
May DD, 2024

Aditya Dhakal, Pedro Bruel, Gourav Rattihalli,
Sai Rahul Chalamalasetti and Dejan Milojicic

LLM Serving With Efficient KV-Cache
Management Using Triggered Operations

• Large Language Models (LLMs) are widely used now for applications such as
Chatbot, Knowledge summary, etc.

• Popular LLM model such as LLaMA, GPT, etc generate response based on user’s
prompts and context of the conversation

• State-of-the-art LLM models are very large in terms of memory and compute
requirements
• 70 billion parameters LLAMA models require 8 GPU clusters

• GPUs are expensive (estimates for March, 2024)

Large Language Models : Introduction

GPU Model Cost GPU/hr (USD) 8X GPUs/hr

NVIDIA A100 $2.21 $17.86

NVIDIA H100 $4.76 $38.80

2

• Sharing the GPUs to run multiple user’s
queries will increase GPU utilization

• However, LLMs also requires large amount of
memory just to operate

• One of the component for increased memory
consumption is Key-Value cache (KV-cache)

Multiplexing the GPUs

3

• Key-value (KV) in LLM context is different from Key-value pairs

• Key value vectors are created in attention layer in the generation phase

• Example:
• Query: “What are the colors in the Rainbow?”
• Generated prompt: “The colors …”

• Here, for the computation of next token after “The colors” uses KV vectors
of previous tokens:
• “What are the colors in the Rainbow? The colors”

• These KV vectors are invariant for same tokens. Thus, caching the KV
vectors will greatly reduce the computation
• KV-caches allow linear scaling

Key Value (KV) Cache

4

What are … The colors

K V Q K V Q K V Q

o o o

<Next Prompt>

Required for Next prompt generation

5

• Lowers the computation for inference during
generation phase

• Why save it then?
• Preserves the context of the conversation

• We present an example

• KV-cache can also be a security issue

Why is KV-cache important?
User: Please provide me with a
recipe for making cheesecake.

LLM: For the cheesecake... 350◦F...

User: Only provide temperature in ºC
from now on
LLM: OK.
...
User: What temperature should I set
the oven on?

6

• KV-caching is compute-storage tradeoff
• KV-cache size can easily exceed model size

• GPU memory is still limited (Max size: 192 GB)

• Swapping the KV-cache out of GPU
• another user’s queries to be processed (multiplexing)

• Using CPU to transfer data out of GPU to storage node
increases latency
• Use of CPU increases processing, data movement, network stack

and context switching overhead

Key Value Size

KV-cache with 4K token size

KV-cache with 8K token size

7

• Triggered operations lets application enqueue data
transfer requests in the NIC
• Origin from Quadrics network

• Defer the transfer to future event (usually a counter
or a flag called “Trigger”)

• HPE Cassini NICs provide trigger operations
• Currently supported with libfabric communication library

• Application must assign the memory buffer to
transfer

• Trigger operations do not involve the CPU other than
initial trigger setup

Triggered Operations for Data Transfer

Libfabric description of trigger ops support
source: https://ofiwg.github.io/libfabric/v1.9.1/man/fi_trigger.3.html

