Isambard-AI: a leadership class supercomputer optimised specifically for Artificial Intelligence

Simon McIntosh-Smith Sadaf R Alam Christopher Woods CUG May 2024

Outline

- Background and timeline
- Design specifications for an AI Research Resource (AI RR)
- Implementation details
- Future outlook

Design Specifications for AI Research Resource (RR)

Users of compute

PIONEERS	ESTABLISHED USERS	EMERGING USERS	AI USERS	٨
Cutting-edge computational research	Large-scale modelling, simulations and data science	Small-scale modelling and simulations	All scale AI training and AI-based research	Δy
World-leading science, research, development and innovation	Use in a particular research domain	Use in traditionally non-compute-intensive disciplines	Use in Al training and inference	Su
Sectors include	Sectors include	Sectors include	Sectors include	
WEATHER			TRANSPORT	
ENERGY DEFENCE	ENGINEERING		HEALTH	Ag
TIERS	TIERS	TIER		
0 and 1	1 and 2	3	Private facilities	
	Private facilities	Commercial cloud	Commercial cloud	
Specific needs	Specific needs	Specific needs	Specific needs	Pe
Performant software	More accelerators Wore capability: up to 150 petaflops	Awareness and better access Technical support	At least 3,000 top-specification accelerators	
Skills	Security 💭 Da	ta ()	Partnerships	Sı

Accessible to all users

Sustainable AI supercomputing

Accessible to all sectors

Performance for all tiers

Sustainable AI RR program

References: <u>Independent Review of The Future of Compute: Final report and recommendations, March</u> 2023; <u>National AI Strategy - AI Action Plan, July 2022;</u> <u>£300 million to launch first phase of new AI Research Resource</u> University of **BD ISTOI**

What is Isambard-Al for?

- UKRI-funded AI research in the UK, e.g.:
 - Training large language models
 - Large-scale inference
 - Foundational AI research
 - Al safety and understanding
 - Hybrid AI + simulation workflows
 - Machine learning
- Research on Isambard-Al must have a strong Al component
- Accommodate GPU jobs at any scale
 - Interactivity via JupyterHub—single to 100s of GPUs
 - Long running jobs for large-scale training—10s to 1000s of GPUs

UK Research and Innovation

Department for Science, Innovation, & Technology

Isambard 3 – Leading ARM based HPC since 2016

- Built on the success of Isambard 1 and 2 ARM based HPC supercomputing concept
 - Nvidia Grace ARM processors
 - 55,000 cores
- High speed network connectivity
 - Cray/HPE SlingShot 11 (made in Bristol)
- Air cooled racks i.e. not HPE Cray EX
- Nvidia and HPE/Cray programming environments for easy transition from Isambard 2

Nvidia ARM Grace Superchip

Design points and constraints for Isambard-Al

- Self Contained Units (SCUs) for rapid deployment and sustainability
- Al and performance optimised compute and network
- Physical space limits
- Direct liquid cooling
- Storage and data platforms for AI
- High performance, cloud-native software ecosystem for AI platforms
- Lowering accessibility barriers and federation
- Cybersecurity and RBAC (roles based access controls)

Please see paper for details

Self Contained Units—Modular Data Centre (MDC)

- HPE Performance Optimised Data Centre (POD) solution
 - Rapid deployment
 - Customised for requirements e.g. DLC, security, power, cooling, etc.
 - Contains everything
 - IT modules
 - Power modules
 - Cooling modules
- Sustainability
 - Operational usage e.g. low PUE
 - NetZero emissions reporting
 - Fine grain and holistic telemetry
 - Recycle and reuse

Isambard Site on March 15, 2024

MDC craning (on a cloudy, windy day)

Chiller and pump skid

Utilities and network connection from NCC to MDC

University of BRISTOL

The Isambard Site

Isambard-AI AIRR:

