
Enhancing HPC Service Management on Alps using
FirecREST API

Juan Pablo Dorsch
Swiss National Supercomputing Centre

ETH Zürich
Lugano, Switzerland

juanpablo.dorsch@cscs.ch

Eirini Koutsaniti
Swiss National Supercomputing Centre

ETH Zürich
Zurich, Switzerland

eirini.koutsaniti@cscs.ch

Andreas Fink
Swiss National Supercomputing Centre

ETH Zürich
Zurich, Switzerland
andreas.fink@cscs.ch

Rafael Sarmiento
Swiss National Supercomputing Centre

ETH Zürich
Zurich, Switzerland

rafael.sarmiento@cscs.ch

Abstract—With the evolution of scientific computational needs,
there is a growing demand for enhanced resource access and
sophisticated services beyond traditional HPC offerings. These
demands encompass a wide array of services and use cases,
from interactive computing platforms like JupyterHub to the
integration of Continuous Integration (CI) pipelines with tools
such as GitHub Actions and GitLab runners, and the automation
of complex workflows in Machine Learning using AirFlow.

This paper addresses the challenges faced by HPC centers
providing multi-purpose HPC infrastructure in scaling these
services to meet the diverse needs of various scientific commu-
nities. Our proposed solution involves the adoption of a web-
facing RESTful API, such as FirecREST, to streamline access to
HPC resources for those services. We methodically demonstrate,
through various use cases, how FirecREST can significantly
simplify the configuration of complex services and enhance the
efficiency of HPC service management for HPC providers. This
approach not only addresses the immediate needs of HPC centers
but showcases the benefits of a web-facing interface to access HPC
resources.

Index Terms—RESTful API, FirecREST, web-facing interface,
Services, CI, Interactive computing, Regression Tests, Workflow
engines

I. INTRODUCTION

The advent of cloud technology has significantly influenced
the expectations of the scientific community regarding the
services and capabilities offered by HPC centers. There is an
increasing demand for enhanced resource access and advanced
services atop traditional HPC offerings. These requirements
span a diverse range of applications, including interactive
computing platforms like JupyterHub, the integration of Con-
tinuous Integration (CI) pipelines such as GitHub Actions and
GitLab CI, and the automation of complex workflows, notably
in Machine Learning (ML) using tools like AirFlow.

From the perspective of HPC centers, which provide multi-
purpose HPC machines, accommodating these varied services
for different scientific communities presents scalability chal-
lenges, particularly in terms of operational effort. This in-
cludes considerations related to security, maintenance, service

management, and the allocation of human and infrastructure
resources.

An example of such facilities providing multipurpose HPC
infrastructure is the Swiss National Supercomputing Centre
(CSCS), which serves a broad spectrum of scientific disci-
plines. CSCS provides the Alps infrastructure, a Cray HPE
EX machines with heterogeneous hardware such as AMD and
Nvidia CPUs and GPUs including Grace-Hopper superchips.
One of the key requirements identified by CSCS is the
facilitation of workflows for submitting computational tasks
and managing data transfer in and out of the data center. To
address this need, CSCS has developed a web-facing, RESTful
API known as FirecREST [1], leading the path of the HPC
community to provide RESTful access to HPC resources. This
API is specifically designed to simplify resource access for
various workflow engines. It offers a more straightforward and
consistent approach compared to traditional SSH connectors,
thereby simplifying the implementation of these engines for
the scientific community. A notable example of a workflow
engine using this API is the AiiDA workflow engine [2],
developed by the Materials Science community, which in-
corporates a FirecREST backend to interact seamlessly with
CSCS’s infrastructure.

The introduction of a RESTful API like FirecREST extends
beyond facilitating resource access to workflow engines. It
opens up a plethora of possibilities for enhancing the efficiency
and effectiveness of services by scientific communities to
access HPC resources.

In this paper, we will explore a range of existing use cases
from these communities, demonstrating how FirecREST has
emerged as an effective tool in facilitating the deployment
of various services and applications. This exploration aims to
highlight the API’s role in not only meeting but also advancing
the evolving needs of HPC users in a dynamic scientific
landscape.

