
Spack Based Production Programming
Environments on Cray Shasta

Paul Ferrell
Los Alamos National Laboratory

PRE team, HPC-ENV
Los Alamos, NM, United States

pferrell@lanl.gov

Timothy Goetsch
Los Alamos National Laboratory

PRE team, HPC-ENV
Los Alamos, NM, United States

tgoetsch@lanl.gov

Francine Lapid
Los Alamos National Laboratory

PRE team, HPC-ENV
Los Alamos, NM, United States

lapid@lanl.gov

Abstract—The Cray Programming Environment (CPE) pro-
vided for Cray Shasta OS based clusters provides a small but
solid set of tools for developers and cluster users. The CPE
includes Cray MPICH, Cray Libsci, the Cray debugging tools,
and support for a range of compilers – and not much else. Users
expect a wide range of additional software on these clusters, and
frequently request new software outside of what’s provided by the
CPE or what can be provided via the system packages. Forgoing
our old manual installation process, the LANL HPC Program-
ming and Runtime Environments Team has instead opted to
utilize Spack as the installation mechanism for most additional
software on all of our new HPE/Cray Shasta clusters. This brings
with it several distinct advantages - Spack’s vast library of
package recipes, well-defined software inventories, automatically-
generated module files, and binary packages produced through
our CI infrastructure. It also brings with it substantial issues –
remarkably higher manpower requirements, longer turnaround
times for software requests, a more challenging build debug
process, and questionable long-term maintainability. Our paper
will detail our approach and the benefits and pitfalls of using
Spack to install and maintain production software environments.

Index Terms—programming environments, spack, cray

I. INTRODUCTION

Los Alamos National Laboratory is one of the premier
scientific computing centers in the United States. We are
typically the host to at least a dozen production clusters
(currently 6, not including test-beds) with thousands of nodes
combined (currently 10k nodes). The clusters tend to be
of a variety of architectures and operation systems, though
they are currently primarily HPE/Cray Operating System 2
(COS2/Shasta1) based clusters.

The LANL High Performance Computing (HPC) Program-
ming and Runtime Environments Team (PRE Team) is re-
sponsible for supporting both the vendor provided program-
ming environment (PE) and internally installed software on
our clusters. The COS2 clusters come with releases of the
Cray Programming Environment (CPE), which provides Cray
compilers, Cray MPICH, Cray debugging tools, HDF5 and
NetCDF libraries, support for additional compilers (Intel or

Identify applicable funding agency here. If none, delete this.
1We often work with vendor technologies very early in their life cycle, and

adopt the pre-release names internally. ’Shasta’ is an example of this. Even
internally the name used varies per-person. It’s confusing!

AMD vendor compilers, GNU), and a libfabric that interfaces
with the proprietary Cray Slingshot based high speed network.
While it’s a solid foundation, the CPE is only a fraction of
the software we need to provide our users. Visulaization tools
such as Paraview, basic compilation tools such as cmake, and
even utilities like LATEXare expected as well.

Some of needed packages can be provided through system
RPM installs. Yet users often expect multiple versions or
versions newer than those provided through existing RPMs.
In such cases the software is installed on shared file systems
in user-space and made available through a module system
— Lua based LMod modules being our current preference.
Additionally, any libraries we provide must be maintained for
the life of the cluster. It’s expected that code compiled on the
first day of system life still be usable by the end-of-life of
the cluster.2 All of this software must be built to support each
supported compiler (Intel OneAPI, classic Intel, GNU, CCE),
as well as the most recent MPI versions on each cluster3.

Our legacy system for accomplishing this was very manual
and dependent upon subject matter experts on our team. Each
supported piece of software had an ’owner’ on the team, who
developed their own set of scripts to capture the knowledge
of how that software needed to be installed and automate the
process. These scripts varied greatly from person to person in
complexity and programming language. This was installed in
a sensible hierarchy based on cluster OS and host, with ’com-
mon’ areas for software with general compatibility4. Module
files were hand-written and expected to dynamically handle all
versions and installations of a given piece of software. This
central library of module files was not our modulefile hierarchy
- that was made up of a separate structure of symlinks into the
library. These symlinks were managed by some simple scripts.
The sum of this made fixing module files issues fairly easy,
and adding/removing module files trivial.

