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Abstract—Exascale high performance computing (HPC) sys-
tems introduce new challenges related to fault tolerance due to
the large component counts needed to operate at such scales. For
example, the exascale Frontier system consists of approximately
60 million components. These counts warrant the investigation
of new approaches for helping to ensure the functionality, per-
formance, and usability of such systems. An approach explored
by the ExaDigiT project is use of digital twins to help inform
decisions related to the physical Frontier system. This paper
discusses a subset of ExaDigiT’s Facility Digital Twin (FDT),
the Network Digital Twin (NDT), which focuses on Frontier’s
network as a target use case. We present the various strategies
tested and early challenges faced towards the development of an
exascale NDT, with the hope that such knowledge would benefit
other practitioners who are interested in developing a similar
digital twin.

Index Terms—Digital Twin, Exascale, Network

I. INTRODUCTION

In Fall of 2022, the DOE Frontier system debuted at No.
1 on the TOP500 with an HPL score of 1.102 Exaflop/s1,
a notable feat given that it was the first exascale system to
appear on the Top500 list. Frontier consists of approximately
60 millions components. The size and complexity of this and
other exascale systems warrant the investigation of new ap-
proaches for helping to ensure the functionality, performance,
and usability of such systems.

One such approach currently being explored is use of digital
twins. The National Academy of Sciences, Engineering, and
Medicine (NASEM) define a digital twin as [17]:

“...a set of virtual information constructs that mimics
the structure, context, and behavior of a natural,
engineered, or social system (or system-of-systems),
is dynamically updated with data from its physical
twin, has a predictive capability, and informs deci-
sions that realize value. The bidirectional interaction
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between the virtual and the physical is central to the
digital twin.”

Of interest to this work and a related effort are the predictive
capabilities of digital twins. Specifically, their ability to be
used as a tool for continuous monitoring, early fault detection,
and identification of root causes.

Frontier entered production in April of 2023. As of March
2024, approximately 1.8 million jobs and counting have been
run across Frontier. Jobs range from production user workloads
to routine system testing and span from single-node counts
to the full 9,408 nodes. These jobs offer a great variety of
data that can be used to inform a digital twin of the physical
systems. Such data can help gain insights from visualization,
assess what-if scenarios, optimize system operation, or aid
virtual prototyping. One such effort aiming to make use of
this data to inform a digital twin is the ExaDigiT project.

ExaDigiT is a multidisciplinary effort spanning a variety
of institutions worldwide. A key goal of this community-
driven effort involves the design and development an open-
source framework for developing digital twins of liquid-cooled
supercomputers. The effort is guided by eight working groups
focused on different aspects of the FDT. As a part of the
efforts, various models for the FDT have been designed for
aspects such as power utilization.

However, development of an NDT is still in its early
stages due to difficulties in both modeling the network at
exascale, as well as challenges in acquiring data from network
communications. NDTs have a wide variety of potential use
cases, such as:

1) Evaluating Future Network Topologies: By virtually pro-
totyping new network architectures, using network simu-
lators, organizations can foresee potential challenges and
optimize the network before deploying it physically.

2) Optimizing Job Schedulers: NDTs can be used in combi-
nation with power-related data and reinforcement learn-
ing techniques to optimize job scheduling for power
efficiency.

3) Network Behavior Anomaly Detection: Unsupervised
machine learning can be applied on the NDT data for
detecting network anomalies or failures.

4) Situational Awareness: Visualization techniques can pro-
vide insights into network congestion and other condi-
tions, helping decision-makers understand the network’s
state better.



5) Network Model of Workloads: NDTs can be used to
simulate different workload scenarios, optimizing net-
work design and management to handle these workloads
effectively.

This paper describes our initial efforts investigating ap-
proaches and tools that may be helpful when preparing to
develop an NDT of Frontier. Specifically, we explored NDT
use cases and multiple tools including SST Macro, CrayPat,
Darshan+autoperf, and MPI tracing tools. The target use
case aims to collect network data and power data to help
understand the relationship between network congestion and
energy consumption of network-related hardware. Challenges
and issues encountered throughout this investigation are also
discussed.

The remainder of this paper is structured as follows: Section
II provides background on related work, Section III describes
our current methodology for simulating, visualizing, and vali-
dating the NDT. Section IV discusses existing challenges and
opportunities, and Section V concludes this paper.

