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Abstract—This paper explores the application of Large 

Language Models (LLMs) in three distinct scenarios, 

demonstrating their potential use to aid user experience and 

efficiency. Firstly, we examine the application of LLM models 

such as OpenAI's GPT -3 or Llama in chatbots to assist in 

programming environments, providing real-time assistance to 

developers. Secondly, we explore using LLMs and Python to 

search internal document corpus for performance engineering, 

significantly improving the retrieval of relevant information from 

extensive technical documentation. Lastly, we investigate using 

LLMs as an interface to system batch schedulers, such as Slurm 

or PBS, replacing domain-specific languages and prompts with 

natural text. This approach democratizes access to complex 

systems, fostering ease of use and enhancing the user experience. 

Through these use cases, we underscore the versatility and 

potential of LLMs, highlighting their role as an aid to system 

operation and user experience. 

Keywords—LLM, RAG, assistant, chatbot, performance, 

development, scheduler, HPC, services 

I. INTRODUCTION 

New users may find using a supercomputer daunting; the 
system's complexity and diversity can overwhelm even the most 
knowledgeable person. To navigate the system, they often turn 
to support personnel, emails, instant message channels, or even 
"call a friend." This high entry bar can lead to frustration, 
prompting them to seek alternate systems with a lower barrier of 
entry or to create documentation on system usage. The challenge 
for users becomes even more problematic as these systems have 
different management and configurations, causing portability 
and time to solve difficulties. Imagine if we had a set of tools to 
guide the user through the system and provide a top-tier 
knowledgeable agent capable of answering and interacting with 
the system. This agent could assist the user on a wide range of 
topics, focusing on the architecture and environment the user 
encounters. We might now have a solution: generative AI and 
Large Language Models (LLMs). 

The advent of Large Language Models (LLMs) has marked 
a paradigm shift in artificial intelligence, particularly in natural 
language processing (NLP). These sophisticated models, such as 
OpenAI's ChatGPT [1] and Llama [2], have been trained on 

extensive text corpora, enabling them to generate coherent and 
contextually relevant language outputs. The ability of LLMs to 
understand and produce human-like text has opened new 
avenues for human-computer interaction, making them a pivotal 
asset in the technological landscape. 

We cannot overstate the importance of LLMs, as they play a 
crucial role in automating and enhancing tasks that require 
language understanding. LLMs are revolutionizing our 
approach to problem-solving and decision-making processes, 
from powering customer service chatbots to driving advanced 
analytics in data science [3]. Their versatility enables 
applications in various domains, delivering efficient but also 
intuitive and user-friendly solutions. 

In the paper, we present the practical applications of LLMs 
using three exemplary use cases, each highlighting the use of 
LLMs to improve user experience and operational efficiency. 
We begin by examining the use of LLMs within specialized 
programming environments, where they provide developers 
with real-time assistance and information about the HPE 
programming environment and general HPC coding practices 
and system use, thereby streamlining application building and 
execution. The second scenario investigates the application of 
LLMs and Python interfaces [4] in searching internal document 
corpora for application performance engineering, where their 
ability to surface relevant information from a vast dataset 
quickly is invaluable. Lastly, we explore using LLMs as 
interfaces for complex systems, where they interpret natural text 
inputs, eliminating the need for users to learn domain-specific 
languages and commands. Through these use cases, we aim to 
demonstrate the transformative impact of LLMs on system 
operation and user experience, emphasizing their role in 
democratizing access to technology. 

The following sections will offer an in-depth analysis of the 
challenges and methods to address the use case. Section II will 
establish the definitions and background knowledge essential for 
thoroughly comprehending this paper. Section III will furnish a 
comprehensive overview of the related works. Subsequently, in 
sections IV and V, we will explain the use cases and criteria by 
which we selected models and methods used in the proposed 
solutions and dive into our development specifics. Later, we will 



explain our findings in Section VI and open problems in Section 
VII, respectively. Lastly, we will provide our concluding 
remarks in Section VIII. 

