case in point: the reasoning of
the following question

"Janet's ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She sells the
remainder at the farmers' market daily for $2 per fresh duck egg. How much in
dollars does she make every day at the farmers'."

The luminous model interpretation was:

"A; First find the total number of eggs Janet eats: 16 eggs/day * 3
breakfasts/day = <<16*3=48>>48 eggs Then find the total number of eggs she
sells: 48 eggs - 4 eggs = <<48-4=44>>44 eggs Then multiply the number of eggs
by the price per egg to find the total revenue: 44 eggs * $2/egg =
$<<44*2=88>>88 #### 88"

The model misinterpreted the "eats three" as a
multiplication.

Use prompt engineering, guardrails, and RAG retrieval
methods as chatbots for the HPE Development environment, as
shown in Table 6.

Table 6: HPE DE model correctness scores.

Model LLM Correctness RAG Correctness

Phi-2 68 68

Llama2 74 74

Mistral 78 90

Mixtral-MoE 84 95

 And Table 7, Workload manager responses.

Table 7: Slurm model correctness scores.

Model LLM Correctness RAG Correctness

Phi-2 11 11

Llama2 44 55

Mistral 77 88

Mixtral-MoE 100 100

 As expected, using RAG helped correct the LLM response

when answering domain-specific questions. Furthermore, we

investigated using agents as system actors to aid users in

navigating system configurations and interactions. We found

that the use of LLMs can provide offload knowledge

capabilities. In applying the agent, we noticed the security

challenges of allowing an autonomous agent, which required

special consideration and additional safeguards around

executing within a secure jail. For this use case, the goal was to

create an expert system to translate natural text to scheduler-

specific commands and respond with translated output. Said

differently, natural text processing for batch system interface.

The interface was implemented as a shell interface to mimic the

typical system use pattern. With all agent implementations that

interact with a system, security is a significant concern, as the

LLM is responsible for creating the command and options

autonomously. A level of trust is being granted to the agent,

which needs to be understood and limited. We implemented

several guardrails as an initial measure against rogue

commands and a mechanism to limit capabilities.

 Our results for the agent also showed that we required a

model with significant training and modality, meaning

language support. The bigger the model, even with RAG, the

better the user comprehension and interaction were. For

instance, switching the language from English to French was

trivial and the reverse. A notable observation was how the agent

was chaining together the workstream. There are two

invocations of the LLM: the translation from the user query to

the Slurm command and the translation of the Slurm output

back to the user. This second invocation took significant time;

the larger the LLM, the faster the second invocation became.

VII. CONCLUSION

 This work delves into the use and accuracy of LLM-based

agents, focusing on three distinct use cases. Initially, we

assessed various LLM providers and models to show the

correctness of LLM responses to specific HPC-related

scenarios. Subsequently, we investigated multiple methods to

improve generated responses augmented by relevant materials

and adopted different retrieval methods to explore the accuracy

and correctness of responses. Finally, capitalizing on the prior

work, we conducted a comprehensive evaluation and

discussion to scrutinize the use of interactive agents to assist the

user in system use. This analysis provides valuable insights and

directions for future research endeavors in the domain of LLM-

powered assistants in HPC systems.

 Furthermore, our study demonstrated that open-source RAG-

enabled models perform well against commercial LLMs, with

the added benefit of privacy and the use of a focused knowledge

base. One surprising observation was using augmented small

language models, such as Microsoft Phi-2. We believed or

hoped that by providing enough local documents, these models

would, at minimum, give the same responses as the larger LLM

or the MoE LLMs. Sadly, this research did not prove this, and

these SMLs didn't have enough reasoning capabilities required

by this investigation.

 As more focus is placed on using LLMs in autonomous

agents, further study is required, especially around security and

capabilities. This study also found that LLMs can generate

bogus information, commands, and options; guardrails can

mitigate command exposure by limiting which commands the

agent can access. Considering the diverse nature of system

setups and configurations, having an agent that can translate

free-form text to scheduler context was very helpful within the

test environments. One could see a future where agents are a

general onboarding tool to assist users in navigating HPC

systems for all aspects of system use, development, knowledge

transfer, execution, and system operations.

ACKNOWLEDGMENT

The authors thank John Levesque and HPE leadership for
supporting this study.

REFERENCES

[1] ChatGPT. (GPT-4). OpenAI. Accessed: Mar. 26, 2024. [Online].
Available: https://chat.openai.com/chat

[2] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M., Lacroix,
T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin,
A., Grave, E., & Lample, G. (2023). LLaMA: Open and Efficient
Foundation Language Models. ArXiv. /abs/2302.13971

[3] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. ArXiv.
/abs/1706.03762

[4] "LangChain application from prototype to production",
https://www.langchain.com. [Accessed: Jan. 29, 2024]

[5] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,
C., Hesse, C., . . . Amodei, D. (2020). Language Models are Few-Shot
Learners. ArXiv. /abs/2005.14165

[6] "Aleph-alpha Luminous Training Data", https://docs.aleph-
alpha.com/docs/introduction/model-card/#training-details [Accessed:
Apr. 5, 2024]

[7] "Output from AI LLMs is Nondeterministic. What that means and why
you should care.", https://www.sitation.com/non-determinism-in-ai-llm-
output [Accessed: Mar. 7, 2024]

[8] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun and Yue
Zhang (2024). A Survey on Large Language Model (LLM) Security and
Privacy: The Good, the Bad, and the Ugly. arXiv:2312.06717v2

[9] T. H. Kung, M. Cheatham, A. Medinilla, ChatGPT, C. Sillos, L. De Leon,
C. Elepano, M. Madriaga, R. Aggabao, and G. Diaz- Candido,
"Performance of ChatGPT on USMLE: Potential for AI- Assisted
Medical Education Using Large Language Models," medRxiv, 2022.

