

 From Frontier to Framework: Enhancing Hardware
Triage for Exascale

Isa Muhammad Wazirzada
HPC & AI Service Delivery
 Hewlett Packard Enterprise

Paradiso, Switzerland
isa.wazirzada@hpe.com

Abhishek Mehta
HPC & AI Systems Engineering

Hewlett Packard Enterprise
Seattle, U.S.A

abhishek.mehta@hpe.com

Vinanti Phadke
HPC Diagnostics

Hewlett Packard Enterprise
Bengaluru, India

vinanti.phadke@hpe.com

Abstract—In the world of high performance computing, the
latest technological advancements alone do not necessarily lead
to higher system reliability. Successfully managing compute
node failures by way of accurate and timely diagnosis,
articulating clear repair plans, and verifying repair success play
a vital role in maintaining high levels of system availability. This
paper introduces a new solution to triage compute blade failures
on the Cray EX hardware platform. We start by discussing the
background and motivations for such a solution before
proceeding with a description of the solution itself. We also
frame the solution's context in quality attributes such as
diagnosability, usability, extensibility, interoperability, and
observability. Last, the future roadmap of the solution is
discussed.

Keywords—Hardware Triage, Triage Automation, HPC
Component Lifecycle, HPE Cray EX Hardware

I. INTRODUCTION
 Supercomputers are complex systems that bring together
bleeding edge technologies. Take the example of the first
Exascale system, Frontier, installed at Oakridge National
Laboratory. Frontier consists of more than 9400 compute
nodes embedded in the HPE Cray EX4000 infrastructure.
Each compute node consists of an AMD EPYCTM CPU, four
MI250 GPUs interlinked by high-speed XGMI interfaces, as
well as HPE Slingshot 200 Gb high-speed NICs. The system
is comprised of over 150,000 node-level components
interconnected in an extremely dense mechanical framework
that is cooled via warm temperature liquid cooling. As
impressive as all these technologies are on their own, the real
value lies in bringing these technologies together to achieve
sustained performance over time. With that in mind, it is
critical to recognize that system quality attributes such as
diagnosability and serviceability are paramount to achieving
high levels of availability throughout the service life of a
system.

Therefore, for HPE and our customers, providing a product-
level hardware triage framework will help ameliorate the
return to service time for failed components, provide a
standardized approach to diagnosing hardware failures,
reduce the number of no trouble found replacements, and
place the experience of top subject matter experts (SME)
from R&D into the hands of the teams that directly support
systems in the field.

II. SOLUTION

A. Overview
Based on our collective learnings across multiple system

deployments, we architected and built a new hardware triage
framework, called the Hardware Triage Tool. The framework

can diagnose hardware failures, enumerate repair actions, and
gather a comprehensive set of logs. Furthermore, to make the
framework extensible to new hardware platforms, a YAML
based Domain Specific Language (DSL) was developed. For
each supported hardware platform, one will find a set of tests
enumerated using the new test description language in a test
workflow. The inspiration for building a test description
language came from Tavern1, a RESTful API testing tool. By
developing a test description language, we were able to create
discrete test workflows for multiple hardware platforms. We
have aimed from the beginning to decouple the business rules
for checking any given hardware platform from the core logic
of the framework. This has allowed us to easily add support
for new hardware platforms to the Hardware Triage Tool. The
advent of this framework has shifted the conversation about
how faults are diagnosed to earlier in the development cycle.
Hardware and Platform engineers are now building tests
during the design and early bring up phases using the
standardized approach this framework provides.

B. What’s in a name?
To start, it is important to understand where the Hardware

Triage Tool fits in the context of the system lifecycle. The
Hardware Triage Tool comes into play when a component on
a compute node has failed or is suspected of failure. If a
compute node has unexpectedly rebooted, powered off during
a job, is suspected to be unhealthy after a job, or if a node fails
to power on are all examples when the Hardware Triage Tool
can be utilized. It is also important to clarify that the Hardware
Triage Tool is not a substitute for the discipline of system
health checks and is meant to be used once a node is suspected
to have a problem. It is still essential to maintain system level
health checks along with Prolog and Epilog scripts to run
before and after each job to scan for pernicious node level
problems. With that said, we will now examine the
architectural and design choices of the Hardware Triage Tool,
framed in the context of quality attributes, starting with
diagnosability.

