—1

Hewlett Packard
Enterprise

LLM Serving With Efficient KV-Cache
Management Using Triggered Operations

Aditya Dhakal, Pedro Bruel, Gourav Rattihalli,
Sai Rahul Chalamalasetti and Dejan Milojicic

May DD, 2024

Large Language Models : Introduction

e Large Language Models (LLMs) are widely used now for applications such as
Chatbot, Knowledge summary, etc.

e Popular LLM model such as LLaMA, GPT, etc generate response based on user’s
prompts and context of the conversation

» State-of-the-art LLM models are very large in terms of memory and compute
requirements
e 70 billion parameters LLAMA models require 8 GPU clusters

» GPUs are expensive (estimates for March, 2024)

GPU Model Cost GPU/hr (USD) 8X GPUs/hr
NVIDIA A100 S2.21 $17.86
NVIDIA H100 S4.76 $38.80

Multiplexing the GPUs

e Sharing the GPUs to run multiple user’s
queries will increase GPU utilization

e However, LLMs also requires large amount of
memory just to operate

e One of the component for increased memory
consumption is Key-Value cache (KV-cache)

400 1

W
o
o

Memory Required (GB)
S
o

100

Memory Type
I Model
P KV-Cache

) m [an] [a] [an] 2] [a1] [aln] [a0]
™ a o = h o = @
l_ 1 |_ 1 1 1
“ N o X o - - -
s o o a o o
£ © = o o o
© S
- ©
-
LLM Models

BLOOM-176B

Key Value (KV) Cache

o Key-value (KV) in LLM context is different from Key-value pairs - -

» Key value vectors are created in affention layer in the generation phase I:II:II:I I:II:II:I 000 III

KVQ KVQ KVQ

e Example:
o Query: “What are the colors in the Rainbow?” ‘_'_’

o Generated prompt: “The colors ...” , ,
Required for Next prompt generation

» Here, for the computation of next token after “The colors” uses KV vectors
of previous tokens:

o “What are the colors in the Rainbow? The colors”

e These KV vectors are invariant for same tokens. Thus, caching the KV
vectors will greatly reduce the computation

e KV-caches allow linear scaling

E— | 4

Why is KV-cache important?

» Lowers the computation for inference during
generation phase

e Why save it then?
» Preserves the context of the conversation

e We present an example

e KV-cache can also be a security issue

User: Please provide me with a
recipe for making cheesecake.

LLM: For the cheesecake... 350¢°F...

User: Only provide temperature in °C
from now on

LLM: OK.

User: What temperature should I set
the oven on?

Key Value Size

» KV-caching is compute-storage tradeoff
o KV-cache size can easily exceed model size

e GPU memory is still limited (Max size: 192 GB)

» Swapping the KV-cache out of GPU
« another user’s queries to be processed (multiplexing)

» Using CPU to transfer data out of GPU to storage node
increases latency

« Use of CPU increases processing, data movement, network stack
and context switching overhead

800 -

700

N
o
o

Memory Required (GB)
&
o

)]
o
o

u
o
o

—

Memory Required (GB

Memory Type
I Model
[KV-Cache

Llama-2-7B
Llama-2-13B
MPT-7B
MPT-30B
OPT-7B
OPT-13B
OPT-30B
OPT-66B

LLM Models

KV-cache with 4K token size

BLOOM-176B

Memory Type
1200{ WEm Model

[KV-Cache
1000+
8001
600 1

4001

200

Llama-2-7B
Llama-2-13B
MPT-7B
MPT-30B
OPT-7B
OPT-13B
OPT-30B
OPT-66B

LLM Models I 6

KV-cache with 8K token size

BLOOM-176B

Triggered Operations for Data Transfer | "9

- Triggered operations lefs application enqueue data | ™=
I_trigger - Iriggerea operations

transfer requests in the NIC SYNOPSIS
 Origin from Quadrics network

<rdma/fi_trigger.h>

DESCRIPTION
g Defe r Th e T ran Sfe r TO fUTU re eve nT (U Suaqa I Iy d COu nTe r Triggered operations allow an application to queue a data transfer request that is deferred until a specified