The legacy PE had several major drawbacks. The spe-

2This isn’t quite the case anymore - we expect major OS upgrades to break
this compatibility. It’s still a good habit though, so we pretend it’s mostly
true.

3We don’t have to build against every compiler/MPI combination - just the
’leading edge’ of the latest versions.

4Clusters for the most part shared a common architecture, but differences
in high speed networks resulted in MPI library incompatibilities

cialized knowledge that went into each package and their
installation scripts meant that typically only the author of those
scripts could install new versions in a timely manner. The
installation areas for each package were purely the domain
of the owner, and were littered with partial and broken
installations. No inventory governed what should be installed,
or made it apparent what was missing on each system. The
unified, per-package module files grew extremely complex and
fragile as cluster and version differences accumulated. As a
result of these problems, when users requested new software,
the answer was some combination of ’no’ and a funding
request - after all someone would have to devote significant
work-hours to figuring out dependencies, writing scripts and
module files. The result was a software environment that was
restrictive, messy, fragile and did not meet the changing needs
of our users. It was clear that something needed to change.

A. Our Requirements, and How Spack [1] Fulfilled Them

Any new software deployment workflow we put into pro-
duction needed to address the systemic issues with our legacy
deployments.

1) Software Installs - Should be able to build and deploy
most of our needed software, including missing system
dependencies.

2) Inventory - Allow for the definition of a concise inven-
tory of packages that should be installed.

3) Reproducible - We should be able install reproducibly
and idempotently.

4) Combinatorial Installs - Support the installation of mul-
tiple, conflicting versions of the same package built with
a variety of compilers.

5) Module Files - Automatically generate module files
compatible with system and user module trees.

6) Efficiency - Reduce total install size and provide
reusable binary packages5 that we can reuse and share
with users.

7) Reduce Manpower - Reduce the work-hours required to
maintain the software environment.

B. Spack

Spack is a Lawrance Livermore National Laboratory
(LLNL) developed system designed to resolve the complex
dependency and installation issues that often arise with HPC
software. In the years since it debuted, it has grown to be fairly
robust, well-supported, and widely accepted by the scientific
computing community.

Spack functions by providing a large library (Spack repo) of
package build instructions in various configurations (variants),
a language (Spack specs) for describing how you want those
packages installed, and a system (the Spack concretizer)
for solving the dependency tree. Once the dependency tree
resolved, Spack knows exactly which packages to install, how
to install them. and even how to create module files for them.

5This is Spack’s term for it’s RPM like format of pre-compiled packages.

Spack came with another benefit - promoting TriLab6 col-
laboration. We were assured that Spack could meet most of
our requirements by LLNL Spack devs, and were promised
development support in areas where Spack couldn’t. This led
to the TriLab Computing Environment 2 (TCE2) project —
a TriLab project to produce, if not a unified programming
environment, common mechanisms (IE Spack) that we could
share in producing PEs. Much of that effort focused on the
development of LANL HPC’s Spack-based PE, with the Spack
developers on hand to expedite fixes for Spack issues that
prevented progress. The arrangement worked well. After a few
years (and a pandemic), we installed our first releases of TCE2
at LANL in the Spring of 2022.

II. TCE2

This first release of TCE2 used Spack to reproduce every-
thing we had installed in our production software environments
on both our TOSS 37 and our Cray CLE7 based clusters8. Our
process was well structured: A git repo contained most of the
components - one simply had to check it out and run the
contained process.sh9 script to install Spack, build/install
all of the programming environment packages, and generate a
modulefile tree in any desired location.

