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Abstract—A large language model (LLM)’s Key-Value (KV)
cache requires enormous GPU memory during inference. For
faster query processing and conversational memory of chat
applications, this cache is stored to answer subsequent user
queries. However, if the cache is buffered on the GPU, its large
memory requirement prevents GPU multiplexing and requires
cache buffering in remote storage. In current systems, transfer-
ring and retrieving cache requires the CPU to coordinate with the
GPU and push and fetch the data through the network, thereby
increasing the overall latency.

This paper proposes lower overhead KV cache storage and
retrieval with SmartNICs capable of triggered operations, such as
HPE Slingshot Cassini. Triggered operations enqueue pre-defined
data transfer instructions on the Network Interface Cards (NICs).
A GPU thread can trigger these instructions once the LLM
computes the KV cache for a token. Cassini NIC then transfers
the cache, bypassing the CPU and network stack and improving
data-transfer latency. Our experiments show that data transfer
with triggered operations provides 19× speedup in transfers
ranging from 32KB to 5 Terabytes.

I. INTRODUCTION

Large Language Models (LLMs) are state-of-the-art deep
learning applications trained to generate human language out-
put. Newer LLMs such as GPT-4 and LLaMa-2 produce help-
ful answers to queries in human language [1]. Consequently,
LLMs have been adopted widely for chatbots, knowledge
references, and text-generation tools.

LLMs require a large amount of GPU, compute, and mem-
ory. Llama-2-70B requires 120GB of GPU memory [2]. As
an LLM processes user input (tokens), it caches the results of
each token to process the next token. This cache is known as
key-value cache (KV-Cache) [3]. KV-cache can grow to 3×
the model size as the LLM infers more tokens [4]. Llama-
2-70B profiling from NVIDIA [5] shows a requirement of at
least 8 GPUs to process a batch of 8 requests. Due to the high
reservation cost of cloud GPUs (Table I), dedicating 8 GPUs
for a single user would not be cost-effective when planning to
serve millions of users.

Multiplexing the GPU by inferring multiple users’ requests
will greatly increase the GPU utilization and cost-effectiveness
of the multi-GPU setups. The current method to serve LLM
inference to multiple users is to infer a user’s query (prompt)

TABLE I: Cost of reserving 8 Cloud GPUs for LLM infer-
ence [6]

GPU Cost GPU/hr 8X GPUs/hr
NVIDIA A100 $2.21 $17.86
NVIDIA H100 $4.76 $38.80

and store the combination of the user’s prompt and the LLM’s
output [7]. The LLM’s model’s state can then be deleted from
the GPUs’ memory, freeing up the GPU memory for running
another user. When the first user submits a new query later,
this new query is appended to the old prompts, and its output
is inferred in its entirety. The previous stored queries and
output provide context to the new query. This approach has
a problem; with every new prompt from the user, the total
prompt size increases, thus requiring increased GPU compute
and memory [5].

Another solution for multiplexing the accelerators would be
to buffer the relevant data necessary for the context of a user’s
prompt outside the accelerator memory. The free accelerators
can then be used for another task. When the first user sends
subsequent queries, the relevant data for the user is fetched
from storage to the accelerators, and then the inference on the
new query is performed. In this approach, only the new prompt
needs to be processed, thus lowering the compute required.

The primary data that needs to be buffered is the user’s
Key-Value cache (KV-cache). The Key and Value vectors are
used during the decoder stage in multi-head attention for
a generative transformer model (e.g., GPT). The previously
generated token’s Key and value vectors are used to compute
the probability of the next token. Thus, caching the Key
and Value vectors eliminates re-computation. This cache is
known as a KV-cache. For large batch sizes, the KV-cache
size can get larger than the model itself. Transferring the
entire KV cache from the accelerators’ memory to remote
storage is challenging. Utilizing CPUs to pull the data from the
accelerators and then push them to the network will increase
the overhead of data transfer significantly.

To address these challenges, this paper discusses our ap-
proach, in which the transfer and buffering of the KV cache



are offloaded to the SmartNICs. This significantly lowers the
CPU overhead and latency of the data transfer. We analyze
using ”triggered-operations” available in Slingshot Cassini
NICs [8] to offload the data transfer to the NIC. We present our
evaluation of different data size transfers from GPU to remove
NVME drives and evaluate scenarios where the SmartNIC
offloading is present. We show that our approach can speed up
the data transfer and retrieval from remote NVME drives by
more than 19X compared to approaches where the CPU copies
the data from the GPU and then pushes it to the network to
store it in remote storage.