II. FIRECREST IN A NUTSHELL

FirecREST, a RESTful API designed for HPC, offers an
HTTP-based interface to facilitate access to computational and
data resources. Commonly, users leverage this API to develop
web client applications that orchestrate automated workflows
in an HPC environment.

The specification of FirecREST provides endpoints that
abstract functionalities for submitting and querying jobs on
the workload manager and scheduler (/compute/jobs),
transferring data to and from the data center facility
(/storage/xfer-external/upload[|download]),
inspecting systems and file systems availability
(/status/systems), and other file systems operations
such as listing files (/utilities/ls), and creating
directories (/utilities/mkdir), among others.

A. PyFirecREST

The functionality and user experience of FirecREST have
been significantly augmented by the introduction of py-
FirecREST [3]. This Python library streamlines the integration
of REST API calls within Python classes, thereby enhancing
the ease of use and efficiency in managing HPC workflows.

In Listing 1 we can outline a range of methods defined
in pyFirecREST to enhance the integration of the REST API
within a script.

System availability

client.systems(system_name)

Job submission

client.submit(system_name, script)

Job querying

client.poll(system_name, jobid)

Data transfer (upload)

client.external_upload(system_name, local_path, remote_path)

Data transfer (download)

client.external_download(system_name, remote_path)

List files and directories

client.ls(system_name, remote_path)

Listing 1: Most common pyFirecREST methods

Throughout this paper, we will notice the important role
that pyFirecREST plays in terms of integration with services
that expose their SDKs (Software Development Kits) and APIs
using scripting languages.

B. Gateway

The utilization of the API through a web interface requires
the presence of a dedicated gateway at HPC centers, tasked
with managing web-based requests. This gateway serves as a
singular access point for each system within the CSCS frame-
work. To accurately direct requests to the intended system,
they are uniquely identified by incorporating the machine’s
name within the request headers as described in Fig. 1, step
(2).

Additionally, gateways provide features to prevent abuse of
the resources behind the API using rate limiters per endpoint;
and enhance access management and security with autho-
rization and authentication plugins, monitoring tools, traffic
management, and developer portals.

C. Authorization and authentication

Regarding identity and access management (IAM),
FirecREST API employs the Open ID Connect (OIDC) -
OAuth2 [4] protocol, utilizing an Identity Provider (IdP)
for user authentication. In this framework, CSCS users are
required to manage their API keys for accessing FirecREST
as shown in Fig. 1, steps (0.a) and (0.b). This process involves
authenticating through the IdP to obtain an access token
(Fig. 1, step (1)), which is defined by a specific validity scope
and application access permissions.

(0.b) Configure API Keys
on the App

user

(3) Command Exec

FirecREST

system1

system2

system3

HPC Infra

curl -X GET https://firecrest_url/
-H "X-Machine-Name: system1"
-H "Authorization: Bearer <JWT>"

(2) Access FirecREST with JWT

(1) Request JWT Access Token
using API Keys (ID & Secret)

Identity
Provider

App

(0.a) Register application
and request API Keys

Client ID
Client Secret

Fig. 1: IAM Workflow and Gateway request dispatching diagram from
FirecREST to various systems.

The generation and renewal of access tokens can
be efficiently automated using the IdP’s API and the
pyFirecREST library as shown in Listing 2. This
automation facilitates the seamless integration of access
token management within user applications, enhancing both
the security and usability of the API.

Is important to mention that this specific OIDC workflow
is called “client credentials” and is meant for machine-to-
machine communication without human intervention when
creating or refreshing the access token. This workflow enables
the usage of FirecREST by web applications, pipelines, and
scheduled tasks facilitating its integration on services operated
in this fashion.