II. BACKGROUND

In this section, we provide a background on the previous
work towards developing a digital twin of Frontier called
“ExaDigiT”, a background of Frontier’s hardware architecture
and Slingshot network, and a background of previous work on
modeling networks.

A. ExaDigit

ExaDigiT is an open-source framework for developing
comprehensive digital twins of liquid-cooled supercomputers,
as shown in Fig. 1 and presented in [19]. ExaDigiT contains
three main modules: (1) a thermo-fluidic cooling model, (2)
a Resource Allocator and Power Simulator (RAPS), and (3)
a visual analytics module, which uses both dashboards and
augmented reality. Telemetry data may be used for verification
and validation purposes by replaying the data through the
digital twin.

The integration of the NDT into the ExaDigiT FDT frame-
work involves either simulating or replaying workloads. While
telemetry provides CPU and GPU power traces at 15-second
time quanta, telemetry is not provided for network utilization,
which motivates part of the study in this paper, i.e., how can
we measure network communication statistics on applications.

The initial goal for ExaDigiT was to develop a framework
for end-to-end optimization of supercomputers. Such a tool
can be used for optimizing energy consumption and reducing
carbon emissions by making use of data center optimizers such
as the DCRL-Green tool for evaluating and designing carbon-
efficient data centers [21], as well as mitigating network
congestion [2]. To date, about six months of Frontier telemetry
have been replayed through the digital twin to perform verifi-
cation and validation, as well as to study power and cooling
efficiency. Such a framework allows researchers to perform
virtual prototyping and optimizations of existing and future
systems.

Fig. 1. ExaDigiT Facility Digital Twin (FDT) architecture [19].

The ExaDigiT effort has generated interest by supercomput-
ing centers from around the world, including CSC (Finland),
CINES (France), EPCC (UK), Pawsey Supercomputing Centre
(Australia), Jülich Supercomputing Centre (Germany), as well
as industrial partners such as Hewlett Packard Enterprise
(HPE) and NVIDIA. To accommodate the growing interest in
developing such a comprehensive digital twin, the ExaDigiT
community organizes monthly large-group meetings, in addi-
tion to multiple workgroups with their own meetings. Current
workgroups include: Use Cases and Digital Twin Architec-
tures, Documentation, Application Fingerprinting, AI/ML/RL,
Visual Analytics, Power and Cooling, Network, and Verifica-
tion, Validation, and Uncertainty Quantification (VVUQ).

In addition to the predictive capabilities, ExaDigiT contains
a visual analytics module, which has two types of interfaces:
a web-based dashboard for launching simulations and an
augmented reality (AR) model based on Unreal Engine 5.
The AR model can be used for visually interacting with the
system as well as replaying and visualizing power and thermal
telemetry. One of the interesting use cases of the augmented
reality model related to NDTs, is to be able to visualize
network congestion on the Slingshot network. The purpose
of such a visualization would be to provide a tool for HPC
engineers to debug challenging network congestion problems,
which are otherwise difficult to debug from a command-line
console. Fig. 2 uses the ExaDigiT’s AR model to reveal
the interconnectedness of Frontier’s nodes via its Slingshot
interconnect.

B. Frontier’s Network

Frontier consists of 9,408 HPE Cray EX235a nodes. Each
node features one 64-core AMD EPYC™ 7A53 CPU and four
AMD MI250Xs GPUs, each with two Graphics Compute Dies
(GCDs). On a given node, four Slingshot network interface
controller (NIC) are used to connect each GPU to the Slingshot
fabric. Direct connection of the NIC to each GPU is a strategic
innovation of the node design, since data mostly resides on the
GPUs. Frontier’s nodes are connected by HPE’s Slingshot 11
interconnect. The network has a three-hop dragonfly topology
consisting of 80 groups: one management, five I/O, and 74
compute groups. This topology is a direct network which uses
non-minimal routing to take advantage of additional fabric
paths to achieve higher bandwidth than using minimal paths



Fig. 2. Visualizations of Frontier network in Unreal Engine 5.

only. More details on Frontier’s network can be found in a
recent system architecture paper [3].

