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Abstract—In June 2022, the long-awaited exaflop compute
barrier (1 quintillion floating-point operations per second) was
surpassed on the TOP500 list by Frontier, an HPE Cray EX
supercomputer at Oak Ridge National Laboratory (ORNL).
Drawing peak power of 21.1 MW, Frontier demonstrated 1.1
exaflops/second of computational capability, much of which is
supplied by more than 37,000 AMD Instinct MI250X graphics
processing units (GPUs). With a single GPU drawing up to
560W thermal design power (TDP), each AMD MI250X draws
2x more power under load than the NVIDIA V100 GPUs
used in Frontier’s predecessor at ORNL, the 200 petaflop IBM
POWER9 supercomputer, Summit. There are many other major
technological advances in the memory, compute, power, and
infrastructure of Frontier that are new to production environ-
ments. Frontier’s mission to enable ground-breaking research in
U.S. energy, economic and national security sectors is fulfilled
through leadership-class workloads, which are workloads that
demand greater than 20% of the supercomputer. These large
workloads are vulnerable to defective and failing computing
hardware. The rate of failing hardware is quantified through the
mean time between failures (MTBF), which is the length of time
between a hardware-level failure anywhere in the system. In this
work, we describe the multi-staged approaches to stabilizing and
maintaining the functionality of the hardware on Frontier. There
are three strategies discussed; the first two utilize leadership-class
tests to target improving the MTBF of Frontier, the third utilizes
single-node validation to efficiently identify individual instances
of defective hardware in Frontier. We provide summarized data
from each of the three strategies, then classify the diverse set
of failures and discuss trends in defective hardware, before dis-
cussing several key challenges to identifying defective hardware
and improving the MTBF of Frontier.

Index Terms—hardware, reliability, leadership-class
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I. INTRODUCTION

The Oak Ridge Leadership Computing Facility (OLCF) is a
user facility within Oak Ridge National Laboratory’s National
Center for Computational Sciences tasked with providing users
with the computational resources needed to tackle the most
challenging scientific problems in the world. Frontier is the
latest deployment under OLCF, and is the first supercomputer
in the world to break the exascale barrier (1 quintillion
floating-point operations per second) on the High-Performance
Linpack benchmark [2], showcasing the achievement in the
June 2022 edition of the TOP500 list1 [1], [5]. Frontier
was deployed to enable leadership-class workloads; that is,
workloads that consume more than 20% of the supercomputer.
Large leadership-class computation is not possible if the more
than 37,000 AMD Instinct GPUs and 9,000 AMD EPYC CPUs
in Frontier are not working together. Defective hardware resid-
ing within Frontier jeopardizes the fulfillment of leadership-
class computation by synthetically lowering the mean time
between failures (MTBF). The MTBF quantifies the length
of time between hardware-level failures in the system, which
shares a direct relationship with the success of leadership-
class workloads; each hardware failure may cause workloads
currently computing to fail.

Frontier’s AMD Instinct MI250X GPUs draw a thermal
design power (TDP) of 560W, which is double the TDP of
the NVIDIA V100 GPUs utilized by Frontier’s predecessor at
ORNL, the 200 petaflop IBM POWER9 supercomputer, Sum-
mit. In addition to the large difference in power, the MI250X
also packs 64 GB of high-bandwidth memory (HBM), 4 times
more than the V100. The MI250X also decreases the physical
size of the process nodes by 75% with 6 nanometer (nm)
FinFET process technology, while the V100 utilizes 12 nm
FFN technology. These factors contribute to a supercomputer
that is more complex than previous generations, and as such,

1TOP500 June 2022: https://www.top500.org/lists/top500/2022/06



demands unique approaches for deploying and maintaining the
system.