NICApplication

Buffer

Register

Data transfer once trigger
threshold is reached

8

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

1. User sets up the LLM and triggers
• User sends their query for inference

9

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

1. User sets up the LLM and triggers
• User sends their query for inference

2. LLM inference: query response is
generated

• The newly generated KV-Cache is
transferred out of GPU by triggered
operations

10

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

1. User 1 sets up the LLM and triggers
• User 1 sends their query for inference

2. LLM inference: query response is
generated

• The newly generated KV-Cache is
transferred out of GPU by triggered
operations

3. User 1 receives query response

4. Delete KV-cache and infer user 2’s
request

11

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

1. User 1 sets up the LLM and triggers
• User 1 sends their query for inference

2. LLM inference: query response is
generated

• The newly generated KV-Cache is
transferred out of GPU by triggered
operations

3. User 1 receives query response

4. Delete KV-cache and infer user 2’s
request

5. User 1 sends follow up request

12

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

5. User 1 sends follow up request
• The match-action module in SmartNIC will

match the user request
• The NIC will then fetch the KV-cache for

the User 1 from storage

13

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

5. User 1 sends follow up request
• The match-action module in SmartNIC will

match the user request
• The NIC will then fetch the KV-cache for

the User 1 from storage

6. The storage side smartNIC will transfer
the data via RDMA to the compute
accelerators

7. The accelerators receive the KV-cache

14

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and

Infer other users' queries

4

7 KV-cache

Our Workflow

5. User 1 sends follow up request
• The match-action module in SmartNIC will

match the user request
• The NIC will then fetch the KV-cache for

the User 1 from storage

6. The storage side smartNIC will transfer
the data via RDMA to the compute
accelerators

7. The accelerators receive the KV-cache

8. LLM inference is conducted on new
query and KV-cache is again stored
with triggered ops

15

• Hardware/software
components in
SmartNICs to be able to
transfer KV-cache to
remote storage node

• We divide requirements
for compute and storage
node

System Architecture

16

• Compute Node

• Match Action Module: matches incoming
request and looks up where the KV-
cache is located

• KV-Cache Requestor: Requests KV-
cache from multiple storage nodes

• CPU: SmartNIC CPU to facilitate Match
Action and KV-cache requestor

System Architecture

17

• Storage Node

• Match Action Module: matches incoming
KV-cache request

• NVMe P2P transfer module: Peer-to-
peer transfer software support for
SmartNIC

System Architecture

18

• Measured read and write latency to NVMe
drive from same socket CPU

• We want to populate our model with
realistic values

• We see the RandRead is about same as
Read

• Writes are however, much slower than read,
and latency increasing with larger data
sizes (128MB)

• This influenced our decision to store
chunks of KV-cache at a time than whole
KV-cache

NVMe Measurement Results

0

2000

4000

6000

8000

10000

12000

14000

16000

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB
La

te
nc

y (
m

se
c)

NVME Latencies

Write RandWrite Read RandRead

19

• To create our data transfer model, we
benchmarked relevant hardware and
chose the values in Table II and Table III

• We used bandwidth and latencies value
for different hardware in the system

• We simulated the results for 8 H100 GPU
and 1 NIC per GPU.

• We modeled the link between compute
and storage server with a 100 Gbps
connection

Simulation Parameters

20

• GPU-initiated (Trigger ops) transfer
shows much lower latency at smaller
data size

Simulated Results

10−4

10−2

100

0.00 100.00 200.00 300.00 400.00 500.00
KV Cache Size (MB)

R
eq

ue
st

 N
od

e
Ti

m
e

(m
s)

Transfer Mode
CPU−centric
GPU−initiated

21

• GPU-initiated (Trigger ops) transfer
shows lower latency at higher and
more practical data sizes as well

Simulated Results

10−3

100

103

106

0.00 5 000.00 10 000.00 15 000.00
KV Cache Size (GB)

R
eq

ue
st

 N
od

e
Ti

m
e

(m
s)

Transfer Mode
CPU−centric
GPU−initiated

22

• We get 19x speed up with
Triggered-ops data transfer vs.
CPU-centric data transfer

Speedup

19

20

21

22

23

2−12 2−4 24 212

Message Size (GB)

G
PU

−c
en

tri
c

Sp
ee

du
p

vs
. C

PU
−c

en
tri

c

23

• Current results are simulation result and only show improvement over data transfer

• We are adapting vLLM and Deepspeed Inference to have end to end results
• vLLM and Deepspeed Inference already manger KV-Cache within GPUs

• Working with triggered operations with Cassini NICs and libfabric application for our workflow

Next Steps

24

• Proposed system that will transfer KV-Cache generated during LLM inference to storage

• Swap the KV-cache back when user sends follow up response

• Use of triggered operation to remove CPU overhead

• Future work on implementing the system to LLM inference platforms

Conclusion

© 2024 Hewlett Packard Enterprise Development LP

Aditya Dhakal
aditya.dhakal@hpe.com

Thank you

