
Streaming Data in HPC Workflows Using ADIOS
Greg Eisenhauer∗
0000-0002-2070-043X

Norbert Podhorszki†
0000-0001-9647-542X

Ana Gainaru†
0000-0002-1375-9468

Scott Klasky†
0000-0003-3559-5772

Philip E. Davis‡
0000-0002-2205-8268

Manish Parashar‡
0000-0003-0983-7408

Matthew Wolf∗∗
0000-0002-8393-4436

Eric Suchtya †

0000-0002-7047-9358

Erick Fredj§
0000-0002-7991-4942

Vicente Bolea¶
0000-0002-5382-093X

Franz Pöschel ∥

0000-0001-7042-5088
Klaus Steiniger ∥

0000-0001-8965-1149

Michael Bussmann ∥

0000-0002-8258-3881
Richard Pausch ††

0000-0001-7990-9564
Sunita Chandrasekaran ‡‡

0000-0002-3560-9428

∗Georgia Institute of Technology, Atlanta, GA
†Oak Ridge National Laboratory, Oak Ridge, TN

‡University of Utah, Salt Lake City, UT
§ Toga Networks, a Huawei Company, Tel Aviv, Israel and The Jerusalem College of Technology, Jerusalem, Israel

¶Kitware, Clifton Park, NY
∥Center for Advanced Systems Understanding, Görlitz, Germany

∗∗Samsung SAIT: San Jose, CA
††Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

‡‡University of Delaware, Newark, DE

Abstract—The “IO Wall” problem, in which the gap between
computation rate and data access rate grows continuously,
poses significant problems to scientific workflows which have
traditionally relied upon using the filesystem for intermediate
storage between workflow stages. One way to avoid this problem
in scientific workflows is to stream data directly from producers
to consumers and avoiding storage entirely. However, the manner
in which this is accomplished is key to both performance and
usability. This paper presents the Sustainable Staging Transport,
an approach which allows direct streaming between traditional
file writers and readers with few application changes. SST
is an ADIOS “engine”, accessible via standard ADIOS APIs,
and because ADIOS allows engines to be chosen at run-time,
many existing file-oriented ADIOS workflows can utilize SST
for direct application-to-application communication without any
source code changes. This paper describes the design of SST
and presents performance results from various applications that
use SST, for feeding model training with simulation data with
substantially higher bandwidth than the theoretical limits of
Frontier’s file system, for strong coupling of separately developed
applications for multiphysics multiscale simulation, or for in situ
analysis and visualization of data to complete all data processing
shortly after the simulation finishes.

I. INTRODUCTION

As high performance computing systems have evolved to
exascale and beyond, bandwidth to the filesystem has not kept
up with increases in compute speed and memory capacity. This
“IO Wall” problem in which the gap between computation
rate and data access rate grows continuously poses significant
problems to scientific workflows which have traditionally
relied upon using the filesystem for intermediate storage
between workflow stages. This paper describes the Sustainable
Staging Transport (SST), a component of the ADIOS I/O

system [10] that avoids the IO wall by streaming data directly
from consumers to producers in HPC workflows. SST is an
ADIOS “engine”, accessible via standard ADIOS APIs, and
because ADIOS allows engines to be chosen at run-time, many
existing file-oriented ADIOS workflows can utilize SST for
direct application-to-application communication without any
source code changes.

SST builds upon prior research efforts, including Flexpath
[4], a component of an earlier version of ADIOS which cou-
pled analytics to applications such as LAMMPS and GTS and
demonstrated on the Titan supercomputer faster end-to-end
completion times than processing data through the file system.
Flexpath differed from prior work, such as Dataspaces [5] in
that it allowed direct communication between data producers
and consumers in order to avoid the extra data movements
involved with publishing data to an external broker. While
Flexpath was a useful proof of concept, it lacked critical
features, such as the ability to use RDMA networks for data
movement, dynamic connection and disconnection for data
consumers and robustness to failures. In contrast, SST was
designed to be a practical and stable communications layer
allowing direct coupling between applications running at the
highest scales on HPC resources.

II. GOALS AND OBJECTIVES

Before diving into the details of SST, we must introduce
the environment in which it operates. ADIOS is a timestep-
oriented HPC I/O framework which creates self-describing
output files and supports complex data structures such as
N-dimensional global arrays decomposed in arbitrary ways

https://orcid.org/0000-0002-2070-043X
https://orcid.org/0000-0001-9647-542X
https://orcid.org/0000-0002-1375-9468
https://orcid.org/0000-0003-3559-5772
https://orcid.org/0000-0002-2205-8268
https://orcid.org/0000-0003-0983-7408
https://orcid.org/0000-0002-8393-4436
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7991-4942
https://orcid.org/ 0000-0002-5382-093X
https://orcid.org/0000-0001-7042-5088
https://orcid.org/0000-0001-8965-1149
https://orcid.org/0000-0002-8258-3881
https://orcid.org/0000-0001-7990-9564
https://orcid.org/0000-0002-3560-9428


Fig. 1. Reader- and writer-side timelines for a single step. This figure shows only a single reader and writer rank, but in fact each side may consist of
thousands of MPI ranks.

across writer and reader ranks. In this context ”timestep-
oriented” means that on the writer side, I/O is divided into
distinct steps and in each step each writer rank may write all
or a portion of an ADIOS ”variable”. ADIOS readers then can
read the written file step-by-step, and each reader rank may
request all or a portion of each written variable. ADIOS does
not assume any kind of fixed or even regular layout pattern for
data produced by the writer. While the number of dimensions
that a global array has cannot be changed after it is defined, the
size of the overall global array can change from step to step,
and the portion of the array written by any individual writer
rank can also change. The ADIOS reader side is similarly
flexible in that each reader rank can query the characteristics
of the variables written on each individual step and decide on
a step-by-step basis exactly which portions of the written data
that it will read.

While the ADIOS API was developed for efficient large-
scale HPC IO to files, its step-oriented nature makes it
adaptable to support streaming data between running HPC
applications with the simple expedient that data producers use
the writer-side ADIOS API and data consumers use the reader-
side API while the SST engine arbitrates the data exchange to
preserve file-like semantics for both sides.

The goal of SST was to fully support normal ADIOS writer-
side and reader-side semantics as well as desirable streaming
features. These goals include:

Goal 1: writer and readers are parallel (multi-core) programs
Goal 2: writer data geometry and reader data selections can

change on each step
Goal 3: ensuring that readers don’t impede writer progress or

cause its failure
Goal 4: dynamic connection and disconnection of reader ap-

plications
Goal 5: support for multiple simultaneous reader applications

The intersection of these goals and ADIOS semantics have
some important implications for an ADIOS streaming data
system. With respect to Goal 2 above, that the full details
of what is being written aren’t available until the writer-
side ADIOS EndStep()call, yet the reader must acquire
that information during its BeginStep()call is particularly

impactful. This timing relationship results in a situation as
depicted in Figure 1. There are several things that are im-
plicit in this diagram, one being the separation of data (the
contents of the application data block supplied to Put()and
metadata (information like variable size, block count and
other ADIOS-level information that is required for ADIOS
semantics). ADIOS metadata handling in file environments
is described in prior work [21] and there are similarities in
an ADIOS streaming environment, particularly with respect
to all reader ranks requiring access to the metadata from
every writer rank. While this characteristic of ADIOS I/O
has several consequences, the implications to the timing re-
lationship between production and consumption of a step are
the most important for streaming data. In particular, ADIOS
semantics require that data provided by the writing application
in Put()calls can be overwritten or destroyed as soon as
EndStep()returns. However, because the full metadata for
the step must be available to the reader when reader-side
BeginStep()returns, any reader-side decision-making and
requests for data can only occur after that. To summarize:

• metadata can’t be created until the start of writer-side
EndStep()

• application data buffers are released by the return of
writer-side EndStep()

• reader requests for data can’t proceed until metadata is
received.