In this work, we discuss a multi-staged approach for iden-
tifying defective hardware in Frontier, building on previous
work which discussed developing an effective periodic node
screen for Frontier [10]. This multi-staged approach not only
identifies defective hardware, but begins to uncover key trends
throughout the lifetime of Frontier. Summarized data from
each stage is presented, then two key observations from this
data are presented; (1) there are discernible seasons of classi-
fiable failures and (2) there is a constant population of “bad
actor” nodes. Following analysis, key challenges are discussed.
There are several key challenges to multi-staged efforts for
identifying defective hardware discussed in this work; (1)
discovering trends in failures, (2) balancing resources allocated
to testing with resources allocated to production, (3) failure
modes may be triggered by bad hardware OR buggy code,
and (4) maintaining a relevant set of tests.

II. BACKGROUND

A. Frontier node architecture

Frontier is a 9,408-node HPE Cray EX system based
on the Shasta architecture and Slingshot interconnect. Each
node of Frontier is powered by one AMD optimized 3rd-
gen EPYC 64-core processor and four AMD Instinct MI250X
GPUs. Each MI250X GPU contains two graphics compute dies
(GCDs) which are seen as two distinct GPUs by applications
and resource managers. Each GCD contains 64 GB high-
bandwidth memory (HBM) accessed at 1.6 TB/s. GCDs within
a MI250X GPUs are connected via Infinity Fabric, with a peak
bi-directional bandwidth of 200+200 GB/s (for a total of 400
GB/s). GCDs on different MI250X GPUs are connected via
Infinity Fabric GPU-GPU, as shown in Figure 1, with peak bi-
directional bandwidth of up to 50+50 GB/s (for a total of 100
GB/s), based on the number of Infinity Fabric links between
GCDs. In total, Frontier contains 37,632 GPUs, 9,408 CPUs,
and 9.2 PB of total memory (CPU + GPU).

The single AMD EPYC processor on each node is parti-
tioned into 4 NUMA domains. Each NUMA domain contains
2 L3 caches, with each L3 cache associated with a single GCD
within a MI250X. Frontier utilizes a feature called Low-Noise
Mode (LNM), which binds all system processes to core 0.
Frontier reserves the first core in each L3 cache by default,
leaving 56 cores available. System process reside on core 0 and
the other 7 cores are used by Lustre to improve I/O stability.
The sbatch/salloc flag -S can be used to override this
default by setting -S 0, though all system process will still
be bound to core 0. Each physical core on the AMD EPYC
CPU contains two hardware threads, though only one thread
is active by default. The second core can be activated us-
ing the sbatch/salloc flag --threads-per-core=2.
Each node has 512 GB of DDR4 dynamic random-access
memory (DRAM) accessible at speeds of 205 GB/s.

Each compute node on Frontier also contains 2 non-volatile
memory (NVME) storage devices supplying 3.8 TB of local

Fig. 1. A visual depiction of the architecture of a Frontier node.

storage that can be accessed at a peak sequential performance
of 5,500 MB/s (read) and 2,000 MB/s (write).

B. Previous Work

This paper directly builds on work presented at the SC’23
HPC System Testing Workshop, entitled “Experiences Detect-
ing Defective Hardware in Exascale Supercomputers” [10],
which presented two generalized methods for detecting de-
fective hardware in supercomputers, demonstrating the utility
of such methods on Frontier. These methods are briefly
summarized in the following sections. This paper extends the
methods discussed in the previous work to include two more
strategies targeting improving the MTBF of Frontier, and data
from each approach is used to build a cohesive picture of the
evolution of Frontier, with analysis of results and discussion
of trends and key challenges.

1) Slurm backfill: The first method utilizes short jobs
with low node counts designed to be scheduled by Slurm’s
backfill scheduler, to avoid impacting production work-
loads. On Frontier, the periodic node screen is typically run on
1000 nodes with a time limit under one hour, with most tests
are under 30 minutes. This allows node screen jobs to back-
fill around production jobs; for example, while a full-machine
job is waiting for the last few required nodes to complete their
current allocation, node screen jobs can run on the idle nodes
that the production job is holding without delaying the start
of the production job. This method effectively screens nodes
without interfering with production workloads, but lacks the
ability to enforce an maximum time allowed between tests.