II. BACKGROUND 

Throughout the paper, we will interchangeably use the terms 
large language models (LLMs), Models, and service platforms, 
such as GPT-4 and OpenAI. Similarly, we will assume software 
developers and users are the same entity. The following defines 
short forms and standard definitions used throughout the paper. 

A. Short Forms 

• LLM – Large Language Model 

• SLM – Small Language Model 

• RAG – Retrieval-Augmented Generation 

• Agent – An LLM-powered intelligent program 

• Chatbot – Interactive LLM program 

• Retriever – Unstructured data query interface 

• Corpus – A collection of public/private sources used 

to enhance the LLM. 

• Vector store – A database that stores vectors and 

associated data items. 

B. Definitions 

• Large Language Model – Specialized Generative AI 

trained on extensive datasets can produce various 

artifacts from natural language prompts.  

• Small Language Model – A small language model is 

a lightweight generative AI model. It uses a small 

neural network, has significantly fewer parameters 

than a traditional LLM, and trains on tiny amounts of 

data. 

• RAG – Retrieval-Augmented Generation is a process 

that optimizes the response of a Large Language 

Model (LLM) by referencing a knowledge base 

outside of its training data sources before generating 

a response. 

• Agent – An LLM agent is an artificial intelligence 

system that utilizes a large language model (LLM) as 

its core computational engine to exhibit capabilities 

beyond text generation, including conducting 

conversations, completing tasks, reasoning, and 

demonstrating some autonomous behavior. 

• Chatbot – A computer program that simulates and 

processes human conversation. 

• Retriever – An interface that returns documents 

based on an unstructured query, making it a more 

general tool than a vector store. Unlike a vector store, 

a retriever does not need to be able to store 

documents. Instead, its primary function is to return 

or retrieve them. 

• Corpus – A corpus refers to the large body of text 

data on which the model is trained. This corpus can 

encompass various textual content, including books, 

articles, websites, and other written materials. 

• Vector store – A vector store, also known as a vector 

database, is a specialized database that can store 

vectors (fixed-length lists of numbers) and other data 

items used in RAG tasks. 

 

III. EXISTING WORKS 

Since the inception of LLM models, researchers have 
continuously evaluated LLM use cases to aid the understanding 
of complex systems [5].  

It is well-documented that performance correlates with their 
training data quality. In general, most of the training dataset 
comes from publicly available software sources [3], and often, 
this data can be of questionable quality or riddled with 
vulnerabilities. The table below is an excerpt from the above 
reference: Language Models are Few-Shot Learners. It shows 
the datasets used to train GPT-3., the base model for ChatGPT. 
This information was not easy to find, and I expect that this will 
get more difficult in time. It is also interesting to note that this is 
a small amount of data, approximately 570GB, after filtering. 
Similar corpora data breakdowns can be found for other LLMs, 
such as Aleph-Alpha Luminous [6]. 

Table 1 excerpt from "Language Models are Few-Shot Learners.". 

 

In addition, LLMs cannot infer what they are producing. 
They produce an output that calculates the probability of each 
token generated next. Therefore, they are often impacted by 
bias. If the training data contains poor-quality references, it is 
unlikely that LLM will produce good results. 

Furthermore, the unpredictable nature of LLMs indicates 
that they can produce varying outputs for identical prompts [7]. 
These variations are often more comprehensive than the 
semantic structure and the overall idea. The privacy implications 
concerning these models also require attention [8]. Developers 
are now concerned about public exposure to their questions and 
responses and the possible effect on system internals via security 
and Intellectual property leaks. In addition, the generated 
responses often do not consider the context of the question being 
asked, leading to user’s mistrusting responses. 

Moreover, developing such AI tools and predicting their 
behaviors pose significant challenges. Unlike many traditional 
non-AI systems, AI systems rely on complex deep learning-
based transformer models, which are inherently difficult to 
assess. In conventional software development, we typically 
utilize deterministic test cases to evaluate against specific and 
predictable behaviors. However, given LLMs' nondeterministic 
nature, testing them with such deterministic test cases is a 
significant challenge, as the LLM returned responses may vary 
between the same inquiries [9], [10].  