This situation constrains implementation options for ADIOS
streaming. Writer applications in ADIOS are free to de-
stroy the application data buffers supplied in Put()as soon
EndStep()returns, so if we want to avoid copying that
data we have to either a) stall the return of writer-side
EndStep()until the end of reader EndStep()so that data
requests can succeed, or b) somehow transmit all writer data
to those readers who will need it so that EndStep()can
return. Here, option a is essentially making the reader to be
fully synchronous with the writer and essentially conflicts with
item 3 in our list goals above (by letting readers impede writer
progress). On the other hand, option b isn’t really possible
because it requires foreknowledge of reader requests which
isn’t available in ADIOS semantics. There are ways around



Fig. 2. Overview of SST in its role as an ADIOS engine, including internal architecture.

that, such as sending all the data to a intermediary for later
distribution (the approach used by broker-based solutions),
or possibly simply sending all the data to every reader. The
former we rejected as being duplicative of prior approaches
like DataSpaces. The latter, sending all the data to every reader,
is obviously impractical at scale.

With ADIOS semantics rendering design options that avoid
data copies impractical or undesirable, SST focused on a
queue-oriented model of data streaming in which application
output data is copied in EndStep()and queued on each
writer node until it can be consumed by reading applications.
While data copies are often undesirable in HPC I/O, buffering
data in SST has opened up a wide variety of opportunities,
including allowing background I/O to continue while the
writer application continues to compute, enabling scheduling
I/O to use the network in application compute phases, and
the introduction of special controls to manage overall writer-
side memory consumption. It also allows SST to support
dynamic connection and departure of read clients and to
support multiple readers, as specified in Goals 4 and 5 above.
Note, that many applications at large scale have data in
memory organized in a different way than what is published as
output, and ADIOS has interfaces (e.g. Span buffer allocation,
and GPU-aware I/O) to allow the user to directly prepare
the output data in ADIOS buffers. This was true for the
particle in cell codes described in the application section, and
is true for code coupling projects where the developers add
new data products specifically for the purpose of exchanging
state between different applications. Given this baseline queue-
oriented model, the next section details the overall architecture
of SST and how it achieves data streaming with high levels
of performance.

III. ARCHITECTURE AND IMPLEMENTATION

The overall architecture of SST is shown in Figure 2. As
an ADIOS engine, it is internal to ADIOS and interfaces
with the application through the normal ADIOS APIs. It also
leverages the data and metadata marshaling methods developed
for the ADIOS file engines. In particular, SST originally
utilized variations of the BP3 file engine marshalling methods.
However as detailed in [7], the BP5 serializer was developed
as a more efficient and flexible serialization method that could
be directly shared between file and streaming engines like
SST. While the internal engineering of ADIOS places the
serializer inside the Engine, the architecture and operation
of SST are largely independent of the data and metadata
serialization (or marshalling), so Figure 2 shows marshalling
outside of SST and discussion will follow that convention
as much as possible. On the bottom of Figure 2 we see
interfaces to high performance RDMA networks. The ability
to use the high performance networks on HPC clusters is key
to SST performance on the HPC clusters of interest, though
we do include a TCP/IP-based interface both for development
purposes on non-RDMA systems and for use in wide-area-
networking situations.

The green Sustainable Staging Transport box contains a
high-level Control Plane which handles things like metadata
delivery and step advancement, and a lower level Data Plane
devoted to high speed data delivery. For clarity, we note that
SST does not rely upon MPI for inter-job communication.
This work is aimed at streaming data between large-scale
MPI codes that may have been previously developed to run
separately and communicate via files and usually not ready to
run in MPI’s MPMD mode under one world communicator.
MPI inter-communicators are also not always available or
functional, so SST’s design revolved around direct access



Fig. 3. Depiction of communicating SST applications.

to RDMA networks for data transfer, with MPI-based inter-
application communication as one of several fallbacks.

A. Overall Operation

While more detail follows below, it’s useful to first present
an overview in order to place later discussions in context.
Given the architecture of Figure 2, Figure 3 provides a
depiction of data flows during a step. On the left side, SST
communicates control and metadata between the writing ranks
(in writer EndStep()) while application data (handed over
to ADIOS in Put()) remains queued on its originating rank.
Metadata and additional information is aggregated to writer
Rank 0, where it is communicated to reader Rank 0 who
then shares it with the other reader ranks. As discussed above
and in [21], ADIOS metadata consists of detailed information
about the ADIOS Variables written in a step, including the
overall geometry of the variable and the geometry of the each
written data block. This information is required for Reader-
side BeginStep(), after which application code can issue
queries to that information and make read requests. Many
Data Planes also require writer-generated Data Plane-level
information to be made available to the reader side to enable
these transfers, so information is gathered and distributed by
the Control Plane along with the ADIOS-level metadata. Here
reads are represented as right-moving arrows which may be
RDMA pull operations transferring data from writer buffers
into reader destinations.

B. Data Planes

Of the two internal components to SST identifed in Figure 2,
the Data Plane is the simpler, so we’ll describe it first.
The Data Plane’s contract with the higher layers of SST is
relatively basic. On the writer side, buffers containing data for
Step N will be “registered” with the data plane instance on the
rank on which they are produced (and as noted above, the data
remains queued on the writer until no longer needed). Later,
a reader-side data plane instance will get a “read request”
consisting of a Step number, writer rank, starting byte offset
and length of data to be read and a destination buffer in which
it is to be placed and the Data Plane is expected to deliver the
data. In an HPC environment its to be expected that the data

movement is one of the most critical aspects of performance
and must be accomplished on the highest-performing networks
available, but SST leaves those details to custom dataplanes
designed to exploit the hardware. In terms of support from
upper layers, in addition to the writer-side data registration
mentioned above, data planes are also notified when registered
data can be released (I.E. when all readers have moved past
that Step and no further read requests will be incoming) so
that resources can be released. The data plane registration
operation can also return network-specific access information
(like MR Keys for pinned memory regions used in RDMA
communication) about the queued data. This information is not
interpreted by the control plane but is gathered and provided
to the reader-side data plane for use in servicing read requests.

At the beginning of each reader-side Step, the reader side
Data Plane is provided the per-writer information gathered
from the writer Data Plane in the registration operation. Once
initialized with this information, the Data Plane will receive
data read requests passed down from upper layers as described
above. Read operations are split into an asynchronous request,
which returns a handle, and a wait operation which must block
until the data has been delivered to the destination. This split
allows upper levels to issue all the reads that are required
while still allowing the dataplane to pipeline and/or parallelize
the operations in whatever way maximizes throughput for the
actual network.

As depicted in Figure 2, SST has a number of network-
specific data planes it can use in different situations. In general,
the writer picks the highest-performing data plane available to
it, but can configured to use a specific data plane with the
SST DataTransport parameter. Currently extant data planes
are described below.