2) Slurm epilog: The second method was developed us-
ing lessons learned from deploying the Slurm backfill-
based method. Slurm epilog runs at the end of each job
to clean up temporary file systems and kill any remaining
processes. Within epilog, a device health check script called
checknode is run. This script examines system logs, file
system mounts, and free memory, among other metrics, to



identify any defects in a node. The regularity with which
checknode runs was identified as a convenient mechanism
for enforcing strict time intervals for periodically screening
nodes. checknode was extended to check the last date and
result of a node screen test on a node, and if the last test
was greater than 1 week prior or failed, checknode would
remove the node from the queue and run node screen tests
on it. These tests run and report results independent from the
Slurm backfill-based tests. Tests run by this method must
not use MPI and must be very short to minimize the time a
node is forcibly taken out of the queue.

C. Related Work

There are many existing generalized approaches to identify
data corruption or transient hardware faults. One such frame-
work attempts to detect silent data corruption (SDC) of real-
world HPC applications based on certain data properties such
as smoothness, demonstrating a success rate of over 90% [6].
This work is extended further to also consider the impact of a
SDC on the application execution, which reduces the overhead
of such detection techniques [8]. These works have many
parallels to the defective hardware identification in this work.
First, both efforts emphasize the importance of data corruption
and the challenges of detecting such events at extreme HPC
scales. We approach the same problems from two sides; this
SDC detection method is intended to be implemented within a
production job, while our node screen is designed to identify
defective hardware contributing to SDC’s using small tests
with well-known and reproducible behavior.

A second common approach utilizes machine learning (ML)
techniques. One example of this approach utilized ML to build
a model for how “soft” hardware faults propagate through an
application [4]. Broadly, these approaches seek to identify
the signatures of transient hardware faults or SDC’s in the
behavior of applications.

Engineers at Facebook recently published a paper on ArXiv
detailing the investigation of silent data corruptions on internal
production machines [9]. The findings and best practices from
their paper are in good agreement with our findings as well,
though unique approaches are taken. Distinctly, Facebook
focused on SDC’s, while we focus on any result of defective
hardware (including SDC’s).

In contrast with the first two of the discussed related topic
areas, we seek to proactively identify and repair the hardware
components responsible for SDC’s or hardware-level faults,
rather than detect the presence of fault in a production job.
In some cases, there may be transient faults that cannot be
pinned to a specific component, in which case, efforts like
those described above certainly become critical. At this new
frontier of computing scales, multi-pronged approaches to
solving problems become increasingly effective for enabling
ground-breaking science.

III. APPROACHES

Since Frontier’s installation and acceptance, several efforts
have been undertaken to purge defective hardware and im-

prove the MTBF of Frontier. These efforts are integral to the
continued success of Frontier’s ground-breaking computations.
The following sections describe the three strategies utilized
to improve the MTBF and remove defective hardware on
Frontier.

A. Targeted Application Failure Investigation

The first targeted strategy to improve the MTBF of Frontier
was to run a single application with well-known behavior
repeatedly on Frontier and investigate all failures to identify
any defective hardware or software bugs. The application
chosen for this task was LAMMPS, specifically the ReaxFF
potential within LAMMPS [3], which had exhibited an above-
average propensity to discover or cause a hardware failure
in previous testing. LAMMPS was already highly-optimized
on Frontier and easily customized from the command line
to fit any node count and duration, making it a suitable
choice for this effort. The ReaxFF potential of LAMMPS
performs memory access patterns that stress the memory
management hardware on the AMD MI250X GPU, while
utilizing the majority of available memory on each GPU,
making this code especially effective for identifying GPUs
with under-performing or defective memory characteristics
while maintaining a significant computational load.