IV. USE CASES 

To investigate the promise of LLM augmented learning, we 
create three distinct use cases (UCn) to illustrate the different 
approaches for using LLMs: 

• UC1: Create an assistant to help with questions on HPC 
best practices, such as HPE Programming Environment, 
virtualization, and workflow creation. 

• UC2: Create an assistant to support internal engineers' 
access to and retrieval of performance data on various 
topics from a center corpus. 

• UC3: Create an agent that understands an HPC system 
environment and can interact with the system in real-
time to support workflow orchestration. 

A. Corpus 

As already mentioned, LLMs are trained on a variety of 
source materials. To augment this knowledge base, we use a 
collection of focused materials on various specialized subjects, 
programming models, such as C, C++, and Fortran, internal 
HPE training materials, open-source workflow systems, such as  
ExaWorks [11], Slurm [12], and virtualization systems and HPC 
application execution runtimes, such as Apptainer [13], Podman 
[14]. The following table, Table 2, lists the sources used for the 
specific use cases, UC1-3. 

Table 2 Corpus Sources. 

Doc Name No. 

Documents 

Format Public Private 

Cray Classic C and C++ 
Reference Manual 

1 PDF ✓  

HPE Cray Fortran Reference 
Manual 

1 PDF ✓  

OpenACC 1 PDF ✓  

OpenMP-API-Specification 1 PDF ✓  

HPE Parallel Programming 
Tutorial 

16 PowerPoint  ✓ 

HPE Virtualization 
Presentations 

164 Mixed
1
  ✓ 

HPC containers 
 Web ✓  

Workflow environments 
 Web ✓  

HPE Performance library 
 Web  ✓ 

 

B. Data Collection 

The use cases use LangChain [14] infrastructure for data 
collection and processing. LangChain is an open-source 
framework for developing applications using language models. 
Using LangChain, it was possible to create interfaces to various 
LLMs and supporting functions to test the validity of different 
use cases, UC1-3.  

 
1 Mixed documents: PDF, Markdown, Web, Confluence and Text 

C. Methodology 

For UC1, we investigate different methods of augmenting 
LLM training data, and we look to understand how LLMs can 
provide correct responses and explanations to our dataset of test 
questions and to determine how the LLM performs, how 
accurate the responses, given the input queries are not part of the 
foundational models training input dataset? We aim to 
demonstrate methods to characterize the degree of correctness 
of the response given by the LLM. For UC2, we study different 
data retrieval methods to augment LLM training data. We look 
to understand how LLM can provide correct answers and 
explanations to our test questions and to determine how the 
LLM performs when questions are asked in a single chat context 
one by one, compared to when they are asked in cached contexts. 
Another aspect of this use case is to investigate the optimal way 
to create the input to the corpus of knowledge and measure the 
consistency of responses. Lastly, for UC3, we aim to determine 
whether the LLM can assist the user in navigating HPC system 
operations and usage by providing an agent acting as a human 
interface to system interactions.  

   We discuss the core technologies for (1) augmenting LLM 
training data, (2) retrieval mechanisms, (3) prompt engineering, 
(4) LLM-based agents for system interaction, and (5) LLM 
correctness test methodology. 

1) Augmenting LLM training data: Commonly known as 

Retrieval-Augmented Generation (RAG), provides additional 

data for LLM reasoning, avoiding the expense of retraining the 

foundational model. RAG aims to improve the performance of 

language models in tasks that require access to external 

knowledge or information. RAG typically involves two main 

components: retrieval mechanisms and a generator. Figure 1 

shows the processing of a user query using a local data store, 

passing the new context to the LLM and the response.  

A. Input query: Process an input query and prompt. 

B. Query: retrieving relevant information from a data store 

seeded from a corpus.  

C. Enhanced context: the information retrieved is now used 

as context for the generative component of the model. 

This context provides the model with the necessary 

background knowledge. 

D. The generator takes the retrieved information and the 

original input query to generate a response. This step is 

typically performed using a language model,  

E. The response from the language model is returned to the 

user. 