III. USE CASES

In this study, we aim to comprehensively review a range
of services, tools, and workflows that are commonly needed
in HPC settings to support various scientific communities.
Our focus is to examine how the implementation of an HPC-
specific API, like FirecREST, can facilitate a smooth and
efficient integration and management process, benefiting both
end-users and system administrators. This exploration will

importing FirecREST module

import firecrest as f7t

definition of IdP configuration

API keys (usually stored in a secret engine):

CLIENT_ID = "my_client_id"

CLIENT_SECRET = "my_client_secret"

Access Token URL (provided by the IdP)

TOKEN_URI = "https://identity_provider/token/endpoint"

creation of the authentication object

auth = f7t.ClientCredentialsAuth(CLIENT_ID, CLIENT_SECRET,
TOKEN_URI)↪→

creation of the FirecREST Client Object

client = f7t.Firecrest("https://firecrest_url",
authorization = auth)↪→

...

Listing 2: FirecREST authorization and client definition

highlight the API’s role in streamlining operations, enhancing
user experience, and optimizing system administration in HPC
environments such as the one based on Cray HPE systems.

A. Continuous Integration Pipelines

Continuous Integration (CI) represents an emerging service
tailored for the scientific community, designed to facilitate
the testing of software releases across various programming
environments and hardware systems. The integration of CI
services within HPC centers empowers the community to
conduct continuous testing following each code enhancement,
thereby fostering a more sustainable software development
ecosystem [6].

Establishing CI pipelines for the consistent testing and de-
ployment of scientific software on HPC infrastructure presents
several challenges for scientific software engineers. These
challenges include:

• source code repository access which needs to be cloned
into a node of the target machine, which means that SSH
credentials (i.e., username/password, private/public key,
or certificates) have to be handled inside the application,
raising security concerns.

• the SSH session management to keep alive the connection
during the pipeline execution.

• overall lack of interfaces from the SSH libraries to pro-
vide consistent outputs from diverse executed commands.

With FirecREST’s assistance, we can tackle these chal-
lenges while also applying the same approach across various
technologies such as GitLab CI, GitHub Actions, Jenkins CI,
etc. Additionally, leveraging the HPC abstraction layer allows
us to develop pipelines for diverse architectures and software
stacks, facilitating portability and distribution.

As shown in Fig. 2, there is no requirement for a Git
repository or a Runner to be installed on the HPC center to
execute a pipeline. Instead, only access to the API from a
public repository and a pair of API keys is necessary.

user

(4) DispatchFirecREST

system1

system2

HPC Infra

Public Git

(1) Push lib/app
code

Identity
Provider

(3) Execute pipeline

(2) Get JWT Access

Fig. 2: CI pipelines using Public Git repository and FirecREST

To exemplify the integration of a pipeline for HPC using
FirecREST, we can showcase a GitHub Actions [5] workflow
that submits a job through a step of the pipeline using a
Python script as shown in Listing 3.

importing PyFirecREST

import firecrest as f7t

Setup variables of the client

CLIENT_ID = os.environ.get("FIRECREST_CLIENT_ID")
CLIENT_SECRET = os.environ.get("FIRECREST_CLIENT_SECRET")
FIRECREST_URL = os.environ.get("FIRECREST_URL")
AUTH_TOKEN_URL = os.environ.get("AUTH_TOKEN_URL")

Auth Object definition

idp = f7t.ClientCredentialsAuth(CLIENT_ID, CLIENT_SECRET,
AUTH_TOKEN_URL)↪→

FirecREST client definition

client = f7t.Firecrest(firecrest_url=FIRECREST_URL,
authorization=idp)↪→

Check System Status via pyFirecREST

system_state = client.system(system_name)

if system_state["status"] == "available":
Submit job via pyFirecREST

job = client.submit(system_name, "submission_script.sh")
print(f"Submitted job: {job['jobid']}")

Poll job status via pyFirecREST

poll_result = client.poll(system_name,
jobs=[job["jobid"]])↪→

if poll_result[0]["state"] != "COMPLETED":
print(f"Job was not successful, status:

{poll_result[0]['state']}")↪→

exit(1)

else:
print(f"System {system_name} is not available")
exit(1)

Listing 3: Script for testing job execution in a pipeline

In the named script, the intention is to assert that the
pipeline will fail if the system_name is not available for
utilization or if the job submitted fails in its execution on the
workload scheduler. In any other case, if the job is completed
successfully the pipeline will succeed.