- Phase 1 arrived in March 2024
- Phase 2 arrives late summer (July)
- >£200M including Modular Data Centre, all cooling etc.
- >£300M total investment over 5 years
- 5MW
- Extremely energy efficient, PUE <1.1
- Almost entirely direct liquid cooling, plans to reuse the waste heat

Sustainability as a Key Design Principle

- Optimisation targets
 - PUE = Power Usage Effectiveness
 - Target <1.1
 - CUE = Carbon Usage Effectiveness
 - Non-fossil fuel sources
 - Plan for heat reuse for nearby buildings and local district heat circuit in future
- Aligning with university of Bristol Net Zero and sustainability targets for 2030
 - Categorising emissions
 - Scope 1 (~0%), 2 (90%) and 3 (10%)—based on an average UK data of 0.2123 kg CO2/kWh (IEA 2022 data)
 - Recycling 90% of components at the end of life in the UK

HPE EX Series DLC and GH 200

- HPE EX solution
 - Direct liquid cooling for high performance computing and networking
- 4-way Grace-Hopper superchip

- Figure 5. Memory Accesses across NVLink-connected Grace Hopper Superchips
- Source: NVIDIA Grace Hopper Superchip Architecture Whitepaper

FIGURE 1. HPE Cray EX cabinet exploded view

Source: HPE CRAY EX Liquid-Cooled Cabinet for Large Scale Systems brochure

Grace-Hopper Superchip & HPE EX Compute Blade

Source: NVIDIA Grace Hopper Superchip Architecture Whitepaper

Source: HPE EX4000 Grace-Hopper blade

4 x Grace ARM CPUs 288 cores 512 GB Memory

4 x Hopper GPUs ~260 64-bit Tflops, ~16k 8-bit Tflops 384 GB High Bandwidth Memory

896 GB Memory Total NVLink-C2C = 900 GB/s

Isambard-AI node = 4 x GH200 Injection bandwidth = 4 x 200 Gbps

Memory Architecture of GH 200

A boon for developers and users

Figure 7. NVIDIA Hopper System with Disjoint Page Tables

Figure 8. ATS in an NVIDIA Grace Hopper Superchip System

Source: NVIDIA Grace Hopper Superchip Architecture Whitepaper

In PCIe-connected x86+Hopper systems, the CPU and the GPU have independent per process page tables, and system allocated memory is not directly accessible from the GPU Address Translation Service (ATS) enables the CPU and GPU to share a single per-process page table, enabling all CPU and GPU threads to access all system-allocated memory

HPE SlingShot High Speed Interconnect for AI & HPC

Source: https://www.nextplatform.com/2019/08/16/how-cray-makes-ethernet-suited-for-hpc-and-ai-with-slingshot/

Liquid cooled interconnect (sustainability & scalability)

Example with 16-switch group

2 switches per chassis for single injection to 32 compute nodes (8 compute blades)

6 switches per cabinet for single injection to 256 compute nodes (64 compute blades)

Optical connections

FIGURE 7. Example of Dragonfly topology in HPE Slingshot switches

Source: HPE CRAY EX Liquid-Cooled Cabinet for Large Scale Systems brochure

High performance, cloud-native software ecosystem for AI platforms

CSM provisioning system

Multi-tenant setup

Lowering Access Barriers

- Single sign-on access with federated academic and research credentials
 - MyAccessID common identity layer
 - Supported by JISC UK Access Management Federation (UKAMF)
 - Security via multi-factor authentication for different service layers (web & ssh)
- Self-service, cloud-native user and project management portal
- Single pane of glass for accessing all services on Isambard AI including accounting and reporting

Source: Federated access to Isambard-AI - Requirements for attribute release by IDPs-- a joint presentation at March'24 HPC SIG by university of Bristol and JISC colleagues