1) EVPath IP-based Data Plane: SST’s low-end dataplane,
called EVPath because it’s based on the EVPath library
[8] is tcp-based and intended primarily for debugging and
application development. Its per-reader contact information
includes an IP and port number upon which the writer data
plane listens for requests. As shown in Figure 4, a read
request made on the reader side results in a ReadRequest
message being sent from that particular reader rank to the
writer rank where the data resides. That message is handled by



Fig. 4. Request / response timeline in Dataplane communications. All communication take place in the writer concurrently with the writer running its compute
task.

a background network-handler thread on the writer, which then
sends a RequestResponse message back to the requesting
reader. From the reader’s point of view, multiple requests
may be outstanding simultaneously, and a read wait operation
is simply waiting on a particular response message. The
TCP data plane is adequate for debugging and may serve
in WAN environment where no high performance network is
available, but its reliance on individual reader-rank-to-writer-
rank connections means that its scalability is limited by the
number of sockets/file descriptors available on nodes. The
EVPath data plane can also be configured to use a Reliable
UDP protocol which doesn’t suffer from the same socket
limitations, but neither data plane can match the performance
of Data Planes based on RDMA-networks.

2) LibFabric Data Plane: Our initial high-performance
data plane was based on the LibFabric communication frame-
work, an implementation of the Open Fabric Interface (OFI)
[11]. OFI abstracts operations such as messaging and bulk
transfer over high-performance network fabrics using RDMA.
In its default mode of operation, RDMA-accessible buffers are
created as part of the timestep registration process. All buffer
information on the writer side is contributed to the timestep
metadata, and these metadata are provided to the reader to
use during reads. Each read is mapped into one or more
RDMA get operations which complete asynchronously, only
blocking the reader while any outstanding requests complete
during EndStep(). In this mode, the writer is passive,
performing no RDMA operations other than bootstrapping the
network state and registering timesteps, unless other writer
side activities in the libfabric layer are required to make
progress on all outstanding data transfers initiated by the
readers.

3) UCX Data Plane: Because LibFabric isn’t functional
across all HPC networks, we also have a data plane targeted
to the Unified Communication X (UCX) framework. In many
ways, the UCX data plane functions similarly to the LibFabric
data plane, just with a different higher-level RDMA wrapper
library. Both provide the ability to map memory and perform

RDMA get operations. Between UCX and LibFabric together,
they cover most HPC vendors’ networks.

4) MPI Data Plane: In situations where the LibFabric or
UCX data planes might not function or be performant, SST
does have an MPI-based data plane that uses MPI inter-
communicators. In particular, this data plane uses control plane
services to send ReadRequest and RequestResponse
messages like those described in the TCP-based dataplane,
except that the RequestResponse does not carry the
actual data. Instead, receipt of a ReadRequest message
on the writer triggers an MPI_Send() operation and the
RequestResponse arrival results in an MPI_Recv(), so
that the data travels via MPI and only the control happens
via TCP. Because MPI is generally highly optimized on HPC
platforms, this approach can be highly effective. However, it
comes with some restrictions:

• The version of MPI in use must support inter-
communicators,

• Because data transfer operations happen in the network
handler thread, the application must initialize MPI with
threading, using MPI_Init_thread() and specifying
MPI_THREAD_MULTIPLE as the level of threading sup-
port required.

As a result of using a feature of MPI that is not widely used
and tested, currently only MPICH-based versions of MPI work
properly for this data plane. As shown later in the application
section, this solution is scaling and performing very well up
to the full scale of Frontier.

In some cases, using thread-safe MPI incurs more overhead
than non-thread-safe, so the application may suffer additional
overhead in MPI operations outside ADIOS but we haven’t
found an ADIOS application yet that suffers from this.

C. Control Plane

The purpose of the control plane is to orchestrate the overall
scheme depicted by Figure 3, managing the initial connection
of readers to writers, controlling the advancement of Steps,
delivering the Step information generated by the writer to



the reader, and other sundries such as error and shutdown
handling. The Control Plane relies upon MPI collective op-
erations within the ranks of a reader or writer, and a third-
party library, EVPath [8], for communication between reader
and writer cohorts. Generally the operations that are collective
in SST are those that are also collective in the ADIOS file
engines, such as Open(), Close(), BeginStep()and
EndStep()and it is within those calls that SST functionality
that requires the cooperation of all ranks is implemented.
For communication between reader and writer cohorts, the
EVPath libraries essentially provides simple message passing
and background network handling. By default, EVPath uses
TCP/IP sockets and for control plane purposes, SST only
requires a connection between the rank 0 of any writer and
reader. However, the control plane also offers supporting
message passing services to data planes, which may require as
much as all-to-all connectivity between the reader and writer
ranks, depending upon the data request pattern. As noted in
Section III-B above, this may push resource limit WRT per-
process file descriptors, so EVPath also has a reliable-UDP
transport which limits resource consumption at the cost of
doing user-level reliability.

On the writer-side, the action most pertinent to SST starts in
EndStep(), at which point the upper ADIOS layers on each
rank separately provide SST with a local data block and local
metadata block.1 EndStep() handling involves the following
basic sequence of events:

1 each SST rank receives a local data block and local meta-
data block via SST’s ProvideTimestep() interface

2 each rank registers the local data block with the data plane
and receives back registration information

3 all ranks participate in an MPI broadcast from rank 0 of
SST status information (detailed later)

4 local metadata and dataplane registration information is
gathered to rank 0 via an MPI collective to form the full
metadata

5 rank 0 sends a ProvideMetadata message containing
the full metadata to rank 0 of the reader

6 EndStep()returns but the local data and metadata re-
main queued in memory on each writer rank

On the reader-side, the ProvideMetadata message will
arrive asynchronously and be queued, but when the reader is
blocked waiting for the next timestep, this message arrival
will wake the main thread of rank 0 to continue processing.
In particular reader-side BeginStep(), rank 0 will check for
queued metadata for the next step and if it has not yet
arrived it blocks pending arrival of a ProvideMetadata
message. Once it has metadata, rank 0 uses an MPI collective
to broadcast it to the other reader ranks. Non-zero ranks enter
the MPI broadcast collective immediately on BeginStep() to
receive metadata, so they implicitly block along with rank
0 if metadata has not yet arrived. Once the broadcast has

1This is a simplification for presentation. There are also attribute blocks,
and for BP5 meta-metadata blocks but their presence and handling doesn’t
change the overall operation.

completed, each rank ”installs” the metadata, using it to
create the available ADIOS variables and populate them with
available block information, after which BeginStep() returns.

Between Begin/EndStep pairs, applications may do ADIOS
Get() operations, each of which results in one or more data
plane read requests. The use of a synchronous Get(), or a call
to PerformGets() (both non-collective calls) results in calls to
the local data plane to wait for all pending dataplane requests
to complete. The control plane doesn’t directly participate in
these operation, but passes requests and responses between
the upper layers and the data plane below. EndStep() also
results in a wait for completion of all pending read requests
on the local node, but afterwards each reader rank participates
in an MPI Barrier(). When all reader ranks have passed this
barrier, rank 0 sends a ReleaseStep message to writer
rank 0, EndStep() returns and the reader-side Begin/EndStep
sequence can begin again. The ReleaseStep message sent
to writer rank 0 is received asynchronously and queued. When
the writer next enters EndStep(), the information that Step
N can be released is contained in the “SST status information”
mentioned in the writer side EndStep sequence above, which
enables each writer rank to inform its data plane that we’re
done with that step’s data and resources related to it can
be released. Final release of the queued data and metadata
completes the step cycle on the writer side.

