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• Large Language Models (LLMs) are widely used now for applications such as 
Chatbot, Knowledge summary, etc. 

• Popular LLM model such as LLaMA, GPT, etc generate response based on user’s 
prompts and context of the conversation

• State-of-the-art LLM models are very large in terms of memory and compute 
requirements
• 70 billion parameters LLAMA models require 8 GPU clusters

• GPUs are expensive (estimates for March, 2024)

Large Language Models : Introduction

GPU Model Cost GPU/hr (USD) 8X GPUs/hr

NVIDIA A100 $2.21 $17.86

NVIDIA H100 $4.76 $38.80
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• Sharing the GPUs to run multiple user’s 
queries will increase GPU utilization

• However, LLMs also requires large amount of 
memory just to operate

• One of the component for increased memory 
consumption is Key-Value cache (KV-cache)

Multiplexing the GPUs
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• Key-value (KV) in LLM context is different from Key-value pairs

• Key value vectors are created in attention layer in the generation phase

• Example: 
• Query: “What are the colors in the Rainbow?”
• Generated prompt: “The colors …”

• Here, for the computation of next token after “The colors” uses KV vectors 
of previous tokens:
• “What are the colors in the Rainbow? The colors”

• These KV vectors are invariant for same tokens. Thus, caching the KV 
vectors will greatly reduce the computation
• KV-caches allow linear scaling

Key Value (KV) Cache
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What are … The colors

K V Q K V Q K V Q

o o o

<Next Prompt>

Required for Next prompt generation
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• Lowers the computation for inference during 
generation phase

• Why save it then?
• Preserves the context of the conversation

• We present an example

• KV-cache can also be a security issue

Why is KV-cache important?
User: Please provide me with a 
recipe for making cheesecake.

LLM: For the cheesecake... 350◦F...

User: Only provide temperature in ºC 
from now on
LLM: OK.
...
User: What temperature should I set 
the oven on?
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• KV-caching is compute-storage tradeoff
• KV-cache size can easily exceed model size

• GPU memory is still limited (Max size: 192 GB)

• Swapping the KV-cache out of GPU
• another user’s queries to be processed (multiplexing)

• Using CPU to transfer data out of GPU to storage node 
increases latency
• Use of CPU increases processing, data movement, network stack 

and context switching overhead

Key Value Size

KV-cache with 4K token size

KV-cache with 8K token size
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• Triggered operations lets application enqueue data 
transfer requests in the NIC
• Origin from Quadrics network

• Defer the transfer to future event (usually a counter 
or a flag called “Trigger”)

• HPE Cassini NICs provide trigger operations 
• Currently supported with libfabric communication library

• Application must assign the memory buffer to 
transfer

• Trigger operations do not involve the CPU other than 
initial trigger setup

Triggered Operations for Data Transfer

Libfabric description of trigger ops support
source: https://ofiwg.github.io/libfabric/v1.9.1/man/fi_trigger.3.html

NICApplication

Buffer

Register

Data transfer once trigger 
threshold is reached
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7 KV-cache

Our Workflow

1. User sets up the LLM and triggers
• User sends their query for inference
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Our Workflow

1. User sets up the LLM and triggers
• User sends their query for inference

2. LLM inference: query response is 
generated

• The newly generated KV-Cache is 
transferred out of GPU by triggered 
operations
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Our Workflow

1. User 1 sets up the LLM and triggers
• User 1 sends their query for inference

2. LLM inference: query response is 
generated

• The newly generated KV-Cache is 
transferred out of GPU by triggered 
operations

3. User 1 receives query response

4. Delete KV-cache and infer user 2’s 
request
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Our Workflow

1. User 1 sets up the LLM and triggers
• User 1 sends their query for inference

2. LLM inference: query response is 
generated

• The newly generated KV-Cache is 
transferred out of GPU by triggered 
operations

3. User 1 receives query response

4. Delete KV-cache and infer user 2’s 
request

5. User 1 sends follow up request
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Our Workflow

5. User 1 sends follow up request
• The match-action module in SmartNIC will 

match the user request
• The NIC will then fetch the KV-cache for 

the User 1 from storage
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Our Workflow

5. User 1 sends follow up request
• The match-action module in SmartNIC will 

match the user request
• The NIC will then fetch the KV-cache for 

the User 1 from storage

6. The storage side smartNIC will transfer 
the data via RDMA to the compute 
accelerators

7. The accelerators receive the KV-cache



14

GPUs CPUs SmartNICs User

Setup LLM,
Triggers

LLM
Inference

Query
response

User query

External Storage
(NVMe Queues)

Follow up
query

Match
Action KV Cache Get

RDMA/Transfer
over fabric

LLM
Inference

1

2

3

5

6

Triggered Per-token
KV-cache Put

8

Triggered Per-token
KV-Cache Put

Delete KV-cache
and 

Infer other users' queries

4

7 KV-cache

Our Workflow

5. User 1 sends follow up request
• The match-action module in SmartNIC will 

match the user request
• The NIC will then fetch the KV-cache for 

the User 1 from storage

6. The storage side smartNIC will transfer 
the data via RDMA to the compute 
accelerators

7. The accelerators receive the KV-cache

8. LLM inference is conducted on new 
query and KV-cache is again stored 
with triggered ops
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• Hardware/software 
components in 
SmartNICs to be able to 
transfer KV-cache to 
remote storage node

• We divide requirements 
for compute and storage 
node

System Architecture
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• Compute Node

• Match Action Module: matches incoming 
request and looks up where the KV-
cache is located

• KV-Cache Requestor: Requests KV-
cache from multiple storage nodes

• CPU: SmartNIC CPU to facilitate Match 
Action and KV-cache requestor

System Architecture
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• Storage Node

• Match Action Module: matches incoming 
KV-cache request 

• NVMe P2P transfer module: Peer-to-
peer transfer software support for 
SmartNIC

System Architecture
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• Measured read and write latency to NVMe 
drive from same socket CPU

• We want to populate our model with 
realistic values

• We see the RandRead is about same as 
Read

• Writes are however, much slower than read, 
and latency increasing with larger data 
sizes (128MB)

• This influenced our decision to store 
chunks of KV-cache at a time than whole 
KV-cache

NVMe Measurement Results
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• To create our data transfer model, we 
benchmarked relevant hardware and 
chose the values in Table II and Table III

• We used bandwidth and latencies value 
for different hardware in the system

• We simulated the results for 8 H100 GPU 
and 1 NIC per GPU. 

• We modeled the link between compute 
and storage server with a 100 Gbps 
connection 

Simulation Parameters
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• GPU-initiated (Trigger ops) transfer 
shows much lower latency at smaller 
data size

Simulated Results
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• GPU-initiated (Trigger ops) transfer 
shows lower latency at higher and 
more practical data sizes as well

Simulated Results
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• We get 19x speed up with 
Triggered-ops data transfer vs. 
CPU-centric data transfer 

Speedup
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• Current results are simulation result and only show improvement over data transfer

• We are adapting vLLM and Deepspeed Inference to have end to end results
• vLLM and Deepspeed Inference already manger KV-Cache within GPUs

• Working with triggered operations with Cassini NICs and libfabric application for our workflow

Next Steps
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• Proposed system that will transfer KV-Cache generated during LLM inference to storage

• Swap the KV-cache back when user sends follow up response

• Use of triggered operation to remove CPU overhead

• Future work on implementing the system to LLM inference platforms

Conclusion



© 2024 Hewlett Packard Enterprise Development LP

Aditya Dhakal
aditya.dhakal@hpe.com

Thank you