. condition is met. A typical use is to send a message only after receiving all input data.
or a flag called “Trigger”)

Libfabric description of trigger ops support

..))) source: https://ofiwg.github.io/libfabric/v1.9.1/man/fi_trigger.3.html
e HPE Cassini NICs provide trigger operations

o Currently supported with libfabric communication library

Application NIC
o _ Register
e Application must assign the memory buffer to

fransfer Data transfer once trigger
threshold is reached

 Trigger operations do not involve the CPU other than

initial trigger setup Buffer

E— | 7

Our Workflow

1. User sets up the LLM and triggers Setup LLM, ® ____Lfs_‘?r_q.“-e-ry--
« User sends their query for inference Triggers | et
LLM <. — Triggered Per-token
Inference KV-Cache Put 3
—>
----------- @ Pr---------- P
Query
@ Deletea};;/ cache response Follow up
Infer other users' queries __-1&-- -query. .- -4
- Match @
Action KV Cache Get
>
RDMA/Transfer
over fabric Ej @
@ < KV-cache
LLM (8 Triggered Per-token —>
Inference KV-cache Put :;
I —>
= martN| r% External Storage
GPUs CPUs SmartNICs Use (NVMe Queues)

E— | s

Our Workflow

1. User sets up the LLM and triggers Setup LLM, © User query
o User sends their query for inference P T ——
L\

)) LLM z) Triggered Per-token 2

2. LLM inference: query response is Inference KV-Caghe Put :;

generated e =
T Pl -oconooee >

« The newly generated KV-Cache is @) vee e query (3)
transferred out of GPU by triggered o response Follow up
operations nfer oher users' queries | | .- (__@_qlie—ry -----
PR Match
Action KV Cache Get
>
RDMA/Transfer
over fabric Ej@
@(KV-cache

LLM @ Triggered Per-token R

Inference KV-cache Put 3

I —>

External Storage
GPUs CPUs SmartNICs User e ot

E— K

Our Workflow

1. User 1 sets up the LLM and triggers
« User 1 sends their query for inference

2. LLM inference: query response is
generated

e The newly generated KV-Cache is
transferred out of GPU by triggered
operations

3. User 1 receives query response

4. Delete KV-cache and infer user 2’s
request

User query _ |
Setwp LLM, <« | lo-----TT !
Triggers [____J------7777
L\
LLM <) Triggered Per-token
Inference KV-Cache Put

YYvy

""""" @ Pt-----------)
Query
@ Deletea:;/ cache response Follow up
Infer other users' queries| | ___ « - - -query. .- -4
- [Match
Action KV Cache Get
RDMA/Transfer
over fabric @
@ < KV-cache
LLM (8 Triggered Per-token 2
Inference KV-cache Put :;
I —>
GPUs CPUs SmartNICs User ﬁ External Storage

(NVMe Queues)

| 10

Our Workflow

1. User 1 sets up the LLM and triggers
« User 1 sends their query for inference

2. LLM inference: query response is
generated

e The newly generated KV-Cache is
transferred out of GPU by triggered
operations

3. User 1 receives query response

4. Delete KV-cache and infer user 2’s
request

5. User 1 sends follow up request

E—

User query _ |
Setwp LLM, <« | lo-----TT !
Triggers [____J------7777
L\
LLM <) Triggered Per-token
Inference KV-Cache Put

@ e

Infer otlier users' queries

LLM
Inference

and

(D)}«

KV Cache Get

YYvy

GPUs

RDMA/Transfer
over fabric @
KV-cache
(8] Triggered Per-token —>
KV—cathe Put 3
I —>
= martNICs User% External Storage
CPUs Smart (NVMe Queues)

| 12

Our Workflow

5. User 1 sends follow up request

e The match-action module in SmartNIC will
match the user request

e The NIC will then fetch the KV-cache for
the User 1 from storage

Setup LLM,
Triggers

LLM
Inference

LLM
Inference

GPUs

-
-
==
-
_—

Triggered

KV-Cache Put

Per-token

YYvy

KV Cache Get

RDMA/Transfer
over fabric
KV-cache
(8] Triggered Per-token }
KV—cathe Put
I —>

CPUs

SmartNICs

User%

External Storage
(NVMe Queues)