Improving User and Usage Productivity

- Interactive compute with JupyterHub on Isambard AI
 - Supporting NGC (Nvidia GPU Cloud) containers
- Supporting common usage patterns for AI
 - 1. Experimentation: shorter period with large capacity, interactivity and steering needs
 - 2. Training: longer periods, days to months on large capacities
 - 3. Fine tuning: shorter period with low capacity
- Leveraging Google's AI computing approaches
 - Flex Start with guaranteed completion aka HPC/slurm batch—with periodic checkpoint/restart (2)
 - Calendar with start/stop time aka HPC/slurm reservation—needs automation (1, 3)
- Simpler to implement for 1 to 1000s of GPUs due to tightly integrated Isambard AI computer, high performance network & storage resources (unlike public cloud)

Source: Google AI Hypercomputer

Cybersecurity and RBAC (roles based access controls)

- UK legislative requirements for a comprehensive view of AI RR available to academic and research communities for open research in AI safety
- Access models and threat models being defined
- CSM RBAC for API and CLI

University of

- TAPMS for multi-tenancy
- SlingShot isolation and VNI tagging
- VAST Software Defined Storage alongside ClusterStor

CSM Identity and Access Management (IAM)

		Isambard-AI Phase 1	Isambard-AI phase 2	Isambard 3	
Total node	es & superchips	42 nodes / 168 Nvidia GH200 superchips	1,320 nodes / 5,280 Nvidia GH200 superchips	384 nodes / 384 Nvidia Grace superchips	
Compute	per node	288 Grace cores, 4 H100 GPUs	288 Grace cores, 4 H100 GPUs	144 Arm Neoverse v2 cores	
Memory p	er node	512 GB LPDDR + 384 GB HBM3	512 GB LPDDR5 + 384 GB HBM3	256 GB LPDDR5	
Network i	njection per node	4 x 200 Gb/s Slingshot	4 x 200 Gb/s Slingshot	1 x 200 Gb/s Slingshot	
Storage		~1 PB all-flash ClusterStor E1000 Lustre	~20.3 PB all-flash ClusterStor E1000 Lustre, ~3.56 PB VAS	~2.3 PB ClusterStor E1000 Lustre	
Programn	ningenvironment	Cray PE / NVIDIA HPC SDK / Arm compilers	Cray PE / NVIDIA HPC SDK / Arm compilers	Cray PE / NVIDIA HPC SDK / Arm compilers	
Types of c	ompute racks	Cray EX2500	Cray EX4000	Cray XD2000	
Number cabinets	of compute	1	12	6	
MDC POD)	DC20 (modified for EX2500)	DC10 with air cooled parts	DC20 air cooled	
University of BRISTOL					

scaling out in two phases

Phase 1 (~0.7 8-bit AI Exaflops)

Arrived in March 2024 – in Isambard 3 MDC

1 x DLC EX2500 cabinet

42 blades (4-way Grace-Hopper) 168 GH superchips 12,096 Neoverse V2 Armv9 CPU cores 168 Hopper GPUs 21.5 TB CPU memory 16.1 TB high bandwidth GPU memory 37.6 TB total memory

Al high performance storage

~1 PB all-flash ClusterStor Lustre

Phase 2 (~21 8-bit AI Exaflops)

Arriving Summer 2024 – new Isambard-AI MDC

12 x DLC EX4000 cabinets

660 blades (4-way Grace-Hopper) 5,280 GH superchips 380,160 Neoverse V2 Armv9 CPU cores 5,280 Hopper GPUs 675 TB CPU memory 506 TB high bandwidth GPU memory 1.18 PB total memory

AI high performance storage

~27 PB all-flash storage! (~20 PB Lustre, ~7 PB software defined VAST)

Thank you

Stay tuned!

THE BLETCHLEY DECLARATION

WORLD FIRST AGREEMENT ON SAFE AND RESPONSIBLE DEVELOPMENT OF FRONTIER AI

- 28 COUNTRIES FROM ACROSS THE GLOBE, AND THE EU
- IDENTIFYING AI OPPORTUNITIES AND
- RISKS
- BUILDING A SHARED UNDERSTANDING
- OF THESE RISKS
- INTERNATIONAL COLLABORATION ON SCIENCE AND RESEARCH