Following the example, the pipeline will be executed each
time a commit is pushed to the main branch. This can be
seen on the GitHub workflow specification (Listing 3), where
the pipeline is configured to install pyFirecREST, obtains the
API keys from the secret store of GitHub, sets them as part
of the environment of the runner, and runs the tests for a
specific system_name.

name: CI

on:
push:
branches: ["main"]

pull_request:
branches: ["main"]

jobs:
test_mycluster:
runs-on: ubuntu-latest

strategy:
matrix:
system_name: ["mycluster"]

steps:
- uses: actions/checkout@v3

- name: setup python

uses: actions/setup-python@v4

with:
python-version: '3.7'

- name: install python packages

run: |
python -m pip install --upgrade pip

pip install pyfirecrest==2.1.0

- name: Run testing script

env:
FIRECREST_CLIENT_ID: ${{ secrets.F7T_CLIENT_ID }}

FIRECREST_CLIENT_SECRET: ${{

secrets.F7T_CLIENT_SECRET }}↪→

FIRECREST_URL: ${{ secrets.F7T_URL }}

AUTH_TOKEN_URL: ${{ secrets.F7T_TOKEN_URL }}

run: ci/ci_script.py \\

--system=${{ matrix.system_name }} \\

--branch=${{ github.ref_name }} \\

--repo=${{ github.server_url }}/${{

github.repository }}.git \\↪→

--account=ci_user

Listing 4: CI workflow specification for GitHub Actions

As an extension to this use case, we will delve into a com-
plete feature developed by CSCS that allows users to utilize
CSCS infrastructure to run integration tests of their scientific
application hosted on public repositories. This is achieved
through the utilization of a CI GitLab-Runner, which operates
in conjunction with FirecREST as described in Figure 3.

This service facilitates the testing of scientific software

user

FirecREST

system1

system2

CSCS

(4) Mirror

CI/CD Ext
Middleware

(3) Get JWT AccessPublic Git

(2) Trigger
webhook

(1) Push lib/app
code

Identity
Provider

(5) GitLab Runner Execution

GitLab
Runner

(6) Dispatch

Fig. 3: CICD Ext service at CSCS

applications at CSCS by mirroring the public repository of
the application onto a GitLab repository managed by CSCS.

Users set up a Git webhook on the CI/CD Ext Middle-
ware platform exposed by CSCS. This setup automatically
mirrors commits done on the application repository to the
GitLab instance managed by CSCS and transparently executes
tests, ensuring continuous integration with dependencies and
libraries installed on CSCS systems.

The approach works as a spinoff of the CI pipeline execution
showcased earlier, albeit with a centralized service overseen
by CSCS. This centralized service enables users to bypass
pipeline configuration, thus facilitating usage.

B. Interactive Computing

JupyterHub [7] serves as a multi-user hub designed to
initiate, oversee, and proxy multiple Jupyter notebooks. Fre-
quently employed in HPC centers, it enables the launching
of notebooks directly from the browser onto compute nodes.
Scientists use Jupyter to develop proof of concept code,
explore datasets, or as an educational tool to teach their
communities.

The integration with workload managers within JupyterHub
is facilitated by the batchspawner package. This package
implements Jupyter notebooks execution for various workload
schedulers, such as Torque, and SLURM. When JupyterHub
is used with batchspawner, they’re typically deployed
on a machine with a workload manager configured for the
target system. Such a setup introduces significant maintenance
overhead. Configuring a system to interface the SLURM
controller requires system administrators to set up a scheduler
daemon and share a key between a controller and daemons.
This complicates the deployment of JupyterHub and restricts
the systems on which it can operate.

To address this at CSCS, we’ve developed a spawner
based on FirecREST which offers the same functionality as
batchspawner but employs pyFirecREST as a backend.
This approach significantly reduces the requirements for de-
ploying JupyterHub on HPC systems since any system able

to connect to the web can target compute nodes through the
FirecREST service.