In this strategy, leadership-class LAMMPS jobs were
launched on Frontier, and when a failure was encountered,
increasingly smaller jobs were launched on the targeted nodes
as needed until a single failing part could be identified. This
study also investigated the effects of varying the GPU’s TDP,
voltage of the GPU HBM controller, and HBM frequency on
the rate of hardware-level errors, while also identifying and
removing defective hardware. These parameters were varied as
part of targeted investigation into power and memory-related
failures. There were four experiments with these parameters;
the first two performed a sweep over job sizes between 1728
and 9261 nodes with the following parameters:

• GPU TDP set to 560W
• GPU TDP set to 500W

The third and fourth experiments focused on 4096 nodes with
the following parameters:

• GPU TDP set to 500W, HBM voltage increased +100mV
• GPU TDP set to 500W, HBM voltage increased +100mV,

memory frequency reduced to 1200 MHz
Each experiment was constructed based on data from the cur-
rent experiment; for example, the second experiment, setting
the GPU TDP to 500W, was designed because power failures
were observed at the default 560W TDP. This effort began in
September 2022 and concluded in January 2023.

B. Formal Job Completion Study

The second strategy targeting the improvement of the MTBF
of Frontier utilized an optimized version of the HACC2

cosmological simulation code, which was chosen instead of
LAMMPS to diversify the tests used to study and improve

2HACC: https://cpac.hep.anl.gov/projects/hacc/



Frontier. Similar to the first strategy, all failures were triaged
to identify a root cause. Each phase examined the behavior of
Frontier at a set of specific leadership-class job sizes and time
limits; for example, phase 4 targeted jobs of 2500 nodes with
a time limit of 75 minutes. This configuration was selected
for this phase because of the trade off between job size and
scheduling. This strategy is considered an extension of the
LAMMPS investigation, so the five phases of this strategy
were numbered 2 through 6, building upon phase 1 from
LAMMPS. This effort began in June 2023 and concluded in
January 2024.

C. Periodic Node Screen

The final strategy to improve the MTBF of Frontier is to
periodically run a set of single-node or single-rank workloads
on each compute node in Frontier independently. This strategy
was first deployed in November 2022 and is described in
previous work, summarized in Section II-B. Two methods
for periodically screening nodes were developed; the first was
deployed November 2022 using Slurm’s backfill scheduler
to schedule jobs on idle nodes, the second was deployed April
2023 using a script called checknode called by Slurm’s job
epilog to enforce a weekly testing frequency. The Slurm
backfill-based method continues to run behind production
workloads, but the Slurm epilog-based method was removed
from production in December 2023 after it was found to be
too disruptive to user workloads on the system. This method
continually took large groups of nodes out of the queue to run
screens, instead of scavenging cycles while nodes are idle.

Similar to the other strategies, this employs well-known
applications that have previously failed on Frontier due to de-
fective hardware or software. Table I lists the base applications
currently supplying tests for Frontier. The set of available tests
has grown over the lifetime of the effort and continues to grow
to adapt to emergent behavior, though not all available tests
are consistently run.

TABLE I
CURRENT PERIODIC NODE SCREEN APPLICATIONS ON FRONTIER.

Base code Description
AMGa 3 An algebraic multi-grid solver, CORAL-2 source
HACC 4 An extreme-scale cosmological simulation code,

CORAL-2 source
rocHPLa 5 High-Performance Linpack benchmark [2], AMD

source
LAMMPSa,b 6 Several potentials from the LAMMPS Molecular Dy-

namics code [11]
oblex A closed-source application provided by AMD, de-

signed to test the GPU’s high-bandwidth memory
rocPRIM 7 A set of unit tests provided by the rocprim library.
BabelStreamc 8 A memory bandwidth microbenchmark for GPUs. [7]
aBoth single-node and single-rank configurations used.
bMultiple configurations available for both single-node and single-rank.
cNewly developed since SC’23, November 2023.

IV. RESULTS

For each of the strategies used to identify defective hard-
ware, we provide high-level results below. These results quan-
tify the approximate cost in node-hours that each strategy
consumes and data relevant to each strategy. The focus of the
LAMMPS and HACC investigations was primarily on Fron-
tier’s MTBF, so the results for those strategies are centered on
MTBF.