III. QUALITY ATTRIBUTES

A. Diagnosability
The Hardware Triage Tool aims to provide high fidelity

hardware failure diagnoses. The test workflows that enable
diagnosis were developed with the hardware architects and
developers, field, manufacturing, and firmware engineers for
each supported platform. We started by asking a question: Did
we have all the steps in existing documentation to provide
accurate and actionable next steps for the common failures? In
response to this, before any code was written, we proceeded
to build an overall hardware troubleshooting workflow in the
form of a decision tree diagram. The decision tree diagram
starts with a key top-level decision which is whether a node is
powered on or powered off. From there we split down two

main branches, the node-on branch, and the node-off branch.
In Figure 1, we see a portion of the node-off branch. As we
traverse this decision tree, each box represents a check that the
Hardware Triage Tool must carry out. As a part of design
phase for each decision box, we documented the set of
condition(s) that must be met for that condition to be
registered and what hardware or software actions must be
performed next. Furthermore, in Figure 1, the underlined
decision box titles represent links to the sections in the design
document that go into the specific details on how to identify a
particular failure signature and accompanying hardware
actions.

Figure 1: Highlighting a portion of the node-off workflow

Developing the workflow and supporting artifacts was a
substantial effort in the development of the Hardware Triage
Tool for multiple reasons. First, it encapsulated the
complexity of hardware troubleshooting into an easy-to-
understand diagram. Second, it provided the development
team with actual instances to work with. Third, it provided the
structure for us to codify the business rules and platform
specific troubleshooting steps for all hardware programs. With
this flow in hand and structure in place, we proceeded to
architect the Hardware Triage Tool itself.

B. Usability
Administrators are provided an actionable insight if a

failure condition is observed. The output is concise and points
users to the comprehensive log bundle that was gathered.
Furthermore, the framework is parameterized and allows users
to easily change common runtime parameters via the
command line.

Figure 2: Hardware Triage Tool Flow

 Figure 2 demonstrates how the Hardware Triage Tool
traverses through a test workflow for a particular hardware
platform and performs multiple checks (leak, emergency
power down, power error). This example highlights three
mechanisms that can be implemented for hardware fault
detection:

• The Hardware Triage Tool can analyze a debug
JSON file, which is normally generated by the node
controller during a fault event. It makes decisions
based on pre-defined criteria in the test workflow by
checking the reported values. E.g., Leak_check.

• It can execute shell commands and provides
recommendations based on the outcome. E.g.,
EmergencyPowerDown_check.

• The Hardware Triage Tool can also execute custom
scripts, which can be leveraged for analyzing more
complex failures. E.g., PowerError_check.

 Figure 3 shows the Hardware Triage Tool diagnosing a
hardware fault on a node in a HPE Cray EX235a blade. In
this scenario, the Hardware Triage Tool identified the power
rail that failed. It then proceeded to diagnose the reason for
failure to be temperature related and finally suggested repair
actions to recover the node.

Figure 3: Hardware Triage Tool Flow

C. Extensibility
The framework is implemented to easily add support for

various hardware platforms. Currently, support exists for
various AMD and Nvidia platforms in the HPE Cray EX
infrastructure. Intel CPU platform support is on the roadmap.
The Hardware Triage Tool was designed to follow a plugin
architecture where support for additional hardware platforms

could be added atomically. To date, the Hardware Triage
Tool supports the EX235a, EX255a, EX254n, EX4252,
EX425, and the EX235n hardware platforms.

Extending support for new hardware programs was
enabled by developing a YAML-based test description
language. This has allowed the development team to quickly
build tests for new hardware platforms. A test workflow can
be written using the test description language and is
comprised of one or more checks. Within each check one can
enumerate which log file needs to be analyzed. Also, if it is
machine readable, a specific key can be provided to be
checked. When a test condition is met, hardware actions
needed to rectify an issue can be specified. To create a
workflow, one can also specify which check to move to next.
In the example provided in Figure 4 we see that the next
check to run is the PowerError check if the leak check
conditions were not met. The test description language
enabled us to create high fidelity test workflows by providing
a mechanism to traverse the decision tree diagram.