In our FirecREST spawner, following the batchspawner
implementation, we use the JupyterHub’s Spawner class as
base and reimplement the start(), poll(), and stop()
methods to interact with the target HPC system via py-
FirecREST (Listing 5).

import firecrest as f7t

from jupyterhub.spawner import Spawner

class FirecRESTSpawnerBase(Spawner):
Start Jupyter notebook

def start(self):
self.job = client.submit(self.host, script_str=script)

Polling Jupyter notebook status

def poll(self, jobid):
self.job = client.poll(self.host,jobid)

Stop Jupyter notebook

def stop(self, jobid):
client.cancel(self.host, self.job_id)

Listing 5: FirecREST spawner definition for JupyterHub

An interesting outcome of this integration is that the same
OIDC-OAuth2 client used for JupyterHub’s Web UI can be
used to authenticate with FirecREST to manage the notebook
lifecycle. This way, user authentication for both services is
significantly simplified. Additionally, this approach allows the
creation of different instances of JupyterHub interfacing with
different systems by simply changing the X-Machine-Name
header to specify the target system, as described in Figure 4.

(1) Access to JH

user

(4) Submit Job

FirecREST

(5) Launching notebook

system1

system2

system3

CSCS

curl -X GET https://firecrest_url/compute/jobs
-H "X-Machine-Name: system1"

(3) Use firecrest_spawner

(2) Request JWT access

jupyter-system1.cscs.ch

jupyter-system2.cscs.ch

jupyter-system3.cscs.ch

OIDC-OAuth2
Service

Compute

Node

Fig. 4: Jupyter notebook execution using FirecREST

C. Regression Testing

ReFrame [8] is a framework designed for regression testing
on HPC systems. Its primary function is to facilitate the
periodic testing of key scientific applications, ensuring their
operational integrity and consistent performance as a way to
assess quality of services to the scientific communities. A typ-
ical scenario where ReFrame is employed involves verifying

the optimal performance of scientific applications following
maintenance, particularly when libraries undergo updates, in
an HPC environment.

The installation and maintenance of this service need to be
addressed by the administrators of the data center where the
software is being tested. With FirecREST, we can broaden the
utilization of ReFrame for testing and integration, allowing
administrators, maintainers, developers, and users to carry out
these tasks from an instance in a public cloud provider.

To understand how to do this, it should be noticed that
the pipeline of ReFrame for each test goes through different
stages: setup, compile, run, sanity, performance, and cleanup,
and that ReFrame presents a Python class for execution on
HPC facilities using the SLURM workload manager: the
SlurmJobScheduler class.

By extending this class, we can register a new
one for scheduling jobs with the help of pyFirecREST
(firecrest-scheduler) and mapping the abstract
classes submit(), poll(), cancel(), and wait()
methods. This is shown in Listing 6.

from reframe.core.schedulers.slurm import SlurmJobScheduler

import firecrest as f7t

@register_scheduler('firecrest-scheduler')
class FirecrestJobScheduler(SlurmJobScheduler):

def __init__(self, *args, **kwargs):
(...)
Setup the FirecREST Client

self.client =
f7t.Firecrest(firecrest_url=firecrest_url,
authorization=f7t.ClientCredentialsAuth(CLIENT_ID,
CLIENT_SECRET, TOKEN_URL))

↪→

↪→

↪→

def submit(self, job):
Job Submission

submission_result =
self.client.submit(self._system_name,
os.path.join(job._remotedir,
job.script_filename))

↪→

↪→

↪→

def poll(self, *jobs):
Update the status of the jobs

poll_results = self.client.poll(
self._system_name, [job.jobid for job in jobs]

)

def cancel(self, job):
Cancel a job

self.client.cancel(job.system_name, job.jobid)
job._is_cancelling = True

Listing 6: FirecREST scheduler definition for ReFrame

This scheduler must be set on the site configuration of
ReFrame along with the target system and environment to
test. This setup enables its on-demand execution or through a
scheduled pipeline for periodic testing.