Connections and Multiple Readers: The prior section de-
scribes the actions of each side of the control plane on a
step, but first we have to establish a connection between
applications. As per Goal 4 above, SST should also support
dynamic connection and disconnection. In practice, there are
several parts to this process. First, any prospective readers need
contact information for writer rank 0. Since the control plane
is a TCP- or RUDP-based transport, this contact information
is mostly an IP and port number, but there is also information
identifying the individual stream on the contact process. By
default, SST writer’s place this information in a small file in
the filesystem where it can typically be found by readers on the
same cluster. In situations like WAN where a shared filesystem
is unlikely, SST provides a ”screen” registration mechanism
where the writer outputs contact information as a base64-
encoded string. In this mechanism, readers prompt for input of
contact information, providing an opportunity for the string to
be cut and pasted between windows. More cloud-based contact
mechanisms are also possible but not yet implemented.

Regardless of how the contact information is acquired, the
first part of the connection process involves all reader ranks
blocking in Open()while reader rank 0 sends a message to
writer rank 0 and waits for a response. When the message
arrives at writer rank 0 it is read by the network handler thread
and processed in the next writer collective operation, which
might be writer Open()if the writer is waiting for readers
before continuing or EndStep()if the writer is mid-run. In
either case, the writer and reader engage in several handshake
steps where they exchange per-rank control plane and data
plane contact information, so that every reader rank and ever
writer rank can contact each other if necessary.



As per above, multiple readers can be paired simultaneously
to a single writer, each progressing at its own pace. In this case,
reference counts are associated with the data and metadata
blocks so that none are released before all readers have
consumed the data. Writers and readers are differentiated in
what happens to their peer upon close or failure. Readers can
exit the stream at any time by simply calling Close() and SST
will clean up writer-side resources allocated to that reader
allowing the writer to proceed with whatever readers remain (if
any). Writer Close() will block until all readers have consumed
and released all remaining queued Steps. Writer failure will
cause all readers to see an EndOfStream indication on their
next BeginStep(), or potentially see an exception raised in
Get() or EndStep() if remote read operations fail because of
writer unavailability.

D. Extended Functionality

There are some applications for which the basic SST
functionality described above is not a natural fit, or need to be
modified to address specific concerns. This section details a
few modifications that have been implemented to extend that
functionality.

1) Queue Management: While ADIOS’ queue-based Step
management approach frees the writer from lockstep syn-
chronization with readers, it does raise concerns about the
number of steps that might end up queued on the writer and
the resulting memory demands. The obvious solution here
is the ability for the writer to set a limit on queue size,
accomplished with the ADIOS engine parameter QueueLimit,
however, what happens when the writer reaches the queue
limit depends upon application requirements. SST’s default
queue full policy is to block the writer until readers release
a timestep, freeing up room in the queue. This conflicts with
our stated Goal 3 above, but is necessary if the application
can’t lose data. Alternatively, the queue full policy can be
set to discard steps so that the writer can continue operation
without delay. In either case, the queue length is examined
in the EndStep()collective so that all writer ranks behave
synchronously. In the case of a discard decision, the step that
would have been added to the queue by EndStep()is the
one that is discarded. The somewhat more intuitive choice of
discarding the step at the front of the step queue (the oldest),
was rejected because it would require distributed consensus
between the writer and all readers, possibly slowing overall
progress.

In general, Steps are released when readers have consumed
them, but if a writer is running with no readers attached
Steps might be released immediately upon production. This
is problematic for some SST use cases, such as temporarily
connecting a visualization tool to a long-running simulation to
monitor progress. In that circumstance the application would
really like to have a queue of the most-recently produced data
waiting for it upon connection, rather than having to wait for
new steps to be produced. To support this, SST also has a
”reserve queue” with a ReserveQueueLimit. When this limit
is non-zero, steps that have been released from the normal Step

queue are moved to the reserve queue and retained specifically
for the purpose of being available to be served to newly-
connecting read clients. Unlike the policy for the regular Step
queue, when the reserve queue limit is reached, the oldest step
(head of the queue) are discarded as new ones are added.

In addition to writer-side step management, SST also of-
fers the reader flexibility beyond simply consuming each
step sequentially and blocking in BeginStep()waiting
for the next. As noted above, Steps ”arrive” at a reader
when a ProvideTimestep message is received and
queued by reader rank 0. An optional timeout parameter to
BeginStep()that allows reading applications to proceed
with other work if a Step isn’t available either immediately
or within the specified time interval. Additionally a reader-
side engine parameter AlwaysProvideLatestTimestep tells
SST that, in the case where the metadata for more than
one Step may be available, this reader always wants the
most recent. If this parameter is specified to SST, the arrival
of a second ProvideTimestep message when another is
already queued at the reader results in the new message
replacing the queued one, essentially discarding the older Step
without processing. Here, the SST reader will immediately
send a ReleaseStep message for the discarded Step to the
writer so that writer-side resources can be released.

2) Preloading in the Dataplane: As noted earlier in this
paper, the flexibility that ADIOS allows its application require
a data queueing-based model in which data doesn’t move until
it is requested by specific readers, resulting in a request/re-
sponse pattern at the Dataplane level. In circumstances like
those depicted in Figure 4, where the workflow’s bottleneck
is the writing side, any delays potentially introduced by the
request/response pattern (like the <idle> time depicted in the
reader) are immaterial to workflow completion time. However,
if the workflow is network-bound or constrained by reader-
side computation, these request-response delays may be a
performance obstacle. While writer-side bottlenecks where
this is not an issue are likely more common in HPC envi-
ronments, ADIOS has a feature to mitigate this in circum-
stances where it might be a problem. In particular, since this
situation arises from ADIOS’ flexibility in allowing readers
and writers to change pattern of their data access on every
step, ADIOS has a mechanism for applications to ”lock”
those patterns, declaring that once established they will not
change. On the writer side, this is accomplished by calling
LockWriterDefinitions() and on the reader side with
LockReaderSelections(). If both the reader and writer
call these the lower level data flow pattern will not change.
This information is communicated to SST which allows some
Dataplanes to enter LearnedPreloadMode, in which data is
immediately sent from writers to the readers which are known
to require it without waiting for a request. Once a data plane is
notified that the data production and consumption geometries
are fixed, it can figure out where data must be delivered by
watching the read requests in the next timestep. Thereafter it
can deliver that data with the same distribution pattern into a
queue on the reader side without waiting for a request.



Currently two of our data planes implement Learned-
PreloadMode, the EVPath and LibFabric data planes. In the
case of the EVPath data plane, the writer ranks track which
reader ranks they receive read requests from and once that
pattern is known, PreloadData messages are sent from
each writer to predicted readers carrying the actual data.
This send happens in writer-side EndStep(). When these
messages arrive at the reader, they are handled asynchronously
and queued by the background network thread. When the
reader-side DP receives a ReadRequest() these queued mes-
sages are searched so that the ReadRequest can be satisfied
with a local memcpy, avoiding the request/response pattern
mentioned above. However, this approach has the downside
that it consumes memory on the reader-side roughly equivalent
to the amount of data read by each reader multiplied by the
value of the QueueLimit parameter.