Figure 4: Test Description Language

D. Customizability
The framework can be customized to meet the needs for

a specific hardware platform or customer environment.
Moreover, if a vendor provides a diagnostic tool, it can easily
be invoked by the framework. Administrators have the
flexibility to create and call out their custom scripts to suit
their use cases. Within the test description language there
exists an interface to invoke custom scripts or tools.
Currently, custom scripts can be written in Bash or Python.
This interface is invoked by the addition of the
custom_script key within a check. In Figure 5, the
custom_script key invokes a Python script called
check_dracut_shell.py.

The custom_script_value_yes key defines the
return value of the script when the script is successful and the
custom_scripts_args key provides the script a log
path as a command line argument. Administrators can
develop custom scripts to tackle a specific check they would
like to build for their site and invoke them from within the
Hardware Triage Tool.

Figure 5: Invoking custom scripts within a check

All hardware supported by the Hardware Triage Tool is

enumerated in a configuration file, hardware.yml. It

contains several attributes about each supported hardware
program such as expected number of NICs, correct BIOS
revision, NIC firmware version, and PCIe speed. A complete
example is provided in Figure 6 for the EX425 compute
blade. The values for the attributes shown in Figure 6 can also
be customized. For example, if a site has moved to newer NIC
firmware, one can update the hardware.yml file with the
updated version to ensure it flags any nodes that are not at the
correct NIC firmware.

Figure 6: Customizing attributes for the EX425 hardware platform

E. Interoperability
The implementation is system manager agnostic so that it

can be run on any deployment. By design there are no
dependencies on any system management specific utilities or
application programming interfaces (API). This is
accomplished by leveraging authenticated Redfish API calls
or accessing diagnostic data directly from a targeted node
controller. The Hardware Triage Tool is portable as it is
written in Python and has several utility shell scripts. Being
able to leverage the Hardware Triage Tool across multiple
types of system managers has several key benefits. First,
users of the triage tool will be utilizing a purpose-built
solution to capture logs and diagnose faults. Second, it
provides administrators with a familiar, supported, and
documented tool that alleviates the need for unsupported
scripts. Lastly, when enhancements are made to the triage
tool, those enhancements will not be limited to any one
system management solution.

IV. LOOKING AHEAD
The Hardware Triage Tool is in use at numerous sites. This

tool is a product level solution and will continue to incorporate
support for new hardware platforms and other enhancements.
An early version of the Hardware Triage Tool was released as
a part of HPE Performance Cluster Manager (HPCM) 1.10
and the latest Cray System Management (CSM) release, CSM
1.5.l. Looking ahead, the roadmap of the Hardware Triage
Tool includes completing the work to support all HPE Cray
EX based blade types, adding coverage for newer failure
scenarios, HPE Cray XD support, and parallelism so that
multiple nodes can be triaged at once.

ACKNOWLEDGMENT
We would like to thank Felix Erales, Suresh Thapa, Mike

Hicks, Jeremy Gustafson, Juha Jäykkä, Pete Guyan, Steve
Martin, Brian Collum, Alan Mills, for providing platform
specific guidance and helping test out the solution. We would

also like to thank Dan Cormack, Amarnath Chilumukuru,
Prasanth Kurian for all the support during development of the
solution. Priyanka S, Bhuvan Meda Rajesh, and Sai Anirudh
Bingumalla for contributing to the development of the
framework. Additionally, we would like to recognize Andy
Warner and Randy Law for their holistic feedback and for
championing the use of the Hardware Triage Tool. Laurence
Kaplan provided fantastic feedback and guidance. We would
also like to thank Tim Mossing, Claire Menut, and Kevin
Henry for helping spread the reach of the Hardware Triage

Tool across multiple geographies. Lastly, we are grateful for
Javier Izquierdo serving as the executive sponsor and
passionate advocate, which allowed the Hardware Triage Tool
to come to life.

REFERENCES
[1] “Easier API testing,” Tavern. https://taverntesting.github.io/

.