A. LAMMPS Application Failure Investigation

The LAMMPS application failure investigation was com-
prised of four experiments varying parameters such as GPU
TDP, HBM controller voltage, and HBM frequency, as dis-
cussed in Section V. Figure 2 shows the failure rate as a
function of node count for TDP’s of 500W and 560W. There
were 14 jobs between 40 and 240 minutes launched at 4096
nodes and below, and 11 jobs between 40 and 120 minutes
launched from 6859 to 8000 nodes, and 8 jobs launched at
9261 nodes between 40 and 90 minutes. In total, 144 jobs
were launched in this TDP experiment.

Fig. 2. The failure rate of LAMMPS jobs by node count for each examined
TDP.

After observing that changing the TDP does not sub-
stantially improve the failure rate of large leadership-class
LAMMPS jobs, the voltage to the HBM controller was in-
creased by 100 mV and the memory frequency was varied
while leaving the TDP at 500W. 4096 nodes was selected as
the specific node count of interest for this experiment.

We ran 50 1-hour jobs for each configuration at 4096 nodes,
with the following results:

3AMG: https://github.com/LLNL/AMG
4HACC: https://cpac.hep.anl.gov/projects/hacc/
5rocHPL: https://github.com/ROCmSoftwarePlatform/rocHPL
6LAMMPS: https://github.com/lammps/lammps
7rocPRIM: https://github.com/ROCmSoftwarePlatform/rocPRIM
8BabelStream: https://github.com/UoB-HPC/BabelStream



• 17 of 50 jobs failed with TDP of 500W, +100mV to HBM
controller, and the memory frequency left as the default
1800 MHz

• 11 of 50 jobs failed with TDP of 500W, +100mV to
HBM controller, and the memory frequency reduced to
1200 MHz

A total of 244 jobs were run with this strategy. During
this study, 19 cases of defective hardware were successfully
identified and repaired.

B. HACC Formal Job Completion Study

The HACC job completion study was comprised of five
phases, targeting specific job node counts and time limits.
Phase 5 was truncated for reasons outside of the study. Table
II shows the number of jobs in each phase, as well as the
minimum and maximum node counts in that phase. All jobs
performed 200 steps in HACC, which takes between 75 and
90 minutes for all job sizes, on average.

TABLE II
NUMBER OF JOBS AND NODE COUNTS TARGETED FOR EACH HACC PHASE

Phase # # jobs Node counts
2 57 4000-9072
3 66 2500-7500
4 78 2500
5 19 7500
6 70 2500

Table III shows the count of each failure mode encountered
during each phase of the HACC job completion study. The
Other category is primarily composed of file system errors,
unknown causes, and uncommon failure modes. This data is
analyzed further in Section V.

TABLE III
FAILURE MODES IN THE HACC AND LAMMPS STUDIES

Phase Power GPU HBM Network Bad Actor Other
2 20 2 3 1 10
3 10 3 0 0 8
4 5 0 0 1 13
5 2 0 0 0 5
6 5 0 8 2 1

C. Periodic Node Screen

There are two methods of running the periodic node
screen: (1) utilizing the Slurm backfill scheduler to schedule
short/small jobs on idle nodes, and (2) utilizing Slurm epilog
to enforce a weekly screen on each node. In previous work,
we provided detailed analysis of tests performed in the month
of June 2023 [10]. Expanding upon this, we provide results
for a recent 6-month span, from October 1, 2023 to April 1,
2024.

1) Slurm backfill scheduling: The first method of periodic
node screening was deployed in November 2022 and has ad-
ministered nearly 6 million single-node tests since deployment
as of April 2024. From October 1, 2023 to April 1, 2024, this

method of screening completed 1.9 million node tests, with
summary statistics aggregated by test name shown in Table
IV. 5 jobs impacted by system-wide issues have been excluded
from these results. Note that when a test fails, the node is
typically removed from the queue and the test is repeatedly
re-run on that node to reproduce the failure and work with
the triage team to identify the failure mechanism as needed.
Failures that were fatal to a node (ie, power faults) are not
currently tracked in this screening method.

TABLE IV
NUMBER OF RUNS AND FAILURES FOR EACH TEST RUN BETWEEN

OCTOBER 1, 2023 AND APRIL 1, 2024 IN THE PERIODIC NODE SCREEN.