The LibFabric data plane takes a somewhat different ap-
proach to LearnedPreloadMode. Figure 5 illustrates this
approach. Each reader rank maintains a RequestLog, which
is a history of all remote read calls made by that reader
prior to selections being locked and preload pulls beginning.
This log is kept with a three-level index: first, the timestep
of the request; second, the writer rank the request is made
from; finally, the order in which the request was received.
The request log for a given {timestep, rank} pair is
kept as a contiguous buffer, expanding at a growth factor
of two, as necessary. If no entries are made for a particular
{timestep, rank} pair, no buffer is ever allocated for
that pair. Only the most recent timestep’s request log is
made available to the writer when preload selections are sent;
previous timestep’s reads are not used for preloads.

On the writer side, each writer rank creates a ReaderRoll
buffer, which is large enough to hold one set of buffer
information (an {address, length, access_key} tu-
ple) for each reader rank. It makes this buffer available for
remote RDMA writes, and advertises the buffer to the readers
during the initPerReader() process. When the preload
is enabled, the readers make their RequestLog available for
RDMA reads, and then write buffer access information for
each non-empty RequestLog into the ReaderRoll of the
respective writer, offset by the reader’s rank. This is done as
part of the first EndStep() after enabling preload, and the
readers block on the completion of this write. In this way, the
writer is guaranteed that all the ReaderRoll information has
been populated by the time it is handling the timestep release.
The writer reads the collated RequestLog from the readers
and blocks the timestep release until these reads complete.

Each reader ranks maintains two preload buffers, each large
enough to contain the preload for a single timestep. This
is, in effect, a preload queue of depth two. As the writer
progressively pushes timesteps, it alternates between preload
buffers. The goal is for the preload pushes to stay a timestep
ahead of the reader. This allows the next step to be pushed
simultaneous with reads completing for the current timestep,
and prevents the writers from becoming blocked waiting for a
timestep to release.

Fig. 5. LibFabric data plane operation: at init, 1) each writer rank advertises
a writable buffer for future read pattern data to be included in collective
metadata. 2) Once preload is activated, reader ranks advertise readable buffers
that contain access patterns to the writers ranks from which they have read,
which then 3) ingest the access patterns; 4) the writers then push the next
timestep as soon as the data is available and 5) push the next timestep to the
remaining open buffer. 6) Once a timestep is released on the reader, a receive
buffer is available, and this 7) is advertised to the writer ranks in metadata.



The availability of a buffer as a preload target is affected by
two events: a push being sent to the buffer (which makes the
buffer unavailable) and the reader-side release (which makes
the buffer available again.) Since the push is initiated on the
writer side, and the control plane notifies the writer-side data
plane of release events, the writer is able to maintain its own
view of buffer usage on the reader. This view is conservative,
in that there is some latency from the time a reader makes a
buffer available by releasing its timestep and when the writer
is notified of this. Thus, the writer can safely act upon its view
of the reader’s preload buffers without risking corrupting data
on the reader.

When read selections are initially posted by the reader, the
writer will push two timesteps, if they are available to be
pushed, and update its view of the reader preload buffers to
indicate they are unavailable. Subsequently, whenever a reader
releases a timestep, the writer will send the next timestep if it is
available, and mark the buffer available otherwise. Whenever a
timestep is provided by the user it will be pushed immediately
if there is an available preload buffer.

3) Waiting for Readers and Step Distribution Options:
Section III-C notes that a writer can have multiple readers
registered, but is purposefully vague about details to avoid
complicating the narrative. For example, the most common
situation is for a writer (producer) to expect a single reader
(consumer) for its steps, and want to not lose any steps (or
have a failure) if their startup is not perfectly synchronized.
Therefore with the default settings and using files to exchange
contact information:

• on the reader side, Open()will poll for a configurable
period of time (OpenTimeoutSecs, default 60) waiting
for the writer to start and produce its contact file.

• on the writer side, Open()will block waiting for a
configurable number of readers to join (Rendezvous-
ReaderCount, default 1).

This allows for specialization to support different circum-
stances. When a long-running simulation has an output
stream that allows periodic connection for progress check-
ing, RendezvousReaderCount can be set to zero so that
Open()doesn’t block and produced steps will be managed
as described in Section III-D1.

LAMMPS 

LAMMPS 
Helper 

Bonds 

CNA 

CSYM 

Storage 

Fig. 6. LAMMPS Analysis Pipeline.

Conversely, in a workflow like in Figure 6, Rendezvous-
ReaderCount can be set appropriately for the number of
consumers downstream from each workflow member. In this
sort of environment, it is relatively common that when multiple

readers are present, each wants to see and select data from
every step that the writer produces. However, this isn’t true
for every application, so SST has a StepDistributionMode pa-
rameter to control how steps are distributed amongst registered
writers. The parameter defaults to StepsAllToAll, producing
the ”every reader gets every step” described above, but setting
it to StepsRoundRobin results in each step that the writer
produces being sent to only a single reader in round-robin
order. In terms of the implementation details described in Sec-
tion III-C, with StepsRoundRobin the ProvideMetadata
message is sent to only the selected reader, not to any other
registered readers, and the reference counts associated with
writer data and metadata are set accordingly. The remainder
of the reader/writer step management protocol remains un-
changed.

While StepsRoundRobin is generally useful for load bal-
ancing between multiple consumers, it can be insufficiently
flexible when the reader-side per-step processing time varies
from step to step. In that circumstance, a reader that hap-
pens to receive a series of steps with high processing time
might end up with several unprocessed steps in its meta-
data queue while other more lightly loaded readers are idle.
To address this situation, SST also has a StepsOnDemand
setting for the step distribution mode. With this setting,
ProvideMetadata messages are not automatically sent to
any reader in writer-side EndStep(). Instead, reader-side
BeginStep()results in a RequestStep message being
sent to the writer. When this message arrives at the writer,
if it has a step that has not previously been sent to any reader,
it responds with a ProvideMetadata message and reader-
side BeginStep()proceeds as before. If the writer has no
unprocessed steps available, the RequestStep message is
queued until the writer produces another step. In the event
of multiple requests in the queue, new steps are assigned to
readers in FIFO order, one event per request. This protocol
is a essentially a more general on-demand work-distribution
method, matching each outgoing step to the first available
consumer.

IV. PERFORMANCE RESULTS

Having described the goals, architecture and implementation
of SST above, this section examines different aspects of SST’s
performance, comparing to file-based approaches, comparisons
between different data planes and examining SST’s behaviour
on current Exascale platforms.

A. WRF and the UCX data transport

Our first study provides an examination of the ADIOS2
backend as used by WRFv4.5.0. The well-known benchmark
provided by NCAR is a 6-hour simulation over the continental
United States (CONUS) on a 1501x1201 grid at a 2.5km
resolution. The experiments were conducted on an 8-node
cluster with two 18-core Intel Xeon Gold 6240 CPUs, 384
GB DDR4 memory, and a Mellanox ConnectX-6 interconnect.
The storage setup included a dedicated storage node with a
BeeGFS file system and eight 10K RPM spinning hard disk



drives connected to compute nodes using Mellanox ConnectX-
5 NICs. Every computational node had an Intel DC P4510 1TB
NVMe SSD disk. Advancing high-performance computing
and data management relies heavily on the development of
sustainable and efficient transport engines. The UCX data
plane is a relatively recent addition to SST, proving another
RDMA-capable data plane to expand SST’s capabilities to
other class of HPC network hardware. Prior to the creation
of the UCX data plane, the only data plane available on
this hardware was the EVPath TCP-based data plane because
libfabric was not supported on this hardware and the MPI
data plane of SST did not exist yet. To evaluate the efficiency

Fig. 7. A WRF run with postprocessing is compared in terms of run time.
The graph shows that the ADIOS streaming engine outperforms the file-based
ADIOS2 engine BP4 significantly on both the Reader and Writer sides

of UCX transmission, we increased the frequency of 2.6 GB
WRF history file production of the benchmark to once every
30 minutes of simulated time, which was an appropriate time
scale for data analysis. Figure 7 compares the I/O cost of
the benchmark run, as the simulation (writer) and analysis
(reader) perceive it, between file-based (BP4) and SST/UCX
staging. The results indicate that the UCX transport, serving as
a low-level communication library, introduced a more efficient
and flexible interface for managing data communication across
various nodes.