The core of this repo is the various Spack environment
definitions. These are separated by architecture compatibility
parameters - <os_base>-<os>-<arch>-<net>-<gpu>
- since the contents and compatibility can vary widely based
on these parameters10. System dependencies have different
versions and paths. Different architectures may require dif-
ferent package configurations. Different high-speed network
drivers yield incompatible MPI builds. Lastly, the presence and
type of GPU’s often requires an entire ecosystem of packages
that aren’t present on other systems. This allows us to build
a single, common environment for clusters that are largely
the same, while taking advantage of Spack’s ability to reuse
identical builds when there is overlap between signicantly
different clusters.

Spack packages describe how to build and install each
software package, and are collected into Spack repos - mainly
Spack’s internal builtin repository. Most of these can be
used out-of-the box, but many require tweaks for local issues
or simply have bugs in their Python code. TCE2 keeps an
internal package repo11 with such fixes. Any fixes we make
are also submitted to Spack as merge requests, so that we can
eventually revert back to Spack’s builtin package definitions
whenever we upgrade Spack.

The final major component is the facilities directory. This
contains subdirectories named for each installation facility (IE
LANL, Sandia, etc) meant to contain site specific files for

6IE - LANL, LLNL, Sandia
7TriLab Operating System Stack
8Such as Trinity, our now decommisioned 20k node cluster
9The name process.sh remains inexplicable to this day
10Most of our systems currently share an environment tagged

cray-sles15-x86_64_v3-slingshot-none
11Originally named ’spacklemore’...

the deployment of TCE2. This includes license files for our
licensed products, general Spack configs (to be installed in
etc/spack), and a configuration script to set defaults for
process.sh. Keeping site specific information separate not
only makes it easier for other sites to install TCE2, it allows
us to handle differences between networks cleanly.

All of these components come together whenever we build
TCE2. A typical installation command looks like

./bin/process.sh
-e cray-sles15-x86_64_v3-none
-f lanl -i /tmp/my-tce-install

The completed install directory contains:
• A dedicated Spack install.
• A Spack environment with the configs for all of our

installs.
• A log directory with logs of each install/update attempt.
• A module files directory.
• All of the Spack installs themselves (the install target is

this directory).
All that remains is to add the module files to the
MODULEPATH - we provide a ’lanlpe’ modulefile that’s loaded
by default. The install process is idempotent, and updates
should add to the installs without breaking existing links.

A. Binary Packages, CI, and Testing

Each TCE2 environment’s spack.yaml file allows us
to define exactly what should be installed. Spack’s binary
package generation feature let’s us pre-build relocatable pack-
ages so that when we we install in production, we do so
reproducibly without every having to build anything new. This
reproducibility is important to us - if anything ever happened
to break our production PE, we need to be able to recreate it
perfectly to preserve linking in user applications. 12

When we check in an updated version of TCE2, our GitLab
runners go through a fairly typical series of stages (See 1).
The Syntax checks ensure that our YAML and bash scripts
are consistently formatted. Sanity Checks make sure that
we haven’t introduced anything into the Spack configs that
shouldn’t be there - like absolute paths (everything should be
relative to the Spack directory). If any changes to scripts are
made, we build and install a tiny PE in the operability tests
to look for bugs in process.sh. The concretization checks
look at what packages Spack intends to install, and verifies
that it matches what we prescribed.

Finally, a CI job builds the entire environment, creates
binary packages for all new installs and uploads them to
our binary cache. The install step only takes around twenty
minutes, as most of the packages are simply downloaded
and installed from the binary cache. The building of binary
packages always runs regardless of whether the install step
completely succeeds - any new packages successfully built are
uploaded. We rely on Spack’s ability to differentiate slightly

12This requirement even includes packages that are no longer exposed to
the user through module files.

Fig. 1. TCE2 Gitlab CI steps

different builds to avoid installing incorrect or broken binary
packages built this way, though we do occasionally have to
manually remove a bad package. Once CI passes, we can
install the entire environment purely from the Spack binary
cache using process.sh --cache-only.

This methodology works fairly well. We’ve rolled out
completely new environments, and have provided updates to
existing environments.