12

Our Workflow

5. User 1 sends follow up request Setup LLM, © User query. .
o The match-action module in SmartNIC will ~ Trhggers | ___..q---="77"
match the user request N _ =Y
) LLM <) Triggered Per-token
e The NIC will then fetch the KV-cache for Inference KV-Cache Put 3
the User 1 from storage W >
----------- R
@ Query @
. . Delete KV-cache Follow up
6. The storage side smartNIC will transfer and response ery
. Infer oth queries| | lg---Query____
the data via RDMA to the compute i N IR < =
accelerators <
Action KV Cache Get
>
7. The accelerators receive the KV-cache R'Do'\j'g‘r’g@’r‘;fer[j@
@(KV-cache
LLM IOn Triggered Per-token R
Inference KV-cache Put 3
I —>
External Storage
GPUs CPUs SmartNICs User o ot

E— | 13

Our Workflow

5. User 1 sends follow up request Setup LLM, © User query
o The match-action module in SmartNIC will ~ Trhggers | ___..q---="77"
match the user request N _)
. LLM <) Triggered Per-token
L The NIC W|” Then feTCh The KV'CaChe fOI’ Inference KV-Cache Put :;
the User 1 from storage ~ UJ >
----------- s SEEEEEEERRE =
Query @
. . @ Delete KV-cache Follow up
6. The storage side smartNIC will transfer and response Doy
. Infer oth queries| | lg---Query____
the data via RDMA to the compute i N IR < ®
accelerators - Match [j
Action KV Cache Get
7. The accelerators receive the KV-cache R%“jg\ﬂ;’r‘;fer‘ \@
8. LLM inference is conducted on new LLM (8) Triggered Per-token
. . Inf :
query and KV-cache is again stored rerence “oage ™t
with friggered ops GPUs CPUs SmartNICs User} External Storage
NVMe Queues

: | 14

System Architecture

e Hardware/software
components in
SmartNICs to be able to
transfer KV-cache to
remote storage node

o We divide requirements
for compute and storage
node

Compute Node
CPU
y
| Slingshot
Connectivity
; ' p— —
Slingshot
Lot NIC-1
Match Action
LLM Req Parser CPU
P4 Eng.
PCIE-EP (g Slingshot
MAC
KV cache
Requestor

Storage
Node CPU

- A A T 1

!

Proposed Hardware
Modules

Currently Available
Hardware Modules

<«— —) P2P Transfer Path

Y
Al Slingshot bl NV_M E >
NIC-2 Drive Drive
1 2
/
/
/
/
/
/7
Slingshot || Match Action for KV cache Request
PCIE-EP
MAC Parser (P4 Eng.)

PCIE interface

System Architecture

o Compute Node

e Match Action Module: matches incoming
request and looks up where the KV-
cache is located

o KV-Cache Requestor: Requests KV-
cache from multiple storage nodes

o CPU: SmartNIC CPU fto facilitate Match
Action and KV-cache requestor

Compute Node
CPU

NIC-1

Slingshot |4

Storage
Node CPU

& Ti T

Slingshot | |
Connectivity I | |
)) Y Y A 4

41 Slingshot
NIC-2

NVME
Drive
1

NVME
Drive
2

Match Action
LLM Req Parser
(P4 Eng.)

PCIE-EP

KV cache
Requestor

D Proposed Hardware
Modules

| Currently Available

Hardware Modules

<« — » P2P Transfer Path

<4—p PCEinterface

MAC

Slingshot || Match Action for KV cache Request
Slingshot MAC Parser (P4 Eng.)