The UCX transport also surpassed the EVPath data plane
leading to swifter data transfer rates and a smoother user expe-
rience. This performance boost is evident in another test case
in Figure 8, which shows the UCX transport outperforming
EVPATH in terms of both throughput and latency because
of using RDMA for asynchronous data movement instead
of a slow synchronized back-and-forth using TCP. The UCX
transport can accommodate a significantly higher volume of
data while transmitting data with considerably lower latency
compared to EVPATH. Overall, the integration of the UCX
transport into the SST engine has greatly enhanced its capabil-
ities on this hardware, ensuring that the SST engine remains a
valuable tool for researchers and scientists. The UCX transport
has enabled ADIOS2 to demonstrate the significant benefits of
merging cutting-edge open-source libraries like ADIOS2/UCX
with classic HPC applications like WRF.

Fig. 8. A WRF run with postprocessing was executed and compared in terms
of runtime using 4 nodes. The ADIOS2 SST engine employing UCX data
transport (left) significantly outperformed the default EVPATH data transport
(right) by a factor of ten, with QueueLimit set to 1.

B. WDMApp

SST BP4
0.0

0.2

0.4

0.6

0.8
No

de
 H

ou
rs 

/ I
on

 S
tep

0.015

0.175

0.05

0.20

Nodes = 32+3
Main Loop
I/O

SST BP4
0.017

0.344

0.07

0.38

Nodes = 64+3

SST BP4
0.021

0.675

0.13

0.77
Nodes = 128+3

Fig. 9. Results of inter-code data movement I/O overhead in XGC-GENE
coupling on Crusher, compared to the main loop cost. SST was configured
with the MPI method, and significantly reduced the overhead compared to
coupling through files. Nodes counts at the top of the figure are XGC+GENE.
This is a weak scaling run, where XGC runs for about the same wall-clock
time when doubling its size and the number of particles.

Whole device modeling (WDM) is the effort of the plasma
physics community to predict all the relevant multi-scale
physics of a fusion device in a consistent, robust fashion.
Characteristic phenomena span several orders of magnitude
on both spatial and temporal scales. Because certain models,
representations, and approximations are more valid and/or effi-
cient in certain regimes than others, various HPC applications
have been specialized for simulations of a subset of the full
physics; a uniform, first-principles-based simulation on all
scales is not computationally feasible.

WDMApp was a project under the Exascale Computing
Project (ECP), which adopted a multi-application approach
to WDM, sharing data between separate codes with ADIOS.
Exploring spatial coupling in a fluid model paradigm [6],
WDMApp ran XGC-GENE [14] and XGC-GEM [3] work-
flows. XGC includes the physics needed to resolve edge
turbulence in complex geometries, while GENE and GEM are



two alternatives which use different approaches appropriate for
the core region of the device. The core-edge data exchange
here constitutes strong coupling, where field data on the mesh
must be sent and received multiple times in each direction
per (ion) simulation time step. Accordingly, it is important to
achieve performant enough data movement between the codes
such that this is not a bottleneck.

Figure 9 plots WDMApp coupling performance for XGC-
GENE workflows on Crusher, Frontier’s testbed during the
ECP project. The data movement between the codes proceeded
using either BP4 or MPI-configured SST, with SST achieving
significant savings in time and scaling penalty. These results
are updated from previous WDMApp performance measure-
ments using SST in an earlier version of the code coupling
algorithm, which used less data exchange [20]. The code
coupling of fusion applications in this project ultimately did
not pose a performance challenge for ADIOS. More interesting
use of SST by this project is in situ analysis of XGC data,
using 1 extra compute node to produce three different analyses
for a large simulation on 1024 nodes, i.e., at marginal cost to
the user. These plasma physics workflows are described in
[19].

C. In-Transit Machine Learning of Plasma Simulations

When using physics simulation data as an input for Machine
Learning (ML), the high volume of data produced by state-
of-the-art HPC simulation codes combined with the large
amounts of data typically required for training neural networks
result in a data challenge that is hard to overcome for con-
ventional IO solutions, especially for workflows targeting full
scale execution on modern HPC systems. Since simulation and
ML codes usually employ vastly different software stacks and
the explorative nature of machine learning requires outstanding
flexibility and adaptability, such data simulation pipelines are
usually modeled as loosely-coupled setups [17] in which both
codes are developed and executed separately, feeding the
ML code with data produced by the simulation code. This
observation amplifies the data challenge since simulation data
needs to be transmitted into the ML code in a portable, flexible
and scalable way.

In a study presented in Ref. [1], a particle-in-cell (PIC) sim-
ulation of the Kelvin-Helmholtz instability (KHI) computed by
the GPU-accelerated PIConGPU code [2] is coupled with a
PyTorch-based [16] training code (TC) to train a data-driven
model for reconstructing the phase space from the particle
data and the in-situ computed radiation data of the simulation.
PIConGPU produces its output in terms of the openPMD
standard [12], using the openPMD-api [13] that itself builds
upon ADIOS2. openPMD is a data standard for particle-mesh-
data built for F.A.I.R. scientific IO in HPC software that needs
to scale.

In the described loosely-coupled setup, the SST engine of
ADIOS2 plays a major role for overcoming the IO bottleneck
by avoiding the parallel file system, replacing file IO with
streaming IO. In particular, there is no lock-in to a specific
pattern for data exchange, compared to coupling approaches

based on e. g. local SSDs or shared memory. While local data
exchange within a node remains preferred for scalability, this
IO approach naturally extends towards patterns such as staging
within a neighborhood of nodes (for scheduling reasons or for
implicit load balancing via streaming) or a fan-in pattern (for
data reduction purposes).

Deployment on OLCF Frontier can be considered via either
the MPI data plane, based on MPI’s inter-communicators
between separate MPI worlds, or via the LibFabric data plane
based on the CXI provider [15], this way presenting the
chance to compare performance numbers between different
implementations. With the more low-level LibFabric, further
performance-impacting requirements by the MPI data plane
can be circumvented, such as the use of threaded MPI or
required writer handshake interaction for remote read accesses.
While a LibFabric data plane exists previously in ADIOS2,
CXI requires adding support for (1) the MR_ENDPOINT mem-
ory mode, (2) non-MR_VIRT_ADDR memory mode, (3) man-
ual data progress mode and (4) CXI-specific authentication
logic.