 



 
Fig. 1. Retrieval-Augmented Generation – RAG. 

2) Retrieval mechanisms: To utilize RAG, we must bring 

appropriate information and insert the data into the model 

prompt. A typical RAG system has two main components: 

indexing, retrieval, and generation. Indexing is ingesting data 

from sources/corpus and indexing the data, typically using a 

vector store database. Indexing sub-tasks can be further 

characterized by loading documents using various document 

loaders, such as web-based, CVS, text, PDF, etc., and then 

splitting these documents into smaller chunks, as shown in 

Figure 2. This is useful for indexing data and passing it into a 

model since large chunks are more complicated to search and 

won't fit in a model's finite context window. Finally, the split 

data is stored for later search. This is often done using a vector 

store database with various embedding models.  

 

 
Fig. 2. Document Transform and Retrieval. 

3) Prompt engineering:  Prompts are the inputs LLMs 

provide to produce a desired response. Well-designed prompts 

are crucial to get useful outputs from LLMs. Prompt 

engineering aims to construct prompts that deliver accurate, 

relevant, and helpful LLM responses. The simplest form of 

prompt engineering is where the developer crafts the user 

(query) and system (context) prompts to serve a better response 

and limit the ability of the LLM to hallucinate. By carefully 

crafting the system prompt, the developer can create a set of 

guardrails [15] to protect the application against hallucinating 

and help guide the responses to the developer's intent. Another 

viewpoint is that the user doesn't know what the query should 

be; by using a new concept, RAG-Fusion [16], we will show the 

model can produce better and more consistent answers to user 

queries by using an LLM to generate similar queries based on 

the user input, and rank the responses, selecting the best fit. As 

shown Figure 3, RAG-Fusion will generate additional input 

queries based on the original input, pass all these queries to the 

LLM, and then rank-sort the responses, giving the topmost 

response back to the user. 

 

 
Fig. 3. RAG-Fusion Method. 

In Figure 4, we use Phi-2, a small language model (SML) from 

Microsoft, to illustrate how different RAG retrieval methods 

can enhance the LLMs response to a question on which the 

foundation model has yet to be trained. 

 
Fig. 4. SLM RAG Responses. 

4) LLM-based agents for system interaction: An agent uses 

a language model as a reasoning engine to determine which 

actions to take and in which order. The agent executes these 

actions. We look to understand 1) the ability of the LLM to 

produce quality responses to the user's input query and whether 



the response accurately encapsulates the intent and 2) 

mechanisms to safeguard the agent execution of the code, such 

as sandboxing and Unix permissions.  

5) LLM Correctness Test Methodology: We evaluate 

different strategies for evaluating LLM responses. Responses 

generated by LLM agents produce variable outputs, contexts, 

and meanings. The challenge is reconciling multiple responses 

and grading the responses to a known ground-truth answer. We 

could employ human evaluation, but this strategy would 

consume too many resources. Instead, we adopted a pragmatic 

approach. As illustrated in Figure 5, the evaluation framework 

depicts the evaluation pipeline using benchmark question 

datasets (GMS8k, Slurm, and HPE Development Environment). 

 

 
Fig. 5. Multi-LLM Reasoning. 

We use a question, q1, from several question datasets and 

compare the LLM answer a' to the ground truth answer, a1, as 

defined in the test dataset. For this comparison, we utilize an 

evaluator LLM (LLMe) to apply correctness criteria to grade 

the response from the LLM under test (GPT, Llama, etc.,) with 

the ground-truth answer, 

 

a) Naïve Evaluation methodology: To verify the 

effectiveness of the LLM responses, we first adopted the 

LangChain LLM comparator functions to evaluate how close 

the answer is to ground truth, e.g. a’  a1; these results were 

inconclusive on a sample set of GSM8K questions/answers. 

