

Hewlett Packard Enterprise

LLM Serving With Efficient KV-Cache Management Using Triggered Operations

Aditya Dhakal, Pedro Bruel, Gourav Rattihalli, Sai Rahul Chalamalasetti and Dejan Milojicic

May DD, 2024

Large Language Models : Introduction

- Large Language Models (LLMs) are widely used now for applications such as Chatbot, Knowledge summary, etc.
- Popular LLM model such as LLaMA, GPT, etc generate response based on *user's* prompts and context of the conversation
- State-of-the-art LLM models are very large in terms of memory and compute requirements
 - 70 billion parameters LLAMA models require 8 GPU clusters
- GPUs are expensive (estimates for March, 2024)

GPU Model	Cost GPU/hr (USD)	8X GPUs/hr
NVIDIA A100	\$2.21	\$17.86
NVIDIA H100	\$4.76	\$38.80

Multiplexing the GPUs

- Sharing the GPUs to run multiple user's queries will increase GPU utilization
- However, LLMs also requires large amount of memory just to operate
- One of the component for increased memory consumption is Key-Value cache (KV-cache)

Key Value (KV) Cache

- Key-value (KV) in LLM context is different from *Key-value pairs*
- Key value vectors are created in *attention layer* in the generation phase
- Example:
 - Query: "What are the colors in the Rainbow?"
 - Generated prompt: "The colors ..."
- Here, for the computation of next token after *"The colors"* uses KV vectors of previous tokens:
 - "What are the colors in the Rainbow? The colors"
- These KV vectors are invariant for same tokens. Thus, caching the KV vectors will greatly reduce the computation
 - KV-caches allow linear scaling

Why is KV-cache important?

- Lowers the computation for inference during **generation phase**
- Why save it then?
 - Preserves the context of the conversation
- We present an example
- KV-cache can also be a security issue

```
User: Please provide me with a
recipe for making cheesecake.
LLM: For the cheesecake... 350°F...
User: Only provide temperature in °C
from now on
LLM: OK.
...
User: What temperature should I set
the oven on?
```

Key Value Size

- KV-caching is compute-storage tradeoff
 - KV-cache size can easily exceed model size
- GPU memory is still limited (Max size: 192 GB)
- Swapping the KV-cache out of GPU
 - another user's queries to be processed (multiplexing)
- Using CPU to transfer data out of GPU to storage node increases latency
 - Use of CPU increases processing, data movement, network stack and context switching overhead

Triggered Operations for Data Transfer

- **Triggered operations** lets application enqueue data transfer requests in the NIC
 - Origin from Quadrics network
- Defer the transfer to future event (usually a counter or a flag called "Trigger")
- HPE Cassini NICs provide trigger operations
 - Currently supported with libfabric communication library
- Application must assign the memory buffer to transfer
- Trigger operations do not involve the CPU other than initial trigger setup

fi_trigger(3) Libfabric Programmer's Manual

NAME

fi_trigger - Triggered operations

SYNOPSIS

#include <rdma/fi_trigger.h>

DESCRIPTION

Triggered operations allow an application to queue a data transfer request that is deferred until a specified condition is met. A typical use is to send a message only after receiving all input data.

Libfabric description of trigger ops support source: https://ofiwg.github.io/libfabric/v1.9.1/man/fi_trigger.3.html

- 1. User sets up the LLM and triggers
 - User sends their query for inference

- 1. User sets up the LLM and triggers
 - User sends their query for inference
- 2. LLM inference: query response is generated
 - The newly generated KV-Cache is transferred out of GPU by triggered operations

- 1. User 1 sets up the LLM and triggers
 - User 1 sends their query for inference
- 2. LLM inference: query response is generated
 - The newly generated KV-Cache is transferred out of GPU by triggered operations
- 3. User 1 receives query response
- 4. Delete KV-cache and infer user 2's request

- 1. User 1 sets up the LLM and triggers
 - User 1 sends their query for inference
- 2. LLM inference: query response is generated
 - The newly generated KV-Cache is transferred out of GPU by triggered operations
- 3. User 1 receives query response
- 4. Delete KV-cache and infer user 2's request
- 5. User 1 sends follow up request

- 5. User 1 sends follow up request
 - The match-action module in SmartNIC will match the user request
 - The NIC will then fetch the KV-cache for the User 1 from storage