II. BACKGROUND AND MOTIVATION

In this section, we present the background on LLM and the
motivation for our work.

A. Background: LLM Inference and KV-cache

LLMs such as GPT and LLAMA are generative transformer
models, where the model’s core is the ”self-attention mech-
anism.” Self-attention lets the model compute the probability
of different tokens (words) in a sequence, thus allowing the
model to pick the most probable word. In self-attention, every
input token (e.g., a word in a sentence) is transformed into
three representations: a query (Q), a key (K), and a value (V).
The self-attention mechanism computes the attention scores by
taking the dot product of the query vector (Q) of one token
with the key vectors (K) of all tokens in the sequence. These
scores determine how much focus or ”attention” each token
should pay to every other token in the sequence. The attention
scores are then used to weight the value vectors, essentially
determining the output representation of each token based on
the information from all other tokens.

The self-attention mechanism utilizes the Key and Value
vectors of all the tokens. Key and value vectors of previously
generated tokens are cached to reduce the re-computation.
This cache is also known as KV-cache. KV-cache allows the
computation of LLM to scale as a linear rather than a quadratic
function of their token count.

KV-cache can grow very large based on batch size and
number of tokens the model supports. We have calculated the
size of KV-cache as a function of the model size and presented
results in Fig. 1. We have fixed the maximum token size for
each model to 512 tokens and the batch size of inference to 64.
A larger token size will lead to an even larger KV cache. For
some models, the KV cache is larger than the model size, and
for others, it is still very large and significant. Current GPUs
are very limited in DRAM, with the largest GPUs offering up
to 200 GB of DRAM. These large KV-caches cannot reside
on the accelerator waiting for the user to send subsequent
responses, as they will occupy valuable accelerator space that
can be used for other user inference.

B. Motivation: Importance of KV-Cache for Context

We present a motivating scenario that shows that effective
management of KV-cache is necessary for conserving the
context of LLM chat application.
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Fig. 1: Accelerator memory occupied by LLM model (16 bit)
and KV-cache for different models

User: Please provide me with a recipe for making cheesecake.
LLM: For the cheesecake... 350◦F...
User: Only provide temperature in ◦C from now on.
LLM: OK.
...
User: What temperature should I set the oven on?

The box above shows a snippet of the user starting a
conversation with an LLM and asking about a recipe. The
LLM faithfully replies to the user with the recipe but with the
temperature in Fahrenheit. The user then prompts the LLM
to report the temperature in Celsius. The LLM model then
generates further responses only in Celsius.

However, the LLMs rely on KV-cache to remember this
context, and evicting KV-cache will lead to the model forget-
ting the context. In this example, if the KV-cache noting the
subsequent result published in Celsius is evicted, the damage is
quite small. The user will not get a response in Celsius. How-
ever, if the KV-cache holds important security information,
such as instructions not to reveal personal information, then
evicting the KV-cache can be quite harmful. Therefore, it is
imperative that the KV-cache is carefully stored and retrieved
accurately for the proper functioning of the LLM model.

C. Background: Triggered Operations

Triggered operations [9] allow applications to enqueue data
transfer requests in the NICs and defer them for future trigger
events. The origin of triggered operations can be traced to
Quadrics network [10]. HPE’s Cassini NICs also provide
triggered operations features. Slingshot NICs initially used
the Portals communication library [11]. Currently triggered
operations are supported with libfabric [12] communication
library. Libfabric library allows users to set a specific event
counter and a threshold. The application first has to assign
a memory buffer that can be transferred. This transfer is put
in a deferred queue. When the event counter is updated and
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Fig. 2: LLM-based chat application with KV-cache transfer

the threshold is passed, the data from the memory buffer
is transferred. This event counter can be updated easily by
application. Triggered operations do not involve the CPU,
other than the initial trigger setup.

In our work, we explore the use of triggered operations
to transfer KV-cache out from GPU memory to the network
location. The CPU application registers the GPU buffer where
the KV cache is stored. When a token is inferred, a GPU
thread can trigger the NIC [8]. The NIC will then transfer
the particular buffer to the storage endpoint. This transfer
eliminates the need for the CPU to run API functions such
as cudaMemcpy to move the data from GPU to host memory
and call fabric functions, such as socket/verbs. Triggered
operations can move the data in a peer-to-peer format from
accelerator to network, thus eliminating the need to push the
data to the network using the network stack. This two-fold
enhancement the triggered operations can greatly reduce the
data movement latency as we show in our experiments and
simulation results in Section V.