Utilizing ReFrame in conjunction with FirecREST offers a
key advantage: users are not required to log in to the HPC

system to perform Quality of Service (QoS) tests. Instead,
this process can be initiated from any machine with access to
FirecREST. This design ensures flexibility and independence
for users, allowing them to seamlessly execute QoS tests
without being tethered to the HPC system itself.

D. Workflow orchestrator for Machine Learning

Apache Airflow [9], a popular workflow orchestration tool,
offers a robust framework for defining, scheduling, and moni-
toring diverse workflows in particular in the Machine Learning
(ML) domain. However, integrating Airflow with HPC work-
load managers, such as SLURM, presents certain challenges.

A primary obstacle is the absence of seamless integration
between Apache Airflow and workload managers, which rely
on custom commands and APIs for job submission and moni-
toring. Consequently, to interact with the HPC system, Apache
Airflow must either run on a machine where the workload
manager is installed and configured, or Airflow tasks must
establish remote login connections to such a machine.

The flexibility of Airflow’s operator API makes it partic-
ularly convenient for integration with pyFirecREST, enabling
the definition of operators, such as file transfers to and from
HPC systems as well as job submission (Listing 7) and moni-
toring. These operators can then be used to construct Airflow
Directed Acyclic Graphs (DAGs) (Listing 8), streamlining the
orchestration of complex workflows.

In this DAG, when the FileSensor task indicates that
a new file has been created by an external process, it will
trigger the DAG execution by uploading a couple of input
files, submitting a job, and downloading the output on the job
finishes. Finally, some post-processing is done.

The outcome of the DAG execution can be seen graphically
on the AirFlow instance (Fig. 5). The screenshot shows how
the usage of the RESTAPI provides basic operators that can
be arranged in different ways to compose the DAGs which are
executed via a web application without the need to provide a
workflow orchestrator at the HPC premises.

Fig. 5: AirFlow using FirecREST operators

The availability of such pyFirecREST operators will open
new possibilities for enhancing the scaling and performance
of Airflow DAGs, especially in the machine learning domain,
where the tool has been widely adopted, as it often involves
complex and resource-intensive computations that demand
efficient orchestration and coordination and requires access

import firecrest as f7t

from airflow.models.baseoperator import BaseOperator

from airflow import AirflowException

setting up the FirecREST Base Operator for AirFlow

class FirecRESTBaseOperator(BaseOperator):
(...)
FirecREST client object

client = f7t.Firecrest(firecrest_url=firecrest_url,
authorization = f7t.ClientCredentialsAuth(CLIENT_ID,
CLIENT_SECRET, TOKEN_URL))

↪→

↪→

class FirecRESTSubmitOperator(FirecRESTBaseOperator):
"""Airflow Operator to submit a job via FirecREST"""

def __init__(self, system: str, script: str, **kwargs)
-> None:↪→

super().__init__(**kwargs)
self.system = system

self.script = script

def execute(self, context):
(...)
while True:

if self.client.poll_active(self.system,
[job['jobid']]) == []:↪→

break
time.sleep(10)

job_info = self.client.poll(self.system,
[job['jobid']])↪→

if job_info[0]['state'] != 'COMPLETED':
raise AirflowException(f"Job state:

{job_info[0]['state']}")↪→

return job

Listing 7: FirecREST Submit Operator definition for Apache Airflow

from airflow import DAG

from airflow.operators.bash import BashOperator

from airflow.sensors.filesystem import FileSensor

from firecrest_airflow_operators import
(FirecRESTSubmitOperator, FirecRESTUploadOperator,
FirecRESTDownloadOperator)

↪→

↪→

with DAG(dag_id="firecrest_example",
tags=["firecrest-executor"]) as dag:↪→

wait_for_file = FileSensor(task_id="wait-for-file",...)
upload_in =

FirecRESTUploadOperator(task_id="upload-in",...)↪→

upload_pp =
FirecRESTUploadOperator(task_id="upload-pp",...)↪→

submit_task =
FirecRESTSubmitOperator(task_id="job-submit",...)↪→

download_task =
FirecRESTDownloadOperator(task_id="download-out",...)↪→

log_results = BashOperator(task_id="log-results",...)
remove_struct =

BashOperator(task_id="remove-struct",...)↪→

Listing 8: Definition of the DAG in Fig 5

to large-scale HPC systems like Cray EX with Alps as an
example.