 
Table 3. String Evaluation Criteria 

Metric True False 
cosine 0.0687042 0.0715222 

euclidean 0.370687 0.378212 

manhattan 11.5896 11.9183 

chebyshev 0.0319455 0.0317866 

mamming 1 1 

 

     Using these stock criteria methods, we could not assign a 

consistent value to the LLM response vs. ground truth, so we 

developed better test criteria, as documented here. 

b) LLM Evaluation Methodology: We use an LLM 

evaluator (LLMe) that uses custom reasoning criteria (Table 
5), which demonstrated better reasoning and evaluation for the 

sample set of LLM Q&A. Table 5 shows the custom accuracy 

criteria used to self-evaluate the LLM response to the input 

question. We take any score greater than 3 as the LLM has 

determined the positive response. 

 
Table 4: Reason Criteria 

Score 1 answer is entirely unrelated to the reference. 

Score 3 answer has minor relevance but does not align with the 

reference. 

Scare 5 answer has moderate relevance but may contain inaccuracies. 

Score 7 answer aligns with the reference but has minor errors or 

omissions. 

Score 10 answer is completely accurate and aligns perfectly with the 

reference. 

 

Table 5 shows the results from two LLMs using the above 

reasoning criteria and samples from the GSM8K dataset. 

 
Table 5: LLM Reasoning Score 

GSM8K Question GPT-4 Reason Score Llama2 Reason Score 

1 10 5 

2 7 3 

 

V. RESULTS 

A. UC1:  Evaluating the correctness of RAG-based queries 

against stock LLMs. The first evaluation is to determine 

the understanding of stock LLMs in the context of our use 

cases. 

1) LLM performance: The results for "explanation of 

correctness.” We use the GSM8K (Grade School Math 8K) 

dataset, containing 8.5K high-quality, linguistically diverse 

grade school math word problems. Methods used: GMS8K is a 

well-known benchmark dataset for evaluating LLM accuracy. 

We created several LLM Chains using different models, as 

shown below. The answers to the questions are then re-

evaluated using ground truth responses and another LLM to 

score the response. The algorithm yields a 1 for correct and 0 

for incorrect. As expected, the larger commercial LLMs 

outperform the smaller Open LLM models. What is interesting 

is how well the newer Open LLM models, such as Mixtral MoE, 

are getting close to commercially available models.  

2) Standard LLM Models GSM8K responses: We can use 

the above testing methodology to determine the scores for the 

UC1. Figure 6 illustrates how different LLM models responded 

to questions using the GSM8K benchmark. 

 



 
Fig. 6. GSM8K Sample Results 

3) Enhanced Retrieval Process: While RAG can improve 

the accuracy of LLM responses to user queries, additional 

optimization methods exist for the different stages of RAG 

pipelines. One area is semantic search. To improve the LLM 

response's quality further, we introduce the concepts of RAG-

fusion [16]. The theory behind RAG-fusion is to generate 

multiple versions of the user's original query using an LLM and 

then re-rank the results to select the most relevant retrieved 

parts. Again, we show a better return than standard RAG using 

the abovementioned dataset. Figure 7 shows the performance 

of using open-source LLM model’s reasoning capability using 

a set of questions designed to test understanding of 

development concepts. 

 
Fig. 7. LLM Test Scores for HPE DE. 

Figure 8 shows the performance of using open-source LLM 

model’s reasoning capability using a set of questions 

designed to test understanding of Slurm concepts. 

 

 
Fig. 8. LLM Test Scores for Slurm. 

The next two figures, Figure 9 and Figure 10, show the 

performance of using open-source LLM model’s reasoning 

utilizing RAG to enhance the accuracy of the LLMs response 

to the same set of questions. 

 

 
Fig. 9. LLM/RAG Test Scores for HPE DE. 



 
Fig. 10. LLM/RAG Test Scores for Slurm. 

B. UC2: Create an assistant to support internal engineers' 

access to and retrieval of performance data on various 

topics. For UC2, we leveraged much of the work used to 

evaluate UC1. The difference for UC2 is that we 

implemented a Chatbot-style interface using Streamlit API 

and offered several RAG mechanisms. This use case delves 

into fine-tuning document retrieval methodologies and 

shows the correct results for answer explanation based on 

private LLM instances. Given that we already have the 

expected text in the performance corpora, validation of 

answers is straightforward, albeit non-trivial. We 

implemented several retrieval schemas for this use case. 