In the context of a weakly-scaling loosely-coupled setup,
an IO solution is required that can scale to the full scale of
exascale systems such as Frontier. For verifying that SST can
provide this, a synthetic benchmark is presented that reads
particle data produced by PIConGPU’s KHI scenario (5.86 GB
per compute node and time step) into a no-op data sink
that does nothing other than measuring the time for loading
the data. PIConGPU is executed on all GPUs, i. e. using 8
MPI ranks per compute node, while the data sink is executed
concurrently to the simulation with one MPI rank per compute
node on the CPU, collecting the node’s data. By computing
the throughput based on (1) this measured time and (2) the
total transferred data size, the resulting value – the perceived
throughput – also includes the overhead for communication
and synchronization and hence is a lower bound on the actual
throughput.

4096 7168 8192 9126
0

10

20

30

number of
compute nodes

(a) MPI backend

pe
rc
ei
ve
d
pa

ra
lle
lt
hr
ou

gh
pu

t
[T
B
s−

1
]

PFS bandwidth
limit

4096* 4096 6912 8192 9126
0

10

20

30

number of
compute nodes

(b) LibFabric backend

PFS
bandwidth

limit

Fig. 10. Boxplots of the parallel throughput for streaming at full scale on
Frontier using a synthetic benchmark built on PIConGPU KHI. (a) Using the
MPI data plane. (b) Using the LibFabric data plane. (One single run, marked
4096∗, used a configuration that achieved a higher throughput, but did not
scale to the full system.) The full-scale throughput reaches between 20 and
30 TB/s for MPI, and around 20 TB/s for LibFabric.



The benchmarks presented in Fig. 10 show that streaming
IO via ADIOS2 and SST scales well to OLCF Frontier, the
current TOP1 HPC system, depicted as boxplots of all single
measurements. The perceived parallel throughput of 20 to
30 TB/s at full scale exceeds the 10 TB/s theoretical peak
bandwidth of the parallel Orion filesystem, a scaling limit
circumvented by not using the filesystem. Even a comparison
with the 35 TB/s aggregate write bandwidth of the SSDs in-
stalled locally in the compute nodes [9] demonstrates that SST
sets loosely-coupled applications up for IO at the exascale.

The results show solid throughput for the MPI data plane,
while the LibFabric data plane allows, but also requires further
finetuning: The highest per-node throughput of all benchmarks
(3.5 ∼ 4.7GB/s) is reached in a single run of the LibFabric
data plane at 4096 compute nodes (labeled 4096∗ in Fig. 10).
In here, the read operations per step were enqueued all at once,
a strategy that results in a high performance, but that did not
scale to the entire system due to overloading the network. To
avoid this, throttling measures became necessary, in this study
by submitting operations in batches of 10. This workaround
brought the per-node throughput down to 1.9 ∼ 2.6 GB/s.
The measured per-node throughput for the MPI data plane
ranges between 2.6 ∼ 3.7 GB/s at 4096 compute nodes to
2.4 ∼ 3.3 GB/s at 9126 nodes. All single data transfers except
one outlier of the LibFabric implementation complete within
1.2 - 3.2s

In order to tell the difference between perceived throughput
and actual throughput, the same setup is executed again on
2 nodes (Frontier does not initialize its networking in single-
node jobs) in a series of benchmarks that continuously doubles
the simulation resolution. This leads to a benchmark series
in which the overhead toverhead is a constant time since not
the number of datasets, but only their sizes increase, leading
to an increasing loading time tload. The real throughput then
depends on the measured time via:

ttotal = tload + toverhead = data
throughput + toverhead

Scaling the data to different sizes results in a linear equa-
tion ttotal(data) whose unknown constants 1

throughput and
toverhead can be found via linear regression of the timing
results, shown in figure 11.

0 20 40 60 80 100
0

20

40

data per node [GB]

t t
ot

al
[s]

Fig. 11. Scaling the simulation resolution in a 2-node setup. Linear regression
yields a y-axis intersection at toverhead = −0.17 s and a coefficient of

1
throughput

= 0.45 s/GB per compute node, i. e. a throughput of 2.24 GB/s.

Linear regression shows that at this scale, the constant over-
head is practically negligible and the perceived throughput is
indistinguishable from the real throughput, measuring roughly
2.24 GB/s per compute node.

As promising approaches for increased per-node throughput,
either (1) parallel SST streams per node are likely to saturate
the communication infrastructure even better, or alternatively
(2) the upcoming linkX provider of LibFabric [18] can help
with memory hierarchy awareness. This meta provider links
the CXI provider and a shared memory provider of LibFabric
into one common provider, solving the lacking use of intra-
node communication techniques by the CXI provider. Since
the LibFabric data plane of SST now supports the CXI
provider as well as the shm provider (for shared memory),
it is very likely that ADIOS2 will be able to leverage linkX.

V. CONCLUSION

In exascale computing environments, the ability to stream
directly from large-scale data producers to consumers, thus
avoiding potential bottlenecks in the filesystem, is of growing
importance. In this paper we have examined the advantages
and challenges of utilizing the proven file-oriented ADIOS
I/O system, adding an “engine” to stream data from writers
to readers, and thus enabling existing ADIOS applications
to exploit these direct streaming capabilities with few if
any code changes. We discussed the overall design, internal
structure and operation of the Sustainable Staging Transport
engine and presented studies of its performance to highlight
different capabilities. These studies include a demonstration of
scaling on the OLCF Frontier Exascale machine where SST
achieves up to 30 TB/s of parallel throughput, exceeding by
a factor of three the 10 TB/s bandwidth limit of the Orion
filesystem, which shows that direct streaming of data can have
significant advantages over filesystem-based approaches for
linking computation and analysis. SST’s data planes are still
under development, and while the results we’ve demonstrated
on Frontier using the MPI dataplane are satisfying, we have
reason to believe that direct use of the underliying network
using a tuned libfabric transport will achieve even better
throughput.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

The core code development was supported by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

Application outreach efforts by the ADIOS team was sup-
ported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Scientific
Discovery through Advanced Computing (SciDAC) program,
under the “RAPIDS Institute”.

Funded by the European Union. This work has received
funding from the European High Performance Computing



Joint Undertaking (JU) and Sweden, Finland, Germany,
Greece, France, Slovenia, Spain, and Czech Republic under
grant agreement No 101093261.

This work was partly funded by the Center for Advanced
Systems Understanding (CASUS) which is financed by Ger-
many’s Federal Ministry of Education and Research (BMBF)
and by the Saxon Ministry for Science, Culture and Tourism
(SMWK) with tax funds on the basis of the budget approved
by the Saxon State Parliament.

REFERENCES

[1] The Artificial Scientist: in-transit Machine Learning of Plasma Simu-
lations, 2024. Submitted to Supercomputing Conference 2024. Undis-
closed authors due to double-blind review currently in progress.

[2] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juck-
eland, T. Kluge, W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm,
J. Schuchart, and R. Widera. Radiative signatures of the relativistic
Kelvin-Helmholtz instability. In SC ’13 Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 5–1 – 5–12, 2013.

[3] Junyi Cheng, Julien Dominski, Yang Chen, Haotian Chen, Gabriele
Merlo, Seung-Hoe Ku, Robert Hager, Choong-Seock Chang, Eric
Suchyta, Eduardo D’Azevedo, Stephane Ethier, Sarat Sreepathi, Scott
Klasky, Frank Jenko, Amitava Bhattacharjee, and Scott Parker. Spatial
core-edge coupling of the particle-in-cell gyrokinetic codes GEM and
XGC. Physics of Plasmas, 27(12):122510, 12 2020.