III. PROBLEMS BECOME CONCRETE

Our initial roll-out of TCE2 happened in Spring 2022 as
a ’preview’. Our first official release of TCE2 as the default
environment on a cluster didn’t occur until a year and a half
later on our new Cray clusters, and TCE2 for TOSS3 was
abandoned. The intervening time contained some turmoil. The
main TCE2 architect left LANL. It was decided at one point
to abandon the whole concept as unmaintainable. It was also
decided that we simply didn’t have time to find an alternative
before our new generation of clusters came online. While
Spack met all of our requirements for software environment
management in theory, it was found that the reality of imple-
menting them through Spack was often excrutiating.

A. Software Installs

A huge advantage of Spack is it’s very large library of
ready to install package definitions in its builtin package
repo. This provided packages for almost everything we already
installed in our legacy environment, and given basic Python
knowledge it’s fairly easy to fill those gaps. Spack’s general
acceptance in the wider community gives regular updates to
those packages, and package variants mean we install those
packages configured exactly as we needed with minimal effort.
We could throw out all our home-grown scripts and rely on
shared, open source efforts.

This is what Spack is phenomenal at, in our opinion. Using
Spack to install just about any package in its library just works,
most of the time. Spack specs are well thought out, the package
definitions are flexible and powerful, and how Spack wraps the
build process for different build systems works exceptionally
well.

It’s in the failure modes where problems emerge. Spack
really doesn’t provide the tools or documentation needed for
handling build (or most other) errors. The best way we’ve
found to handle build failures is to go into the appropriate

spack-stage directory for the package being built13, which
contains everything Spack was using to perform the build.
There you can recreate the Spack build environment using
Spack’s saved files, and directly run the configure and build
commands. It works about 95% of the time - the problem
is almost always a misconfiguration in the Spack package
or one of it’s dependencies. From there one can fix those
packages directly, or create a fixed version in their own Spack
package repo. For our environment that builds several hundred
packages, we have about two dozen such fixes, and have
merged many more with into Spack.

Spack provides a build-env command that seems
designed to help (spack build-env <spec> bash
should recreate alot of the steps above), but it shares a common
problem with many Spack commands. While it’s easy to
specify a simple spec as the target of the command, specs for
our production environments are a complicated combination
of configurations for both itself and its dependencies. It’s not
just difficult to put that on the command line, we don’t know
of a way to extract those full specs at all14. This goes for
commands as integral to Spack as spack install as well.
Spack was designed for the command line use case, and the
hand-written environment use case is not well supported.

B. Inventory and Reproducibility
Spack provides the environment system for creating a well

defined set of packages and configurations to install together.
The expected way of working with this system is via the
spack env command, but we were encouraged to edit the
spack.yaml file this command produces directly. It’s a yaml
file under which you can define a list of specs to install, and
additionally add just about any sort of configuration Spack
expects.

The spack.yaml for each of our Cray environment is
about 1400 lines long. Defining which packages to install
is fairly concise. Making sure Spack installs these packages
consistently and reproducibly is not concise. The root of the
problem is Spack’s concretization of those packages.

1) Concretization Overview: Concretization is the process
by which Spack solves the dependency tree problem. For
Spack, this is more complicated than with a traditional package
manager. RPM and DEB repos have a set version for each
package that’s tied to the system release. They’re able to
maintain ABI compatibility by only doing minor updates to
each package over its lifetime. Options for packages are fairly
set in stone, and they have a clear delineation based on OS
and system architecture. Spack has none of these luxuries.

C++ and especially Fortran libraries are not necessarily
compatible when built with different compilers. HPC software
often depends on MPI, which in turn directly depends on
the cluster fabric drivers. Packages depend on options in
other packages that may or may not be enabled, and multiple
packages can share a dependency yet require conflicting op-
tions for that dependency. Resolving the dependency tree and

13It’s in /tmp/<usr>/spack-stage.
14After a package is built, the spack find command can help

configuration settings is many degrees more complex, and can
require significant computation time to solve.