PCIE-EP

System Architecture

» Storage Node

e Match Action Module: matches incoming Compute Node Storage [revscasar
CcPU Node CPU Modules
KV-cache request g sl S oo et
| | Slingshot I | | !
‘ Y ; l — VCV"“P“"""’V o #I %L‘_' ‘ <« — » P2P Transfer Path
Easho Nsho NVME NV.ME PCIE interface
e NVMe P2P transfer module: Peer-to- cPu e St || e || o | ST
peer transfer software support for "
SmartNIC)
Match Action
LLM Req Parser CPU
—_— (P4 gng') e Sli;lllg:Zot Match Act;:: s:r:r(:: Ec:;h)e Request PCIE-EP
MAC
KV cache
Requestor

NVMe Measurement Results 14000

» Measured read and write latency to NVMe 12000
drive from same socket CPU

10000
» We want to populate our model with

realistic values 8000

Latency (msec

e We see the RandRead is about same as

6000
Read

. 4000
e Writes are however, much slower than read

and latency increasing with larger data
sizes (128MB) 2000

e This influenced our decision to store 0
chunks of KV-cache at a time than whole
KV-cache

E—

1MB 2MB 4MB

@ \\rite

=@ RandWrite

8MB 16MB 32MB 64MB

e=@==Read «=@==RandRead

128MB

| 18

Simulation Parameters

e To create our data transfer model, we
benchmarked relevant hardware and
chose the values in Table Il and Table Il

» We used bandwidth and latencies value
for different hardware in the system

e We simulated the results for 8 H100 GPU
and 1 NIC per GPU.

» We modeled the link between compute
and storage server with a 100 Gbps
connection

E—

TABLE II: Bandwidth parameters used in simulation, where

m 1s the message size in bytes.

Parameter Value(1)

Description

bytes/s
Brcie 8.12 x 1012
BVRAM 4.55 x 10~13
Bcpu 4.55 x 10—13
BDRAM 1.21 x 10—12

,BNIC_serial. 5.13 X 10—11
IBNIC_mem 1.43 x 10_11

BNIC. alu 5.22 x 1012
1

,BNVMe_write 2.34 x 109 + 6.83m

1

PrvMeread =200 +19.4m

PCIE bandwidth

GPU memory bandwidth
CPU estimated bandwidth
Node memory bandwidth
NIC serialization bandwidth
NIC memory bandwidth
NIC ALU bandwidth

NVMe write bandwidth model

NVMe read bandwidth model

TABLE III: Latency parameters used in simulation, where m

is the message size in bytes.

Parameter Value (s)

Description

APCIE 3.2x 108

PCIE latency

ANVMe_write 3.3 + 4.10 X 10~ "m NVMe write latency model
ANVMe_read 2.034+2.63 x 10"m NVMe read latency model

Anetwork 1.21 x 10—12

Network latency

Simulated Results

e GPU-initiated (Trigger ops) transfer
shows much lower latency at smaller
data size

10° 1

Request Node Time (ms)
o

107 -

—
0
Transfer Mode
@ CPU-centric
@ GPU-initiated
0.00 100.00 200.00 300.00 400.00 500.00

KV Cache Size (MB)

Simulated Results

10°
e GPU-initiated (Trigger ops) transfer -
shows Iowgr latency g’r higher and e
more practical data sizes as well
o 10°-
E
]
£
|_
(O]
S 10°-
Z Transfer Mode
% @ CPU-centric
- @ GPU-initiated
O
(O]
o
107% 1
O.bO 5 OOIO.OO 10 O(I)O.OO 15 O(I)O.OO

KV Cache Size (GB)

Speedup

e We get 19x speed up with
Triggered-ops data transfer vs.
CPU-centric data fransfer

GPU-centric Speedup vs. CPU-centric
N

N
w
1

N
[\
1

N
o
1

—
(0]
1

214
Message Size (GB)

24

Next Steps

e Current results are simulation result and only show improvement over data transfer

» We are adapting vLLM and Deepspeed Inference to have end to end results
e VLLM and Deepspeed Inference already manger KV-Cache within GPUs

» Working with triggered operations with Cassini NICs and libfabric application for our workflow

23

Conclusion

e Proposed system that will transfer KV-Cache generated during LLM inference to storage
» Swap the KV-cache back when user sends follow up response
e Use of triggered operation to remove CPU overhead

e Future work on implementing the system to LLM inference platforms

24

Thank you

Aditya Dhakal
aditya.dhakal@hpe.com

© 2024 Hewlett Packard Enterprise Development LP