[4] Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew
Wolf, Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Pod-
horszki. Flexpath: Type-based publish/subscribe system for large-scale
science analytics. In Proceedings - 14th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2014,
pages 246–255, 05 2014.

[5] Ciprian Docan, Manish Parashar, and Scott Klasky. DataSpaces: an
interaction and coordination framework for coupled simulation work-
flows. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, pages 25–36,
New York, NY, USA, 2010. ACM.

[6] J. Dominski, J. Cheng, G. Merlo, V. Carey, R. Hager, L. Ricketson,
J. Choi, S. Ethier, K. Germaschewski, S. Ku, A. Mollen, N. Podhorszki,
D. Pugmire, E. Suchyta, P. Trivedi, R. Wang, C. S. Chang, J. Hittinger,
F. Jenko, S. Klasky, S. E. Parker, and A. Bhattacharjee. Spatial
coupling of gyrokinetic simulations, a generalized scheme based on first-
principles. Physics of Plasmas, 28(2):022301, 2021.

[7] Greg Eisenhauer, Norbert Podhorszki, Ana Gainaru, Scott Klasky,
Junmin Gu, Vicente Bolea, Liz Dulac, Dmitry Ganyushin, William F.
Godoy, Qing Liu, Caitlin Ross, Lipeng Wan, Scott Wittenburg, and
Kesheng Wu. Hpc i/o innovations in the exascale era. International
Journal on High Performance Computing Applications, Accepted for
publication.

[8] Greg Eisenhauer, Matthew Wolf, Hasan Abbasi, and Karsten Schwan.
Event-based systems: opportunities and challenges at exascale. In
Proceedings of the Third ACM International Conference on Distributed
Event-Based Systems, 07 2009.

[9] OLCF announces storage specifications for Frontier
Exascale System. https://www.olcf.ornl.gov/2021/05/20/
olcf-announces-storage-specifications-for-frontier-exascale-system/,
2021. [Online; accessed 2024-04-02].

[10] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins,
Greg Eisenhauer, Junmin Gu, Philip Davis, Jong Choi, Kai Ger-
maschewski, Kevin Huck, Axel Huebl, Mark Kim, James Kress, Tahsin
Kurc, Qing Liu, Jeremy Logan, Kshitij Mehta, George Ostrouchov,
Manish Parashar, Franz Poeschel, David Pugmire, Eric Suchyta, Keichi
Takahashi, Nick Thompson, Seiji Tsutsumi, Lipeng Wan, Matthew
Wolf, Kesheng Wu, and Scott Klasky. ADIOS 2: The adaptable input
output system. A framework for high-performance data management.
SoftwareX, 12:100561, 2020.

[11] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D Russell,
Howard Pritchard, and Jeffrey M Squyres. A brief introduction to the
openfabrics interfaces-a new network API for maximizing high perfor-
mance application efficiency. In 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pages 34–39. IEEE, 2015.

[12] Axel Huebl, Remi Lehe, Jean-Luc Vay, David P Grote, Ivo Sbalzarini,
Stephan Kuschel, David Sagan, Christopher Mayes, Frederic Perez,
Fabian Koller, et al. openPMD: A meta data standard for particle and
mesh based data. URL https://doi. org/10.5281/zenodo, 591699, 2015.

[13] Fabian Koller, Franz Poeschel, Junmin Gu, and Axel Huebl. openPMD-
api: C++ & Python API for Scientific I/O with openPMD, June 2018.

[14] G. Merlo, S. Janhunen, F. Jenko, A. Bhattacharjee, C. S. Chang,
J. Cheng, P. Davis, J. Dominski, K. Germaschewski, R. Hager, S. Klasky,
S. Parker, and E. Suchyta. First coupled GENE–XGC microturbulence
simulations. Physics of Plasmas, 28(1):012303, 01 2021.

[15] Open Fabric Interfaces. https://github.com/ofiwg/libfabric/. [GitHub
repository; accessed 2024-04-02].

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[17] Franz Poeschel, Juncheng E, William F. Godoy, Norbert Podhorszki,
Scott Klasky, Greg Eisenhauer, Philip E. Davis, Lipeng Wan, Ana
Gainaru, Junmin Gu, Fabian Koller, René Widera, Michael Bussmann,
and Axel Huebl. Transitioning from file-based hpc workflows to
streaming data pipelines with openpmd and adios2. In Jeffrey Nichols,
Arthur ‘Barney’ Maccabe, James Nutaro, Swaroop Pophale, Pravallika
Devineni, Theresa Ahearn, and Becky Verastegui, editors, Driving Scien-
tific and Engineering Discoveries Through the Integration of Experiment,
Big Data, and Modeling and Simulation, pages 99–118, Cham, 2022.
Springer International Publishing.

[18] Howard P Pritchard, Thomas Naughton III, Amir Shehata, and David
Bernholdt. Open MPI for HPE Cray EX Systems. Technical report, Oak
Ridge National Laboratory (ORNL), Oak Ridge, TN (United States),
2023.

[19] Eric Suchyta, Jong Youl Choi, Seung-Hoe Ku, David Pugmire, Ana
Gainaru, Kevin Huck, Ralph Kube, Aaron Scheinberg, Frédéric Suter,
Choongseock Chang, Todd Munson, Norbert Podhorszki, and Scott
Klasky. Hybrid analysis of fusion data for online understanding of com-
plex science on extreme scale computers. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pages 218–229, 2022.

[20] Eric Suchyta, Scott Klasky, Norbert Podhorszki, Matthew Wolf, Abolaji
Adesoji, CS Chang, Jong Choi, Philip E Davis, Julien Dominski,
Stéphane Ethier, Ian Foster, Kai Germaschewski, Berk Geveci, Chris
Harris, Kevin A Huck, Qing Liu, Jeremy Logan, Kshitij Mehta, Gabriele
Merlo, Shirley V Moore, Todd Munson, Manish Parashar, David Pug-
mire, Mark S Shephard, Cameron W Smith, Pradeep Subedi, Lipeng
Wan, Ruonan Wang, and Shuangxi Zhang. The exascale framework for
high fidelity coupled simulations (effis): Enabling whole device model-
ing in fusion science. The International Journal of High Performance
Computing Applications, 36(1):106–128, 2022.

[21] Ranjan Sarpangala Venkatesh, Greg Eisenhauer, Norbert Podhorszki,
Dmitry Ganyushin, Scott Klasky, and Ada Gavrilovska. Optimizing
Metadata Exchange: Leveraging DAOS for ADIOS Metadata I/O.
In High Performance Computing, page To Appear. Springer Nature
Switzerland, 2024.

https://www.olcf.ornl.gov/2021/05/20/olcf-announces-storage-specifications-for-frontier-exascale-system/
https://www.olcf.ornl.gov/2021/05/20/olcf-announces-storage-specifications-for-frontier-exascale-system/
https://github.com/ofiwg/libfabric/

	Introduction
	Goals and Objectives
	Architecture and Implementation
	Overall Operation
	Data Planes
	EVPath IP-based Data Plane
	LibFabric Data Plane
	UCX Data Plane
	MPI Data Plane

	Control Plane
	Extended Functionality
	Queue Management
	Preloading in the Dataplane
	Waiting for Readers and Step Distribution Options


	Performance Results
	WRF and the UCX data transport
	WDMApp
	In-Transit Machine Learning of Plasma Simulations

	Conclusion
	References