Under Spack’s concretizer every package requested is con-
cretized to a hash based on every detail of how Spack
intends to build the package AND all of its dependencies.
Spack’s original concretizer worked purely on these hashes.
The slightest change in a package spec would cascade up
the tree, requiring rebuilds of every package that depended
on it. Spack’s new ‘Clingo‘ based concretizer composes a
massive declarative logic program15 based on the requested
software, dependency and variant information, and then using
the Clingo solver to find a ’best’ solution to it. This new logic
can now differentiate between a change that won’t effect a
parent package and one that will, making reuse much more
flexible.

C. Concretizing TCE2

TCE2’s initial release was under the old concretizer. Error
messages under the old concretizer were obscure, but we could
typically track them down and debug in Spack’s source. Clingo
errors, in contrast, are there result of a failed solve of its
massive machine generate logic program. These errors often
far removed from their actual cause, and nigh impossible to
track down directly. The trial and error involved to solve these
issues is exacerbated by the fact that Clingo takes upwards of
30 minutes to solve the dependency tree for our PE.

The killer feature of Clingo is it’s ability more more flexibly
reuse built packages. Concretization under Clingo depends on
not only what Spack intends to build, but also what packages
are already available in the binary cache. The result is that
we can verify that our PE builds, only for it to fail on install
because Spack will choose different answers and generate a
dependency tree with requires new builds. Clingo will come
up with a different solution than it did originally based on
what is in the binary cache. To get around this problem, we
turn reuse off entirely.

Inconsistency is our core problem with concretization. For
every single package built in the entire dependency tree,
we set a version in our Spack environment definition. The
defaults set by packages aren’t enough to keep the versions
of dependencies from wandering with the slightest change in
configuration. To keep Spack from producing largely duplicate
and unnecessary builds, we also often have to force dependen-
cies into a set of variants state that satisfy the requirements
for all parents.16 The concretization CI step runs scripts the
checks for these issues, ensuring that we don’t end up with
unnecessary builds, and verifying that we only build versions
we explicitly enabled. We’ve developed additional tools to
look at the concretization results and hunt down the reasons for
these differences, tooling that Spack does not itself provide.
Locking down versions and variants accounts for about 85%
of our spack.yaml content.

15It’s megabytes of plain text.
16Preventing this from happening is what the Spack concretizer is for, in

theory.

D. Combinatorial Installs
When we started down the road of using Spack, Spack

environments only supported one instance of each package per
environment. We quickly made it clear to the Spack developers
that a large part of the problem with production programming
environments was that we often had to install multiple versions
of each package built against multiple compilers and MPI
libraries. The Spack developers fairly quickly added features
to support this issue, and supported us as we worked through
issues we found with those features as we developed TCE2.

The only remaining problem in this space is fairly new
- extends(python). In an effort to more sanely support
Python libraries17, Spack added a feature to setup packages as
extensions of other packages, particularly Python. This again
restricts some packages to only one instance per environment.
Anytime we have to install multiple instances of a package
that extends Python, we have to override the entire package
just to comment out this feature. There’s currently no way to
disable it globally or through configuration.

E. Module Files
Spack can generate a modulefile tree for either Environment

Modules (TMod) or LMod. This process is highly config-
urable. You can select which packages to expose, extend
the module files with extra environment variables, or even
change the base modulefile template. One can even generate
multiple, special purpose module files directories (such as per-
compiler/MPI trees). This is a significant improvement over
our old manual process.

Configuration of this is cumbersome. We have to specify
both which packages to expose and which packages to white-
list in our configuration. The duplicated configuration is error
prone and unnecessarily long.

More importantly, Spack module files don’t play well when
combining Spack environments. We provide our Spack pro-
duced module files and so do code teams, and they need to be
able to work in tandem. When loading a module from our tree
with dependent module files, Spack module files autoload any
modules they depend on. This often unloads modules from the
code team’s tree, breaking their environment. This autoloading
can be disabled in Spack, but now our loaded module won’t
have access to its needed dependencies. The problem is in the
extends(python) feature. For all link level dependencies,
Spack RPATH’s to them. For Python, however, it relies the
currently loaded Python to have them in its site-packages
directory. Between the two environments we have multiple
conflicting Pythons with different sets of dependencies. With-
out extends(python) this would work. 18

IV. SPACK VERSIONS

Further discussion of Spack and TCE2’s use of it re-
quires addressing a very fundamental problem with Spack

17The prior solution required separately loading python packages and
creating a very long PYTHONPATH

18There are solutions to this, but it requires manually configuring additional,
complex Spack views and adding those views to the dependent packages
PYTHONPATH.