Figures 11 and 12 show the difference in response 

between a standard foundational model and a model 

enhanced with RAG. 

 

The question being asked was: 

 

"describe how I would use Apptainer to launch an MPI 

application." 

 

 
Fig. 11. LLM Response to Question. 

The response from a standard LLM is very generic and 

misleading. Meanwhile, the RAG response, as shown in Figure 

12, is augmented using data from HPE training documentation. 

 

 
Fig. 12. LLM/RAG response to question 

The same approach created an interface to search HPE 

propriety information. The difference was how we constructed 

the local document vector store from confluence pages rather 

than documents and public web sources. Confluence access 

tokens are supplied to enable the retrieval of private data using 

the RAG methods. As before, results obtained using RAG were 

more concise than those without. 

C. UC3: Create an agent that understands an HPC system 

environment and can interact with the system in real-time 

to support workflow orchestration. 

For UC3, we further expand on the previous use cases 
(UC1,2), and we apply the lessons learned to develop a shell-
based assistant that interacts with the user and transforms LLM 
responses to system inputs. We evaluate the correctness across 
a sample set of answer-explanation pairs and investigate the 
security and efficacy of such operations.  

This use case created a CLI agent to assist the users in 
navigating a complex HPC system environment. The agent was 
evaluated to solve human-system interaction in the context of 
workload management. The agent was often able to propose 
plausible action and execute both individual and multiple-step 
commands. 

In this section, we describe the agent's ability to solve some 

of the more challenging tasks in the suite to illustrate a range of 

capabilities and limitations. Figure 13 illustrates how the agent 

can transform a user’s question into system commands and 

execute them. The response from the LLM is returned in a 

format that is easily understandable to the users. This simplifies 

the current process, where users have to write a series of 

commands and scripts to obtain the same information. 

 



 
Fig. 13. Assistant CLI 

To mitigate user concerns about security and limit the scope 
of interactions, we implemented several "guardrails" to impose 
secure use boundaries.  We implemented guardrails using three 
gates: (A) sandbox, (B) validity, and (C) authentication. 

A. Sandbox: Only run commands in a sandbox 

environment, limiting the LLM from generating 

commands outside the restricted availability set. 

B. Validity: Limit the command set to known 

utilities. For Slurm, these would be srun, sbatch, 

etc. 

C. Authentication: Use access to run commands 

based on Linux access permissions. 

 

      If the LLM-generated command passes the guardrails, the 

command is executed in the user's context, and the response 

will be returned to the agent, parsing the output and returning 

an LLM representation to the user. The output returned is not 

the same as the output from the actual Slurm command; instead, 

it is a transformed representation. As can be seen in Figure 14, 

responses to the user question.  

 

 
Fig. 14. Slurm Agent Reasoning 

VI. DISCUSSION 

In this study, we examined and demonstrated the potential of 
using LLMs as assistants to aid knowledge discovery and as a 
tool to navigate complex systems. Furthermore, we created 
several closed systems, using open-source models to provide 
both security and mobility of the solutions. We found that 
standard foundational model LLMs can provide correct or 
partially correct answers of a sample from a standardized 
benchmark GPT4:72%, GPT3:58%, luminous:0.0%, 
llama2:38%, mixtral:74%, Phi-2:50%. In the Luminous case, 
the model comprehension of the GSM8K questions was not 

performing well, and we still need to understand why the text 
caused the model issues today. Case in point: the reasoning of 
the following question 

"Janet's ducks lay 16 eggs per day. She eats three for breakfast every 
morning and bakes muffins for her friends every day with four. She sells the 
remainder at the farmers' market daily for $2 per fresh duck egg. How much in 
dollars does she make every day at the farmers'." 