III. SYSTEM ARCHITECTURE

In this section, we will first illustrate the user’s inference and
KV cache transfer. We then explain our proposed system and
sub-systems that are necessary for efficient KV-cache transfer
and retrieval from GPUs to storage nodes.

A. LLM chat application workflow

In Fig. 2 we present a chat application with user query,
LLM’s response, and KV cache storage and retrieval. We

have illustrated the important bits of execution with circled
numbers 1 - 8 .

At the beginning, in the step 1 , the CPU setups the
LLM application. The CPU also sets all the necessary buffers,
including the buffer where the KV cache will be stored for
the LLM. In the same step, the CPU program uses libfabric
to register the KV-cache data buffer for the trigger operations.
Here the trigger event can be set as a GPU thread updating a
flag in a memory location.

The step 2 shows LLM inference being conducted. First,
the user query arrives at the accelerator. An encoder encodes
this query. The LLM’s transformers then start generating an
answer for the user. While the answer is being generated, the
KV vectors for each token are also generated and stored in the
KV cache. Using triggered operations our setup then transfers
the newly created KV-cache for every few tokens with the aid
of the smartNICs.

The step 3 , the LLM response is returned to the user. In
this scenario, we assume the user takes time to write a follow-
up query. Meanwhile, the match action module understands the
request and starts retrieving the relevant KV cache for that
particular user. The step 6 shows the KV Cache Get to the
storage servers and RDMA of the KV-cache data to the GPU.
The Get request is initiated by the SmartNIC and enqueued
in the storage device’s NVME drive. When the NVME drives
fetch the data, the SmartNICs in the storage nodes will RDMA
the KV-cache data to the relevant GPU buffers as shown in
step 7 . Finally, in step 8 , the follow-up query is inferred,
generating a new result. Similar to previous step, the KV-cache



Fig. 3: System Architecture Setup with Slingshot NICs and other proposed hardware

is transferred to storage with trigger operations. This process is
repeated whenever a user makes a new LLM inference request.

B. System Architecture Description

In this subsection, we describe the components in the
SmartNIC and the Storage node necessary for the transfer and
retrival of KV-cache from the GPUs.

The proposed system architecture is shown in Fig. 3. It
depicts two system nodes (compute and storage node) with
GPUs and NVME drives, respectively, connected through a
network fabric such as Slingshot. Due to the storage density
of the KV cache, NVME drives are suitable. For easier
understanding, new hardware blocks required for compute and
storage node NICs are represented in different colors.

We describe the function of the proposed hardware modules
in the smartNIC. When the compute node NIC (NIC-1)
receives a follow-up LLM request, a match action is performed
on the incoming packet with the Match Action module to
match the query to the user. The Match action module matches
the incoming requests using the metadata such as user-ID,
application context IDs, and network 5-tuple. The match action
module uses a match action table to point to all the relevant
KV-cache for the user.

The KV-cache Requester is responsible for the KV-cache
storage and retrieval operation, including hash operation for
mapping of user requests to corresponding hardware addresses
where KV-cache is stored. The KV-cache Requester updates
a hashmap every time the KV-cache is transferred from the
accelerators to the storage node. This hashmap maps the KV-
cache to the storage node. When the KV-cache needs to be
retrieved, the cache requester will send the retrieval requests
to the storage node NIC (NIC-2). After a match action of the
retrieval request (sent by NIC-1) on the storage NIC (NIC-2),
the incoming request is forwarded to the respective drive.

We propose using the NVME-oF environment with RDMA
for NIC-2 to program the submission and completion queues
of the NVME drive. Once the NVME command is processed
by the NVME drive NIC-2 would initiate RDMA write to
GPU memory for KV-cache get and RDMA read from GPU
memory for KV-cache put operation. For keeping track of user
requests and the stored cache memory management, such as
Least Recently Used Eviction and Timer-based Eviction of
values we propose using low power CPU core inside the NIC.



TABLE II: Bandwidth parameters used in simulation, where
m is the message size in bytes.