- 5. User 1 sends follow up request
 - The match-action module in SmartNIC will match the user request
 - The NIC will then fetch the KV-cache for the User 1 from storage
- 6. The storage side smartNIC will transfer the data via RDMA to the compute accelerators
- 7. The accelerators receive the KV-cache

- 5. User 1 sends follow up request
 - The match-action module in SmartNIC will match the user request
 - The NIC will then fetch the KV-cache for the User 1 from storage
- 6. The storage side smartNIC will transfer the data via RDMA to the compute accelerators
- 7. The accelerators receive the KV-cache
- 8. LLM inference is conducted on new query and KV-cache is again stored with triggered ops

System Architecture

- Hardware/software components in SmartNICs to be able to transfer KV-cache to remote storage node
- We divide requirements for compute and storage node

System Architecture

Compute Node

- Match Action Module: matches incoming request and looks up where the KV-cache is located
- **KV-Cache Requestor**: Requests KVcache from multiple storage nodes
- **CPU:** SmartNIC CPU to facilitate Match Action and KV-cache requestor

System Architecture

- Storage Node
- Match Action Module: matches incoming KV-cache request
- NVMe P2P transfer module: Peer-topeer transfer software support for SmartNIC

NVMe Measurement Results

- Measured read and write latency to NVMe drive from same socket CPU
- We want to populate our model with realistic values
- We see the RandRead is about same as Read
- Writes are however, much slower than read and latency increasing with larger data sizes (128MB)
- This influenced our decision to store chunks of KV-cache at a time than whole KV-cache

Simulation Parameters

- To create our data transfer model, we benchmarked relevant hardware and chose the values in Table II and Table III
- We used bandwidth and latencies value for different hardware in the system
- We simulated the results for 8 H100 GPU and 1 NIC per GPU.
- We modeled the link between compute and storage server with a 100 Gbps connection

TABLE II: Bandwidth parameters used in simulation, where m is the message size in bytes.

Parameter	Value $\left(\frac{1}{bytes/s}\right)$	Description
$\beta_{\rm PCIE}$	8.12×10^{-12}	PCIE bandwidth
β_{VRAM}	4.55×10^{-13}	GPU memory bandwidth
$\beta_{ m CPU}$	4.55×10^{-13}	CPU estimated bandwidth
$\beta_{\rm DRAM}$	1.21×10^{-12}	Node memory bandwidth
$\beta_{\rm NIC \ serial.}$	5.13×10^{-11}	NIC serialization bandwidth
$\beta_{\rm NIC\ mem}$	1.43×10^{-11}	NIC memory bandwidth
$\beta_{\rm NIC \ alu}$	5.22×10^{-12}	NIC ALU bandwidth
$\beta_{\rm NVMe_write}$	$\frac{1}{2.34 \times 10^9 + 6.83m}$	NVMe write bandwidth model
$\beta_{\rm NVMe_read}$	$\frac{1}{5.22 \times 10^9 + 19.4m}$	NVMe read bandwidth model

TABLE III: Latency parameters used in simulation, where m is the message size in bytes.

Parameter	Value (s)	Description
$\lambda_{ m PCIE}$	3.2×10^{-8}	PCIE latency
$\lambda_{ m NVMe_write}$	$3.3 + 4.10 imes 10^{-7} m$	NVMe write latency model
$\lambda_{ m NVMe_read}$	$2.03 + 2.63 \times 10^{-7}m$	NVMe read latency model
$\lambda_{ m network}$	1.21×10^{-12}	Network latency

Simulated Results

• GPU-initiated (Trigger ops) transfer shows much lower latency at smaller data size

Simulated Results

• GPU-initiated (Trigger ops) transfer shows lower latency at higher and more practical data sizes as well

Speedup

• We get 19x speed up with Triggered-ops data transfer vs. CPU-centric data transfer

L

Next Steps

- Current results are simulation result and only show improvement over data transfer
- We are adapting vLLM and Deepspeed Inference to have end to end results
 - vLLM and Deepspeed Inference already manger KV-Cache within GPUs
- Working with triggered operations with Cassini NICs and libfabric application for our workflow

Conclusion

- Proposed system that will transfer KV-Cache generated during LLM inference to storage
- Swap the KV-cache back when user sends follow up response
- Use of triggered operation to remove CPU overhead
- Future work on implementing the system to LLM inference platforms

Thank you

Aditya Dhakal aditya.dhakal@hpe.com

