N
i@ Los Alamos

Zero Downtime System Upgrade
Strategy

Alden Stradling, Joshi Fullop

May 9, 2024

LA-UR-24-24407

N
MMAY% Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

3/7/24

1



Toward Zero Downtime

« Clarifying:
« Zero Downtime means that a given cluster is never 100% unavailable to
users at any given time.
» There’s always some loss of efficiency during an upgrade
 This focuses on Cray EX with CSM > 1.3.X
« Will not work for all use cases, depending on appetite for risk.
* Major Slurm upgrades may be better done with a downtime

» Major fabric upgrades will require downtime

AAAAAAAAAAAAAAAAAA



Just Trying to Keep My Customers Satisfied

 The science must flow. But systems must be patched.
* Visible system downtime is... unwelcome

» System flaws introduced adding desired changes are...
even more unwelcome

 Visible downtime that reverts the desired changes that
introduced the system flaws is... supremely unwelcome

 Visible downtime to finally reintroduce the desired
changes in a way that works is... grudgingly accepted

 |deally... what if users got the changes and didn’t have to
get the downtime at all?

1% Los Alamos 3

AAAAAAAAAAAAAAAAAA



Efficiency Comparison (ex: 6,000 nodes, 8h downtime)

« Classic downtime:
* Node Hours (NHrs) = Nodes down * hours down
« 6000 N * 8h =48,000 NHrs
« What if you hit a roadblock and hold overnight?
« 6000 N *28h = 168,000 NHrs
* Rolling downtime:
* Prep time:

» 168 NHrs per week per node. Easy to take 1 node for initial phase of
rollout

« Take 16 nodes: 2,688 NHrs/week. Very moderate by comparison.

1% Los Alamos

AAAAAAAAAAAAAAAAAA



Efficiency Comparison (ex: 6,000 nodes, 8h downtime)

» Rolling downtime (continued):
« Admin scale testing — say we take 10% of the cluster for a test
» Break-even is at 80h, or ~3 24h days (far more than usually needed)
 4h at 600 nodes = 2,400 NHrs
 Distinct from user testing
* Rolling reboot at the end of testing:

* 90% of the cluster at 30m per rebooted node = 2,700 NHrs
* (2,700 + 2,400 + 168) NHrs = 5,268 NHrs << 48,000 NHrs

That would be great.




Further Reading

* This approach is not just system administrator's intuition. It is supported by
workflow traces and simulations.

* "Incorporating Staggered Planned Maintenance Reservations to Improve
Performance in Computational Clusters". CLUSTER Workshops 2023: 32-36

» See: https://dblp.org/rec/conf/cluster/JonesWHGDS23.html
» Using the BatSim to simulate realistic workload behaviors

« Binned rolling upgrades demonstrate significant improvements in queue wait
times

1% Los Alamos

AAAAAAAAAAAAAAAAAA


https://dblp.org/rec/conf/cluster/JonesWHGDS23.html

Classic Downtime

Rolling Reboot Outage

N
‘:9 Los Alamos 3424 7

NATIONAL LABORATORY



What Prevents This Utopia?

* Risk!

* We take the system away because if the changes screw up production jobs,
there’s a real impact

« Changes in config and deployed software create divergences in results.
Users need to be clear on the running config

* Inertia!
« Familiarity leads to speed. New approaches slow things down initially.
« Complexity!

* More moving parts in an upgrade when allowing for user job continuity.
Needs to be automated to avoid admin error and delays

AAAAAAAAAAAAAAAAAA



De-Risking, Breaking Inertia, Encapsulating Complexity

* Prerequisites:
» Automated Workload Management (WLM) reconfiguration (complexity)
« Slurm in this case, but by no means exclusive
« Simple tooling interface (inertia, complexity)
» User front-end node channeling (de-risking)
» Robust against in-flight failure (de-risking, complexity)
» Low-friction rollback (de-risking, complexity)
 Linking operations with image and config identifiers (complexity)
« WLM config file state management with VCS (de-risking)

AAAAAAAAAAAAAAAAAA



Getting It Done: Existing Tooling

» Using existing LANL WLM node list creation scripting
» Using existing Slurm tools SlurmctldParameters and RebootProgram
« Using existing LANL WLM scripts for responding to RebootProgram
« Using existing BOS v2 in conjunction with RebootProgram
* Bringing them together with relatively simple scripting:
* |Inputs are BOS template and node count to roll out
« Keeps state in rewritten slurm.conf file, stored in Git repo periodically
» Propagated with configless Slurm to avoid a lot of node work
» Hits preset limits (1 node, small test, scale test, rollout, rollback)

1% Los Alamos

AAAAAAAAAAAAAAAAAA



Just Trying to Keep My Customers Satisfied

» User interaction:

« Users use clusters as normal

» Users who want preview access to the new config (testing, builds)
* Log into a FE designated and tagged with the new build, DNS name
« Work with nodes tagged with the appropriate Slurm Feature

* When the upgrade is ready to roll out wide:
« Communicate that the cluster will be moving over
* Reboot all but one remaining FE, lock submission from last one

» All new jobs run in nodes with new Feature, nodes reboot as old jobs
end

AAAAAAAAAAAAAAAAAA



-

Rollback

* Most important de-risking:
« What happens if things go very wrong?
* Roll back to previous image. Same mechanism.
» Reboot FE nodes with old image, switch DNS name back
» Redo the transition with the old BOS template as the input
« Allow the whole system to roll back
» Low user impact

~NS
‘:9 Los Alamos 12

AAAAAAAAAAAAAAAAAA



Working Under Pressure

» Nontrivial human considerations:
« Temptation to “just fix it” in the tight constraints of a normal DST
» Heroic efforts are not sustainable
» Crappy hack solutions are not desirable or sustainable

» De-risking pressure-related errors and poor choices:
» Testing and scale testing take place over wider timeframes
« Time to try and try again to get things right
» Plenty of room to back out half-baked changes without jeopardizing others

1% Los Alamos

AAAAAAAAAAAAAAAAAA



Interruptions to Science

 |t's not just CPU time
» Scientists are expensive.
* Most of their expensive time on the system is getting things working

« Taking the system away burns their interactive time, usually at the worst
possible moment.

» Trust us, it's always just before a paper deadline
* Interruptions in configuration
 Recompile needed? Can be a massive interruption
» Get it done in pre-release testing time? Can happen in parallel

1% Los Alamos

AAAAAAAAAAAAAAAAAA



Summary

» Rollout/Rollback upgrades promise to keep users happy
» Systems are better maintained

« Better testing

« Better solutions to problems arising

« Happier sysadmins
« Wasted time can be minimized

» System testbeds can be used for testing more invasive/exotic interventions
with less interruption

* Rollbacks vastly reduce system downtime risk

1% Los Alamos

AAAAAAAAAAAAAAAAAA