Test name MPI? Count Total Count Failed
amg-nompi n 337684 129
amg y 192 0
coral2-hacc y 3517 0
hpl-nompi n 328576 162
hpl y 184 0
lammps-nompi n 175418 12
lammps-cpu y 4225 0
lammps y 2083 0
oblex n 184424 124
rocprim n 304361 24
stream-gpu n 562671 2796

All 2796 stream-gpu failures are reproducible perfor-
mance issues on a small subset of nodes caused by a suspected
software bug that is under further investigation. Among the
other 451 test failures, we identified 99 unique failing nodes.
The failure modes from these nodes are summarized in Table
V. This table includes all unique failures, so the sum of the
right column is greater than the 99 unique failing nodes, since
some nodes exhibited multiple failures throughout the 6 month
window. The Unknown classifier is used for failures where
there is not sufficient information to fully classify the failure.

TABLE V
PERIODIC NODE SCREEN FAILURES ITEMIZED BY FAILURE MODE.

Failure mode Count
Hang, not reproducible 3
Crash, not reproducible 1
Transient performance failure 27
GPU HBM uncorrectable error 12
Numerical instability 11
Software bug 54
Unknown 13

There were three cases of a node screen test hanging and one
case of a test crashing where no root cause could be identified.
The hang or crash could not be reproduced upon further
testing. Transient performance failures are tests that failed
the performance threshold set in the node screen once and
passed the performance threshold on subsequent screens. The
12 GPU HBM uncorrectable memory errors were identified by
automated device health checks and the nodes were designated
for hardware repair.

The 11 cases of numerical instability were promptly re-
moved from the system for further testing and repair, and are
under further investigation.



The 54 software bugs are primarily associated with software
responses to edge cases. An edge case includes but is not
limited to cases where an application leaves a node in a
bad state or a hardware component fails but software is not
able to identify that failure correctly. These software bugs are
discussed in greater depth in Section V.

2) Checknode weekly screen: The second method of pe-
riodic node screening performs all tests consecutively and
performed 39,437 screens as shown in Table VI, where each
screen consists of the 3 tests listed in the table executed
independently on all 8 GPUs on a node. During this time,
no failures were observed from these tests. This may be due
in part to this method utilizing shortened versions of each
test. For example, the lammps tests used in the first method
consume 24 minutes, while the lammps test in this method
consumes less than one minute. Analyzing an additional 6
months prior to October 1, 2023 (beginning April 1, 2023),
there were 3 failures identified by this testing method, all of
which were found to be GPU HBM UE’s triggered by the
rocprim application. The ineffectiveness of this screening
method led to removing this method from Frontier in Decem-
ber 2023.

TABLE VI
NUMBER OF RUNS AND FAILURES FOR EACH TEST RUN BETWEEN

OCTOBER 1, 2023 AND APRIL 1, 2024 BY THE CHECKNODE PERIODIC
NODE SCREEN

Test name Count Total Count Failed
lammps 39437 0
rocprim 39437 0
mini-hacc-fpe 39437 0

V. ANALYSIS

Given the complexity of an exascale supercomputer, it is
often challenging to identify common themes among failures.
In Frontier, most failures can be classified into one of several
failure modes, including but not limited to: timeout/hang,
application abort, power fault, network error, and numerical
instability. These failures often are not random, but can be
observed in “seasons” of each failure mode; for example, a
month-long period in time where power faults are the most
prevalent failure mode. In addition to these “seasons” of
classifiable failure modes, there is a constant small population
of nodes that are “bad actors”; that is, nodes that fail with
an uncommon signature that is often very difficult to iden-
tify. These assertions are discussed further in the following
sections.