[10] J.H.Choi,K.E.Hickman,A.Monahan,andD.B.Schwarcz,“ChatGPT Goes
to Law School," SSRN, 2023.

[11] Exaworks. (2024, Apr. 7). Technologies for Composable and Scalable
HPC Workflows [Online]. Available: https://exaworks.org

[12] Slurm. (2024, Apr. 7). Slurm workload manager [Online]. Available:
https://slurm.schedmd.com

[13] Podman. (2024, Apr. 7). A tool for managing OCI containers and pods
[Online]. Available: https://podman.io

[14] LangChain. (2022, Oct 17). LangChain is the platform developers and
enterprises choose to build AI apps from prototype to production
[Online]. Available: https://github.com/langchain-ai/langchain

[15] Guardrails. (2024, Apr. 7). How to implement LLM guardrails [Online].
Available:
https://cookbook.openai.com/examples/how_to_use_guardrails

[16] Rackauckas, Z. (2024). RAG-Fusion: A New Take on Retrieval-
Augmented Generation. ArXiv.https://doi.org/10.5121/ijnlc.2024.13103

[17] GSM8K (Cobbe et al., 2021). Grade School Math [Online]. Available:
https://github.com/openai/grade-school-math

https://chat.openai.com/chat
https://exaworks.org/
https://slurm.schedmd.com/
https://podman.io/
https://github.com/langchain-ai/langchain
https://cookbook.openai.com/examples/how_to_use_guardrails

	I. Introduction
	II. Background
	A. Short Forms
	B. Definitions

	III. Existing Works
	IV. Use Cases
	A. Corpus
	B. Data Collection
	C. Methodology
	1) Augmenting LLM training data: Commonly known as Retrieval-Augmented Generation (RAG), provides additional data for LLM reasoning, avoiding the expense of retraining the foundational model. RAG aims to improve the performance of language models in t...
	A. Input query: Process an input query and prompt.
	B. Query: retrieving relevant information from a data store seeded from a corpus.
	C. Enhanced context: the information retrieved is now used as context for the generative component of the model. This context provides the model with the necessary background knowledge.
	D. The generator takes the retrieved information and the original input query to generate a response. This step is typically performed using a language model,
	E. The response from the language model is returned to the user.
	2) Retrieval mechanisms: To utilize RAG, we must bring appropriate information and insert the data into the model prompt. A typical RAG system has two main components: indexing, retrieval, and generation. Indexing is ingesting data from sources/corpus...
	3) Prompt engineering: Prompts are the inputs LLMs provide to produce a desired response. Well-designed prompts are crucial to get useful outputs from LLMs. Prompt engineering aims to construct prompts that deliver accurate, relevant, and helpful LLM...
	4) LLM-based agents for system interaction: An agent uses a language model as a reasoning engine to determine which actions to take and in which order. The agent executes these actions. We look to understand 1) the ability of the LLM to produce qualit...
	5) LLM Correctness Test Methodology: We evaluate different strategies for evaluating LLM responses. Responses generated by LLM agents produce variable outputs, contexts, and meanings. The challenge is reconciling multiple responses and grading the res...
	a) Naïve Evaluation methodology: To verify the effectiveness of the LLM responses, we first adopted the LangChain LLM comparator functions to evaluate how close the answer is to ground truth, e.g. a’ (a1; these results were inconclusive on a sample s...
	b) LLM Evaluation Methodology: We use an LLM evaluator (LLMe) that uses custom reasoning criteria (Table 5), which demonstrated better reasoning and evaluation for the sample set of LLM Q&A. Table 5 shows the custom accuracy criteria used to self-eval...

	V. Results
	A. UC1: Evaluating the correctness of RAG-based queries against stock LLMs. The first evaluation is to determine the understanding of stock LLMs in the context of our use cases.
	1) LLM performance: The results for "explanation of correctness.” We use the GSM8K (Grade School Math 8K) dataset, containing 8.5K high-quality, linguistically diverse grade school math word problems. Methods used: GMS8K is a well-known benchmark data...
	2) Standard LLM Models GSM8K responses: We can use the above testing methodology to determine the scores for the UC1. Figure 6 illustrates how different LLM models responded to questions using the GSM8K benchmark.
	3) Enhanced Retrieval Process: While RAG can improve the accuracy of LLM responses to user queries, additional optimization methods exist for the different stages of RAG pipelines. One area is semantic search. To improve the LLM response's quality fur...
	Figure 8 shows the performance of using open-source LLM model’s reasoning capability using a set of questions designed to test understanding of Slurm concepts.
	The next two figures, Figure 9 and Figure 10, show the performance of using open-source LLM model’s reasoning utilizing RAG to enhance the accuracy of the LLMs response to the same set of questions.

	B. UC2: Create an assistant to support internal engineers' access to and retrieval of performance data on various topics. For UC2, we leveraged much of the work used to evaluate UC1. The difference for UC2 is that we implemented a Chatbot-style interf...
	C. UC3: Create an agent that understands an HPC system environment and can interact with the system in real-time to support workflow orchestration.

	VI. DISCUSSION
	VII. CONCLUSION
	Acknowledgment
	References