— the unstable nature of Spack versions and the packages
included with it. Spack’s base use case of performing a
spack install somepackage works fine regardless of
version. If we have an ecosystem of dozens of packages
with their likely hundreds of dependencies, that’s far more
likely to run into substantial problems when one tries to
upgrade Spack versions. The whole structure probably won’t
concretize. Changes to the builtin packages might change the
meaning or format of package variants, other package changes
will prevent many of them from building. We’re currently
in the process of upgrading from Spack 0.19 to 0.21. Three
people have dedicated almost a month the upgrade so far. I’ve
heard similar stories from code teams and other Spack users
- everyone sticks with a single version of Spack for as long
as possible because upgrades are painful.

This had particularly sobering consequences for TCE2.
Upgrading often results in changes to most packages in
Spack, requiring a rebuilding almost the entire software stack.
Package reuse helps, but a rebuild of a dependency forced by
package changes would still propagate up the dependency tree
and require substantial rebuilds across the environment19. If
we intended to grow our environment over time by adding
new compilers, MPI libraries, and additional packages we
would have to contend with ever increasing Spack upgrade
complexity alongside longer and longer concretization times. It
was deemed untenable, and largely why we almost abandoned
Spack.

A. Compatibility

Our hope with Spack was that we could chain our installs
through upstreaming20 to reduce the installed size of the PE,
reuse builds through binary packages, and share our library of
binary packages with code teams to reduce their build times.
Only one of these things has come to fruition - building and
reusing our own packages has worked wonderfully. It works
largely because we’re only consuming what we produce and
we can guarantee that we’re using a version of Spack that will
be happy with those packages.

Upstreaming turned out to be something we simply couldn’t
use. Mostly importantly, it breaks modulefile generation -
you can’t make module files for upstreamed packages. We
could only use upstreamed packages for which we didn’t
create module files, but Spack doesn’t give control over which
packages you get from upstream and which you don’t. We also
ran into a lot of compatibility issues when trying to upstream
as well, especially in regards to custom Spack package repos.
In the end, we found upstreaming to be generally unusable for
our purposes.

In contrast, Spack’s binary packages are a huge leap forward
for package managers. Unlike any other package manager we
know of, they are relocatable by default. Unlike RPMs, we can
build packages without regard for their final install location.

19This happens more frequently than one would expect, as package variants
and dependency requirements change.

20Upstreaming is the process of pointing at an installed set of packages
from another Spack instance.

There were initially issues installing packages into paths that
were longer than the original install path, but our CI processes
ensure that isn’t an issue.21 We’ve had to suddenly change
where we install TCE2, and relocatable packages made that a
non-issue.

Binary packages should also allow us to share those pack-
ages with users and code teams. Unfortunately, that’s not
something we can do with our environment as it stands.
Our TCE2 deployments use a patched 0.19 version of Spack
that can build against architectures that aren’t supported in
that release. We also have a large number of patched and
overridden packages, which could lead to unexpected behavior
for users. Additionally, users with older versions of Spack
(which is common), will likely have compatibility problems
with binary cache itself. 22

B. Efficiency

When we started TCE2, we expected the gains in produc-
tivity to allow us time to become active Spack developers, as
well as give us more time to spend on internal projects. That
has not happened. Getting new team members full up-to-speed
on Spack takes months. We’ve almost certainly spent multiple
combined years debugging concretization, package misconfig-
urations, and package build problems. As mentioned, several
team members have spent months just trying to upgrade our
Spack version.

Despite Spack version upgrades being difficult and time
consuming, smaller upgrades to packages in our PE go quickly.
Backporting a package version, adding it to our config, and
letting CI handle the builds is rather efficient. The team is
no longer limited to the package expert - we’re all Spack
experts instead. With some major changes in how we think
about TCE2 we were able to make it into a system that we
think will work long term, and is finally on the cusp of yielding
the productivity gains we hoped for.