A. Seasons of classifiable failures

The majority of hardware failures in Frontier fall within
several failure modes. These failure modes often fluctuate in
“seasons”, where there is one prevalent failure mode and many
other ancillary failure modes. In Table V, periodic node
screen failures from October 1, 2023 to April 1, 2024 are
presented. There are 54 software bugs identified in this 6-
month span. 51 of these software bugs were triggered in the

latter 4 months of the 6-month span. Software bugs, especially,
are an excellent example of the “seasons” of prevalent failure
modes, due to the lag in identifying and patching the software
bug. It must be acknowledged that “seasons” of failure modes
are influenced by the resources dedicated to identifying or
repairing this failure mode. In large systems, there may be
dozens of defective components that share the same failure
mode. These components are removed in one of two ways:
(1) the failing part is found during normal operations and
replaced or (2) a proactive targeted investigation seeks to
identify more parts that might be suffering from the same
failure mode. When the latter approach is taken, this “seasons”
of failure modes observation may be influenced by the targeted
investigation, since there is greater effort to find a specific
failure mode.

An example of this behavior in physical hardware is a
season of power faults observed during the HACC study. After
observing a number of power faults, a targeted investigation
into this failure mode was performed during the HACC job
completion study. A specific part within the system was
successfully identified as the cause of these power faults, and
a campaign was undertaken to replace the affected parts and
mitigate this failure mode. This campaign overlaps the HACC
job completion study, so we can see that from Phase 2 to Phase
4 and beyond of the HACC study, the number of power faults
was reduced by 75%.

B. Constant population of bad actors

During each of the targeted defective hardware investi-
gations, there was a constant very small population of so-
called “bad actors”, quantified in Table III as typically 0-2
nodes. These are most often nodes that produce an obscure or
difficult-to-identify failure. Investigating and repairing these
cases is often very challenging, and error messages may also
be misleading; for example, if a component such as a CPU
or GPU periodically produces a failure that seems clearly to
be a defect within the compute device, but is later found to
be a defect with the socket on the motherboard or some other
component.

One example is a node that was identified in January 2024.
This node intermittently failed only the MPI-enabled variant
of one test in about 10% of test runs. Single-rank variants do
not identify a failing part and the system log does not contain
any incriminating messages identifying a specific part. In cases
like this, a brute-force approach must be used to shuffle parts
one-by-one to a known healthy node until the failure follows a
specific part. Each “bad actor” case is thoroughly analyzed to
harden software such as drivers and hardware repair processes
against any future similar failures.

VI. KEY CHALLENGES

Since breaking the exascale barrier, Frontier has demon-
strated the need for a new set of challenges to be addressed;
the challenges to maintain exascale. In the following sections,
we discuss several key challenges to maintaining Frontier,



specifically regarding maintaining a high MTBF and identi-
fying defective hardware.

A. Discovering trends in failures

Discovering trends in failures is one of the most important
yet most difficult tasks when maintaining a supercomputer.
Frontier has many factors that make discovering trends in
failures very difficult. Fist, with over 37,000 GPUs, 37,000
DRAM DIMMs, and 9,000 CPUs, along with a multitude of
other parts, there are many components that need to be tracked.
In addition to the staggering parts count, hardware is repaired
by a team of technicians working in shifts, not a single person,
which means that 10 faults of the same failure mode in the
same day might be repaired by 10 different technicians and
never get noticed. Finally, exascale demanded more powerful
and more efficient, but more complex hardware than previous
generations of supercomputers, and it is difficult to determine
if the rate of failing parts exceeds the expected rate of failure,
since many parts are new to production environments.

The first two factors discussed are logistical; efficient mon-
itoring and tracking practices address both of these factors.
While these factors are challenging, they are by no means
novel. The third factor is perhaps the most challenging, and
aligns with the motivation for this study. The new generation
of hardware that enabled exascale is more complex than past
supercomputers, and the behavior of such hardware in produc-
tion environments is to be examined carefully. Computational
studies such as this aid in forecasting the future health of the
system, and lays the ground work to identify further trends in
hardware failures.

