
3/4/243/7/24Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 1

Zero Downtime System Upgrade
Strategy

Alden Stradling, Joshi Fullop

May 9, 2024

LA-UR-24-24407

3/4/243/7/24 2

Toward Zero Downtime

• Clarifying:

• Zero Downtime means that a given cluster is never 100% unavailable to

users at any given time.

• There’s always some loss of efficiency during an upgrade

• This focuses on Cray EX with CSM > 1.3.X

• Will not work for all use cases, depending on appetite for risk.

• Major Slurm upgrades may be better done with a downtime

• Major fabric upgrades will require downtime

3/4/243/7/24 3

Just Trying to Keep My Customers Satisfied

• The science must flow. But systems must be patched.

• Visible system downtime is… unwelcome

• System flaws introduced adding desired changes are…

even more unwelcome

• Visible downtime that reverts the desired changes that

introduced the system flaws is… supremely unwelcome

• Visible downtime to finally reintroduce the desired

changes in a way that works is… grudgingly accepted

• Ideally… what if users got the changes and didn’t have to

get the downtime at all?

3/4/243/7/24 4

Efficiency Comparison (ex: 6,000 nodes, 8h downtime)

• Classic downtime:

• Node Hours (NHrs) = Nodes down * hours down

• 6000 N * 8h = 48,000 NHrs

• What if you hit a roadblock and hold overnight?

• 6000 N * 28h = 168,000 NHrs

• Rolling downtime:

• Prep time:

• 168 NHrs per week per node. Easy to take 1 node for initial phase of

rollout

• Take 16 nodes: 2,688 NHrs/week. Very moderate by comparison.

3/4/243/7/24 5

Efficiency Comparison (ex: 6,000 nodes, 8h downtime)

• Rolling downtime (continued):

• Admin scale testing — say we take 10% of the cluster for a test

• Break-even is at 80h, or ~3 24h days (far more than usually needed)

• 4h at 600 nodes = 2,400 NHrs

• Distinct from user testing

• Rolling reboot at the end of testing:

• 90% of the cluster at 30m per rebooted node = 2,700 NHrs

• (2,700 + 2,400 + 168) NHrs = 5,268 NHrs << 48,000 NHrs

That would be great.

3/4/243/7/24 6

Further Reading

• This approach is not just system administrator's intuition. It is supported by
workflow traces and simulations.

• "Incorporating Staggered Planned Maintenance Reservations to Improve

Performance in Computational Clusters". CLUSTER Workshops 2023: 32-36

• See: https://dblp.org/rec/conf/cluster/JonesWHGDS23.html

• Using the BatSim to simulate realistic workload behaviors

• Binned rolling upgrades demonstrate significant improvements in queue wait

times

https://dblp.org/rec/conf/cluster/JonesWHGDS23.html

3/4/24 7

Classic Downtime

Rolling Reboot Outage

3/4/243/7/24 8

What Prevents This Utopia?

• Risk!

• We take the system away because if the changes screw up production jobs,

there’s a real impact

• Changes in config and deployed software create divergences in results.

Users need to be clear on the running config

• Inertia!

• Familiarity leads to speed. New approaches slow things down initially.

• Complexity!

• More moving parts in an upgrade when allowing for user job continuity.
Needs to be automated to avoid admin error and delays

3/4/243/7/24 9

De-Risking, Breaking Inertia, Encapsulating Complexity

• Prerequisites:

• Automated Workload Management (WLM) reconfiguration (complexity)

• Slurm in this case, but by no means exclusive

• Simple tooling interface (inertia, complexity)

• User front-end node channeling (de-risking)

• Robust against in-flight failure (de-risking, complexity)

• Low-friction rollback (de-risking, complexity)

• Linking operations with image and config identifiers (complexity)

• WLM config file state management with VCS (de-risking)

3/4/243/7/24 10

Getting It Done: Existing Tooling

• Using existing LANL WLM node list creation scripting

• Using existing Slurm tools SlurmctldParameters and RebootProgram

• Using existing LANL WLM scripts for responding to RebootProgram

• Using existing BOS v2 in conjunction with RebootProgram

• Bringing them together with relatively simple scripting:

• Inputs are BOS template and node count to roll out

• Keeps state in rewritten slurm.conf file, stored in Git repo periodically

• Propagated with configless Slurm to avoid a lot of node work

• Hits preset limits (1 node, small test, scale test, rollout, rollback)

3/4/243/7/24 11

Just Trying to Keep My Customers Satisfied

• User interaction:

• Users use clusters as normal

• Users who want preview access to the new config (testing, builds)

• Log into a FE designated and tagged with the new build, DNS name

• Work with nodes tagged with the appropriate Slurm Feature

• When the upgrade is ready to roll out wide:

• Communicate that the cluster will be moving over

• Reboot all but one remaining FE, lock submission from last one

• All new jobs run in nodes with new Feature, nodes reboot as old jobs

end

3/4/243/7/24 12

Rollback

• Most important de-risking:

• What happens if things go very wrong?

• Roll back to previous image. Same mechanism.

• Reboot FE nodes with old image, switch DNS name back

• Redo the transition with the old BOS template as the input

• Allow the whole system to roll back

• Low user impact

3/4/243/7/24 13

Working Under Pressure

• Nontrivial human considerations:

• Temptation to “just fix it” in the tight constraints of a normal DST

• Heroic efforts are not sustainable

• Crappy hack solutions are not desirable or sustainable

• De-risking pressure-related errors and poor choices:

• Testing and scale testing take place over wider timeframes

• Time to try and try again to get things right

• Plenty of room to back out half-baked changes without jeopardizing others

3/4/243/7/24 14

Interruptions to Science

• It’s not just CPU time

• Scientists are expensive.

• Most of their expensive time on the system is getting things working

• Taking the system away burns their interactive time, usually at the worst

possible moment.

• Trust us, it’s always just before a paper deadline

• Interruptions in configuration

• Recompile needed? Can be a massive interruption

• Get it done in pre-release testing time? Can happen in parallel

3/4/243/7/24 15

Summary

• Rollout/Rollback upgrades promise to keep users happy

• Systems are better maintained

• Better testing

• Better solutions to problems arising

• Happier sysadmins

• Wasted time can be minimized

• System testbeds can be used for testing more invasive/exotic interventions

with less interruption

• Rollbacks vastly reduce system downtime risk