IV. CONCLUSION

In this paper, the benefits of utilizing REST API in
HPC environments have been demonstrated concerning
the installation, customization, and maintenance of
user-interfacing services and tools for various types of
communities.

It is important to mention the wide range of use cases
that can be covered by this approach, including many not
addressed in this work, such as the creation of scientific
portals through web applications, AiiDA workflow engine,
and scientific data collaboration platforms, to name a few.

It must be acknowledged that the use of pyFirecREST,
its ability to automate authentication management through
OIDC/OAuth2, and its ease of use with APIs and SDKs
exposed by the services to be connected have been paramount
for such integrations.

We wish to emphasize the improvement that this approach
introduces in the management of services by reducing the
workload of the responsible staff while facilitating support and
assistance to user’s workflows.

This is especially important in architectures such as
Alps Cray EX systems soon to be available for multiple
user communities at CSCS. The blueprint of Alps includes
different versatile HPC clusters (“vClusters”) designed to
address different use cases (machine learning, weather &
climate, general HPC usage, etc), where service configuration
and deployment on the top of multiple clusters are needed.
API as a service becomes very important in these multi-
tenancy environments to address user’s needs and avoid
management overhead.

Looking ahead, the use of APIs as a service layer providing
uniformity in support and accessibility to HPC infrastructures
could allow the scientific community to establish a standard
for service management and workflow execution between and
across different supercomputing centers and data infrastructure
worldwide.

REFERENCES

[1] Cruz F and Martinasso M, “FirecREST: RESTful API on Cray XC
systems,” CUG 2019 Proceedings, Montreal, Canada, May 5-9, 2019.

[2] Huber S.P., Zoupanos, S., Uhrin, M. et al. “AiiDA 1.0, a scalable com-
putational infrastructure for automated reproducible workflows and data
provenance”. Sci Data 7, 300 (2020). https://doi.org/10.1038/s41597-
020-00638-4

[3] ETH-CSCS, “Welcome to PyFirecREST,” pyfirecrest.readthedocs.io,
published November 17, 2023. [Online]. Available:
https://pyfirecrest.readthedocs.io/en/stable/. [Accessed: January 15,
2024].

[4] OKTA Developers, “Open ID Connect & OAuth 2.0 API,”,
okta.com, published January 5, 2024. [Online]. Available:
https://developer.okta.com/docs/reference/api/oidc/. [Accessed: January
15, 2024].

[5] GitHub, “GitHub Actions documentation,” github.com, published April
6, 2024. [Online]. Available: https://docs.github.com/en/actions. [Ac-
cessed: April 7, 2024].

[6] US Department of Energy, “IDEAS Productivity,” https://ideas-
productivity.org/index.html, published January 3, 2024. [Online] Avail-
able: https://ideas-productivity.org/index.html [Accessed: January 15,
2024].

[7] Jupyter Hub, “Project Jupyter,”, jupyter.org, published January 7,
2024. [Online]. Available: https://jupyter.org/hub. [Accessed: January 15,
2024].

[8] Karakasis, V. et al. “Enabling Continuous Testing of HPC Systems
Using ReFrame,”. In: Juckeland, G., Chandrasekaran, S. (eds) Tools
and Techniques for High Performance Computing. HUST SE-HER
WIHPC 2019 2019 2019. Communications in Computer and Information
Science, vol 1190. Springer, Cham.

[9] Apache Airflow, “What is Airflow,”, apache.org, published January
10, 2024. [Online]. Available: https://airflow.apache.org/docs/apache-
airflow/stable/index.html. [Accessed: January 15, 2024].

	Introduction
	FirecREST in a nutshell
	PyFirecREST
	Gateway
	Authorization and authentication

	Use cases
	Continuous Integration Pipelines
	Interactive Computing
	Regression Testing
	Workflow orchestrator for Machine Learning

	Conclusion
	References