B. Balancing testing with production

Several testing strategies were discussed in this work, and
balancing the resources to dedicate to these testing strategies
(and as a result, not to production jobs) is another key chal-
lenge to identifying defective hardware in Frontier. Minimizing
the resources consumed is viewed as the “most efficient”
method of testing, but it may not be the most effective.
For example, the checknode-based periodic node screen
prioritized minimizing the resources dedicated to the node
screen. There are many differences between that method and
the Slurm backfill-based method, but one consistency is
that both methods use the exact same non-MPI LAMMPS test,
except checknode’s LAMMPS test is more than 20 times
shorter than the Slurm backfill LAMMPS test. Using
the data presented above, we find the checknode-based
LAMMPS test did not identify any failures through nearly
40,000 tests, whereas the backfill-based LAMMPS test
averaged identifying one failure per 14,618 tests. Effectiveness
and efficiency must be balanced, this looks different in every
deployment. Given Frontier’s typical workload (leadership-
class jobs consuming 20% or more of the system), using
1000-node jobs less than 1 hour long to backfill in the queue
has demonstrated effectiveness and has not shown significant
disruption to production workloads. This remains a challenge
as we continue to develop policies to inform this balance.

C. Bad hardware vs bad code

One of the key challenges in maintaining an exascale system
is the ability to distinguish between cases of bad hardware
and software bugs. Some error messages can occur for either
defective hardware or an application code bug. One example
is an error message that is occasionally associated with a GPU
HBM UE that begins with “Memory access fault by GPU”.
This same error message can also be triggered from compiler
bugs and application segmentation faults, among other errors.
GPU HBM UE’s are innocuous, they leave behind a well-
known trace in system logs, but identifying a bug in the
compiler from an application code bug can be very difficult.

D. Maintaining relevant tests

As failure modes and software stacks evolve, tests also
need to evolve. At a minimum, tests need to keep up to the
default software stack, but tests should also be representative
of current and recent prevalent failure modes. This can be
difficult, depending on how fast defaults move, how many tests
there are, or if a test source version is updated which could
require change to other parts of node screen infrastructure.

The number of tests also cannot be allowed to grow too
large. Math dictates that running more tests either requires
the resources dedicated to testing to increase, other tests to be
decommissioned, or each test to run less. In the year and a half
since initial deployment, the Slurm backfill-based method
of periodically screening nodes has increased in size from 7
initial tests to 11 tests. In Table IV, there are 6 tests run more
than 100,000 times, and the next most-run test had fewer than
5,000 runs. So while the number of tests has increased, the
number of actively-used tests has not changed significantly, as
some tests were replaced with newer or more-efficient versions
and less effective tests were decommissioned.

VII. CONCLUSION

As the first exascale supercomputer in the U.S., Frontier
enables leadership-class problem-solving in a new and ground-
breaking way. The majority of Frontier’s computational capa-
bility is provided by more than 37,000 AMD Instinct MI250X
GPUs, but is supplemented by thousands of other parts in-
cluding more than 9,000 CPUs, 37,000 DRAM DIMMs, and
numerous components unseen. Frontier’s GPUs are much more
complex than the GPUs utilized by the previous generation
supercomputer at OLCF, Summit, due to an increase in the
power consumption and device memory, and reduction in the
size of the compute chip. This new generation of hardware ex-
hibits a more frequent failure rate than the previous generation
components of Summit. Frontier’s productivity would grind
to a halt if defective hardware and software bugs were not
repaired swiftly. In this work, we presented three strategies that
were employed during and after the installation and acceptance
of Frontier that have successfully removed dozens of defective
components and identified several prevalent hardware and
software issues that would have otherwise greatly hindered
Frontier. This multi-staged approach informed the formulation
of two key observations: (1) there are discernible seasons



of classifiable failures and (2) there is a constant population
of “bad actor” nodes. Four key challenges of this work are
outlined: (1) discovering trends in failures, (2) balancing
resources allocated to testing with resources allocated to pro-
duction, (3) failure modes may be triggered by bad hardware
OR buggy code, and (4) maintaining a relevant set of tests.

We find that swiftly identifying seasons of failure modes and
mitigating “bad actor” nodes is key to maintaining exascale
performance in Frontier. Further, there must be a constant
vigilance to maintaining all infrastructure designed to serve
this purpose.
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