Parameter Value
(

1

bytes/s

)
Description

βPCIE 8.12× 10−12 PCIE bandwidth
βVRAM 4.55× 10−13 GPU memory bandwidth
βCPU 4.55× 10−13 CPU estimated bandwidth
βDRAM 1.21× 10−12 Node memory bandwidth
βNIC serial. 5.13× 10−11 NIC serialization bandwidth
βNIC mem 1.43× 10−11 NIC memory bandwidth
βNIC alu 5.22× 10−12 NIC ALU bandwidth

βNVMe write
1

2.34× 109 + 6.83m
NVMe write bandwidth model

βNVMe read
1

5.22× 109 + 19.4m
NVMe read bandwidth model

TABLE III: Latency parameters used in simulation, where m
is the message size in bytes.

Parameter Value (s) Description

λPCIE 3.2× 10−8 PCIE latency
λNVMe write 3.3 + 4.10× 10−7m NVMe write latency model
λNVMe read 2.03 + 2.63× 10−7m NVMe read latency model
λnetwork 1.21× 10−12 Network latency

IV. EXPERIMENTAL SETUP

We built a performance model and simulator using latency
and bandwidth for HPE Cassini NICs on a compute node with
two Xeon Intel CPUs and 8 H100 Nvidia GPUs, assuming one
NIC per GPU. We conducted experiments in existing real hard-
ware to get the benchmarks and created an analytical model to
produce performance metrics for end-to-end computation. We
have utilized the vLLM LLM inference serving platform. We
have used HPE ProLiant DL380 Gen10 Server as the inference
and storage servers. We have modeled the link between the
servers with a 100Gbps connection. The storage node has
NVMe drives. Our modeled storage node also used Cassini
NICs and we modeled typical NVMe read and write latency
and bandwidth. We tested KV-cache sizes produced by popular
models listed in Fig. 1.

A. Simulation setup

The communication between inference and storage servers
was modeled analytically. Not all components and delays
were modeled, resulting in an approximation of real behavior.
Tables II and III show the estimated bandwidth and latency
parameters used by each modeled component. We decided
to model the bandwidth and latency for the read and write
operations of NVMe drives to attempt to account for delays
due to message queuing. In this model, we found that a
linear model was capable of representing satisfactorily the
performance of NVMe reads and writes, but future work will
include more complex latency and bandwidth models for all
simulated components.

V. RESULTS

In this section, we present the results of measurement in
NVMe drives as well as results obtained from the simulation
of the end-to-end model of KV-cache transfer.

A. NVMe Latencies

We first measure the NVMe read and write latency. These
NVMe drives would be present in the storage nodes. We need
accurate measurements to build the end-to-end model. We
present micro-benchmarks from NVMe drives in Fig. 4. FIO
benchmark [13] is used to measure the latency of sequential
read and write, and random read and write benchmarks, by
performing a sweep from 512B to 128MB data sizes. We can
see that NVMe drives have 10-100 ms latency while reading
small-size data, but latency increases quite rapidly to 2000 ms
when reading data of larger size (≥64 MB). We do not see a
great difference between sequential and random reads.

We have also benchmarked the writes done to the NVMe
drives. Using FIO, CPU threads populate the NVMe queues
to write onto the drive. We see that write latency increases
exponentially as the data size becomes (≥128 MB). Both write
and rand-write suffer from very large latency. With this data
in mind, we have opted for our technique to transfer the KV
cache of few generated tokens at a time to utilize network
bandwidth as well as write latency of NVMe better. We have
also included this data in the simulation of end-to-end KV-
Cache transfer.

B. End-to-End Simulation results

We primarily compare between CPU- and Triggered-
Operations-initiated transfer of KV-cache. CPU-initiated
transfer refers to one where the data is transferred from GPU
to host memory using API calls such as cudaMemcpy. These
API calls are executed in the host CPU and need to be
called after the KV-cache for a few tokens is computed. We
have considered transferring the KV cache in chunks of 512
MB (unless transferring a smaller size KV cache). Triggered-
operation-initiated are the operations that execute with the
help of NIC and transfer the data to storage without involving
host CPUs. We should note that this simulation only produces
the data transfer latencies between GPUs and storage nodes
and does not simulate the rest of LLM inference.