V. TCE2 ON CRAY SHASTA/COS2

We mentioned in the prior section that we almost gave up
on Spack. We wrote an internal paper outlining why TCE2
simply would not work long term - largely because it would
grow in size and complexity until it was unmaintainable. After
some thought, a separate proposal was written - how to change
the base concepts of TCE2 into a supportable infrastructure.
The key to this was our new clusters, and the release model
of the HPE/Cray programming environment.

A. The Upgrade Problem

The time and effort it took to get our initial TOSS 3
based TCE release into production was substantial. Figuring
out how to coax Spack into concretizing and building our

21Also, we think it’s fixed in newer versions of patchelf.
22It has been recommended that we build out a binary cache for users using

the oldest version of Spack amongst all our users. This would guarantee that
they could read from our binary package cache, and use any created packages.
That leaves us with the problem of backporting any newer packages that the
users want, and ’reversing’ any changes that aren’t supported by our older
Spack release.

environment ran into all of the issues mentioned in the prior
section and quite a few more that were fixed along the way.
In order to alleviate that strain, we intended on installing
TCE2 as independent releases in a shared Spack install area.
Most packages could be reused, we wouldn’t be building one
massive concretization problem, and the cycle would give us
the time needed to get new versions working and tested. We
were assured that this would work just fine, that newer Spack
versions would happily build (or at least reinstall the binary
packages for) the old environment.23

This is when we discovered the depth of the Spack upgrade
problem. Separating into separate releases might make the con-
cretization problem smaller, but every Spack upgrade would
break both the new and old TCE2 releases. We were stuck.
We could live with ever increasing concretization, debug, and
install times as a monolithic TCE2 grew, or we could debug
breaks in old releases at every Spack upgrade.

With Cray Shasta systems, there was a shortcut. Since
Cray provides the base environment in releases anyway, we
simply match our releases to theirs - supporting only that CPE
release in an entirely independent release. Each release would
be installed with its own Spack and install directories. Old
releases now never need a Spack version upgrade. The entire
release can always be installed reproducibly - simply because
nothing changes outside of our direct, configured control. New
packages could be added to these environments in-place, since
these environments weren’t encumbered with a complicated
history. From the user perspective, the latest TCE2 release is
autoloaded on login to match the default CPE packages.

B. CPE Problems

The Cray Programming Environment has itself proven prob-
lematic in regards to Spack. Spack doesn’t quite correctly find
compilers on the system, so we provide and rely on a static
compilers.yaml. We use hierarchical LMod with the Cray
CPE24, which confuses Spack’s ability to include external
software by module. They must be explicitly defined by spec
(IE cray-mpich@8.1.14%intel) and path instead. There
were also issues integrating Spack’s module files with the
Cray PE. We currently use LMod inherit statements to
dynamically patch in TCE2 module paths according to the
loaded compiler and MPI version. These were all minor,
solvable issues in the grand scheme of things.

Our most challenging problem with the Cray CPE is the
release cycle. A problem reported to HPE/Cray, even if fixed
immediately, may only be available in a CPE released months
later. That same CPE and related system patches might not
make it to clusters for further months due to the Cray System
Management (CSM) upgrade schedule. The closed source
nature of cray-mpich exacerbates this. Regardless of all our
local MPI expertise, little can be done to hunt down the roots

23These separate releases would be combined (with a new Spack feature
that never quite came) into a signal modulefile tree.

24LMod configured such that loading a module expands MODULEPATH to
include additional module files that depend on the now loaded module. This
greatly simplifies module composition.

of these problems without the source. With any new cluster
platform it’s expected for there to be issues, but this cycle
prevents those issues from being fixed in a timely manner.