The luminous model interpretation was: 

"A; First find the total number of eggs Janet eats: 16 eggs/day * 3 
breakfasts/day = <<16*3=48>>48 eggs Then find the total number of eggs she 
sells: 48 eggs - 4 eggs = <<48-4=44>>44 eggs Then multiply the number of eggs 
by the price per egg to find the total revenue: 44 eggs * $2/egg = 
$<<44*2=88>>88 #### 88" 

The model misinterpreted the "eats three" as a 
multiplication. 

Use prompt engineering, guardrails, and RAG retrieval 
methods as chatbots for the HPE Development environment, as 
shown in Table 6. 

Table 6: HPE DE model correctness scores. 

Model LLM Correctness RAG Correctness 

Phi-2 68 68 

Llama2 74 74 

Mistral 78 90 

Mixtral-MoE 84 95 

 

     And Table 7, Workload manager responses.  

 
Table 7: Slurm model correctness scores. 

Model LLM Correctness RAG Correctness 

Phi-2 11 11 

Llama2 44 55 

Mistral 77 88 

Mixtral-MoE 100 100 

 

     As expected, using RAG helped correct the LLM response 

when answering domain-specific questions. Furthermore, we 

investigated using agents as system actors to aid users in 

navigating system configurations and interactions. We found 

that the use of LLMs can provide offload knowledge 

capabilities. In applying the agent, we noticed the security 

challenges of allowing an autonomous agent, which required 

special consideration and additional safeguards around 

executing within a secure jail. For this use case, the goal was to 

create an expert system to translate natural text to scheduler-

specific commands and respond with translated output. Said 

differently, natural text processing for batch system interface. 

The interface was implemented as a shell interface to mimic the 

typical system use pattern. With all agent implementations that 

interact with a system, security is a significant concern, as the 

LLM is responsible for creating the command and options 

autonomously. A level of trust is being granted to the agent, 

which needs to be understood and limited. We implemented 

several guardrails as an initial measure against rogue 

commands and a mechanism to limit capabilities.  

 



      Our results for the agent also showed that we required a 

model with significant training and modality, meaning 

language support. The bigger the model, even with RAG, the 

better the user comprehension and interaction were. For 

instance, switching the language from English to French was 

trivial and the reverse. A notable observation was how the agent 

was chaining together the workstream. There are two 

invocations of the LLM: the translation from the user query to 

the Slurm command and the translation of the Slurm output 

back to the user. This second invocation took significant time; 

the larger the LLM, the faster the second invocation became.  

VII. CONCLUSION 

     This work delves into the use and accuracy of LLM-based 

agents, focusing on three distinct use cases. Initially, we 

assessed various LLM providers and models to show the 

correctness of LLM responses to specific HPC-related 

scenarios. Subsequently, we investigated multiple methods to 

improve generated responses augmented by relevant materials 

and adopted different retrieval methods to explore the accuracy 

and correctness of responses. Finally, capitalizing on the prior 

work, we conducted a comprehensive evaluation and 

discussion to scrutinize the use of interactive agents to assist the 

user in system use. This analysis provides valuable insights and 

directions for future research endeavors in the domain of LLM-

powered assistants in HPC systems.  

 

    Furthermore, our study demonstrated that open-source RAG-

enabled models perform well against commercial LLMs, with 

the added benefit of privacy and the use of a focused knowledge 

base. One surprising observation was using augmented small 

language models, such as Microsoft Phi-2. We believed or 

hoped that by providing enough local documents, these models 

would, at minimum, give the same responses as the larger LLM 

or the MoE LLMs. Sadly, this research did not prove this, and 

these SMLs didn't have enough reasoning capabilities required 

by this investigation.  

 

     As more focus is placed on using LLMs in autonomous 

agents, further study is required, especially around security and 

capabilities. This study also found that LLMs can generate 

bogus information, commands, and options; guardrails can 

mitigate command exposure by limiting which commands the 

agent can access. Considering the diverse nature of system 

setups and configurations, having an agent that can translate 

free-form text to scheduler context was very helpful within the 

test environments. One could see a future where agents are a 

general onboarding tool to assist users in navigating HPC 

systems for all aspects of system use, development, knowledge 

transfer, execution, and system operations. 
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