Our results in Fig. 5 show the difference in time taken for
CPU-centric and GPU-initiated KV cache transfer for a small
amount of data. CPU-centric transfer moves the KV-cache
from GPU to host memory using the CPU, then, the CPU
pushes the data to the remote storage. GPU-initiated transfer
utilizes GPU-threads-initiated trigger operation in the NIC and
queues inside the NVME drive to move the data from the
GPU to the remote storage. We have particularly focused on
this data size as single user inference might produce a few
hundred megabytes of KV-cache at a time. We can see in Fig. 5
that GPU-initiated transfer provides more than 20× speed up
compared to CPU-centric data transfer.
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We extend our results to simulating the transfer of terabytes
of data at once. This scenario envisions the transfer of KV-
caches out of multiple GPUs at once for a very large LLM
model. We present the simulated time taken in Fig. 6. We
can see the CPU-initiated still lags behind trigger-ops-initiated
transfer by a huge margin (>19x).

We also present the Speedup of GPU-centric triggered
operations KV-cache transfer when compared to CPU-centric
approach for different KV-cache data sizes in Fig. 7. We can
see that the speed-up of data transfer is larger, with 23X
improvement at small data sizes. The speedup is consistently
larger than 19X in larger data sizes. With these results, we
can see that offloading the data transfer and avoiding the use
of CPU for API and network functions calls that add large
overheads greatly reduce the data transfer time from GPUs to
storage node.
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VI. RELATED WORK

The Key-Value (KV) cache is one of the significant con-
straints in expanding the capabilities of Large-Language Mod-
els. The increasing demand for inference is creating substantial
challenges for cache performance. Key-Value cache provides
an effective way to accelerate the generation speed for Large-
Language Models inference [14].

The significance of the KV cache in LLM inference war-
rants the need for more optimized utilization. Kwon et al. [3]
proposed a vLLM system that uses the PagedAttention algo-
rithm that significantly reduces the wastage of KV cache mem-
ory by efficiently managing it using non-contiguous memory
allocation and lookup tables. The vLLM system is built on
top of this algorithm and allows for a near-zero waste in KV
cache memory.

Compared to vLLM, DeepSpeed-FastGen presents an opti-
mized system specialized for text generation. One of the key
components of this is the Dynamic SplitFuse, which optimized



the composition of text to significantly reduce latency and
subsequently improve the throughput. Compared to vLLM, the
authors claim to have increased throughput by about 2 times.
It also uses non-contiguous KV caches to allow for increased
occupancy and high responsiveness [15]. The usage of such
non-contiguous KV cache is not unique to this system and has
also been used in DistAttention [16], HuggingFace TGI [17]
and Nvidia TensorRT-LLM [18].

Another such system ORCA [19], uses iteration-level
scheduling. This allows the system to schedule at the granular-
ity of individual iteration rather than a request. Such a system
allows for more efficient usage of memory, thus improving
KV-cache performance. It also uses selective batching to en-
able better utilization of computational resources by batching
only selected operations within the Transformer model.

No Token Left Behind [20] describes the importance of
storing and retrieving KV-cache correctly. The paper shows the
security scenarios where missing KV-cache can generate the
prompts that have been explicitly banned by previous prompts.
This paper presents the importance of conserving the KV-
cache accurately so the generation of information follows the
context set by previous prompts.

Previous works such as NetML [21, 22] and popular GPU
libraries such as GPUDirect and GDRCopy [23] utilize GPU’s
threads and DMA engine to transfer data between GPU and
other PCIe devices without utilizing host CPU. These works
show drastic improvement in data transfer latency when the
CPU is not involved. However, unlike our work, these tools
and projects are limited to moving data within a system only.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed a system that will trans-
fer the KV cache generated during the generation phase
of transformer-based LLMs to make way for multiplexing
the GPUs. We propose using triggered operation capabilities
present in Cassini NICs to transfer the KV cache from the
compute node to the storage node and vice-versa. We discuss
the necessary hardware and software components in a Smart-
NIC to enable KV cache transfer with triggered operations.

We create a mathematical model with available hardware
data and measure end-to-end KV-cache transfer latencies.
Our proposed GPU-triggered cache transfer provides more
than 19× speedup while transferring data compared to CPU-
centric data transfer. In the future, we are adapting the vLLM
project [24] to work with programmable SmartNICs to cache
the KV into remote storage. We use libfabric trigger opera-
tions [9] to enqueue data transfer after completing the LLM
inference.
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