VI. INTO THE FUTURE

While our TCE2 software deployment process is stable,
upgradable, and maintainable in the long term, there are still
several problems to solve. The lack of a dedicated development
environment is at the top of this list. Our releases our tied
to Cray CPE releases, yet we don’t have a system where
we can perform builds against CPE’s other than our clusters
themselves. Our CI workflows currently build on cluster head
nodes. Moving our CI jobs into containers is the obvious
solution, but a COS2 container isn’t enough. We must also
develop a process to assemble Cray PE releases to attach to
that container. All the parts are available to us to accomplish
this, and we expect to have it operational this year.

Testing is another sticking point. A set of software tests
were developed for for the initial TCE2 release using Pavilion
[2], LANL’s HPC testing framework. These tests provided a
quick verification that each module was loadable, and that the
software it provided worked to some degree. These tests have
not been maintained, however, and need to be made into a
required step in our CI pipelines. We also need to add a check
for the tests themselves, ensuring that a test exists for each
modulefile that TCE2 adds.

Spack has produced some improvements to managing en-
vironments that we can take advantage of once we upgrade
to a more recent version. The spack.lock file captures
the concretized state of environments, but has always been
ephemeral. New changes allow for the reuse of concretization
solutions captured in that file. By adding a CI step that
commits the spack.lock file back to the repo if all other
tests pass, we hope to greatly shorten the concretization times
for our environments. Most importantly, this should resolve
our issues with Spack package reuse inconsistencies.

As of this writing we deploy changes to TCE on a two
week cycle, deploying the latest collection of built packages
by hand using process.sh. After testing the environment
and saving the concretization state, there’s no reason why we
can’t automatically deploy those updates in production using
runners on the clusters themselves. User software requests
would be resolvable in hours instead of weeks.

VII. CONCLUSION

Over the course of this paper, we’ve discussed a subset of
the issues we’ve discovered in building a software environment
deployment workflow with Spack. While these issues remain,
it’s also clear that we’ve been successful in using Spack
to create a functional software deployment workflow with
tangible benefits. The question that remains is: ”Was it worth
it?”

In some ways, it was clearly not. For the amount of work
we put into getting Spack to deploy our existing environ-
ment, we could have easily built an alternative solution that
more simply and directly solved our software deployment

problems. Our existing deployments were built around having
minimal dependencies. Spack solves a very hard problem of
dependency management that we simply didn’t have. While
Spack has improved in ways that have made it possible to
create our software deployments, the tooling around long term
management of these deployments remains insufficient. Many
of the benefits we expected Spack to yield did not come
about. Our generated binary packages are not easily shared
with code teams. The ’inventory’ of packages is unwieldy and
difficult to maintain. Working with Spack frequently consumes
far to much employee time, and we expect Spack upgrades to
continue to be a major pain point.

This project has also yielded great successes. TCE2 has
put everyone on our team on equal footing - everyone is
experienced at debugging a variety of Spack concretization and
build issues. Any member of our team can now fulfill user re-
quests for software that we would never have attempted before.
Spack has enabled us to transition from a user programming
environment that was static, rigid and stale to one that can
flourish and grow with the needs of our users. This could not
have come at a better time. The PE requirements for our new
Cray clusters are requiring that we substantially expand the
libraries of software we provide. Our modernized, self-testing,
automated TCE2 build infrastructure is essential for providing
software support for this new generation of clusters, and Spack
is the heart of it.

ACKNOWLEDGMENTS

A massive amount of credit goes to Nick Sly, the originally
architect of TCE2. He spent years getting our initial TCE2
environment working for TOSS 3 and CLE7. Nick is the
greatest.

The Spack developers at LLNL also deserve a gracious
shout-out. While this paper is critical of Spack in this use
case, that does not undermine the achievement of Spack as a
whole. Greg Becker in particular helped us overcome many
of the early hurdles that made this work possible.

Jennifer Green was our team leader through most of this
work. While she’s moved on to other opportunities, we could
not have gotten to this point without her guidance and her
uncanny ability to put together the great team we have today.

REFERENCES

REFERENCES

[1] LLNL (2024, April 29) Spack Documentation,
https://spack.readthedocs.io/en/latest/

[2] LANL (2024, April 29) Pavilion Documentation,
https://pavilion2.readthedocs.io/en/latest/