C. Networking Models

There have been a number of different approaches used to
tackle the problem of network modeling, such as: queuing
theory [8], network flow theory [12], parallel discrete-event
simulations [13], virtual-machine-based solutions [22], and
machine-learning techniques [2]. Moreover, analytical models
have been used to model network congestion [5]. The type
of digital twin may vary depending on the intended purpose.
Some digital twins are focused more on designing networks,
e.g., NVIDIA Air [1], while others focus more on managing
networks e.g., NetGraph [15], and even others for debugging
network congestion [5]. We currently use SST Macro [20] with
the Dragonfly motif for modeling Frontier’s network, as we
are primarily concerned with modeling network traffic within
fixed time quanta.

III. METHODOLOGY

After giving context on the FDT, Frontier’s Slingshot net-
work, and prior work, we now discuss methodologies explored
when investigating how to develop an NDT of Frontier. In
its current state, the ExaDigiT FDT is able to schedule
either synthetic workloads or replay historical workloads by
representing jobs as CPU and GPU utilization traces at 15-
second intervals. While the workloads run, a system power
utilization model dynamically estimates energy consumption
and energy conversion losses; simultaneously, a thermo-fluidic
cooling model dynamically predicts flow rates, temperatures,
pressure, pump speeds, etc. throughout the cooling system.
The immediate use case explored as a part of this work
entails the incorporation of network-related data alongside
more fine-grained power data (e.g., NIC power consumption).
Specifically, capturing the amount of packets sent and received
across the network at 15-second intervals to align with the
operating interval of the FDT. We anticipate such information
may be helpful for better understanding how network con-
gestion impacts network-related hardware power consumption.
Such an understanding could be used in conjunction with, for

example, application fingerprinting to model representative job
workloads or schedule jobs anticipated to make notable use of
Frontier’s network infrastructure around one another.

For a functional NDT, first we must ensure that the network
model closely replicates the operational functionality of Fron-
tier’s network and then ensure that the model can meet the real-
time constraints posed by the operational Frontier network.
Since the NDT works in tandem with Frontier’s network,
the predictions that the NDT provides using the telemetry
data communicated by Frontier’s network in real-time should
provide valuable insights, at least in near real-time, for the
NDT to be beneficial. To address the former requirement,
cycle-accurate simulation tools like SST Macro can be used
to develop a validated simulation model of Frontier’s commu-
nication network. However, the latter requirement is hard to
meet since such tools are characterized by extremely slow run-
time performance and cannot meet the real-time constraints
of an operational Frontier network. To address both of these
concerns, we propose to (a) start with the development of a
network simulator for the Frontier’s network using SST Macro,
(b) validate the simulation results from SST Macro using
the telemetry data, (c) use this validated model to run many
scenarios to generate large volumes of operational network
data, (d) use the collected data to train an accurate and efficient
machine learning model, and (e) use the faster inference
machine learning models as NDT that holds a better promise
to meet the real-time constraints of the operational Frontier
network. This approach is summarized in Fig. 5. The sections
following discuss progress implementing this approach and
observations on the steps that were actively worked upon.

A. Network Simulations

While there are a number of possible techniques that may
be used to model high-performance networks, given the size
of Frontier’s network and the level of realism that we desired,
we believe that using a parallel discrete event simulator was
the optimal choice for our goals. To that end, we used the
Structural Simulation Toolkit Macro Element Library, also
known as SST Macro [16].

We first created trace profiles of applications using the SST
DUMPI trace library2 for a number of representative HPC
benchmarks and proxy applications (e.g., LULESH, miniVite,
NAS Parallel Benchmarks, OSU Micro-Benchmarks). SST
DUMPI generates a trace of the application’s execution, which
includes timing information, size of messages sent or received,
the ranks of processes involved in communication, and other
relevant data. The traces generated by DUMPI can be used
within the broader SST framework. SST is capable of simulat-
ing complex computer systems, i.e., functioning as an NDT,
and the DUMPI traces can be fed into these simulations to
study how an MPI application would perform under different
conditions or hardware configurations.

In Fig. 3 we show three different types of visualization
plots from replaying SST DUMPI traces: fixed-time quanta

2https://github.com/sstsimulator/sst-dumpi



(FTQ), spyplot (either using NIC or MPI ranks), and a network
congestion plot. FTQ plots are a histogram providing a time-
dependent profile of what the application is doing. Here, the
FTQ plot at the top shows the percentage of time spent
in compute relative to MPI at a fixed interval of 1 ms.
Spyplots visualize traffic patterns via communication matrices,
showing either the number of messages or number of bytes
sent between two network endpoints. Here, the spyplot in
the middle shows the number of bytes transferred between
NICs of different nodes. Network congestion plots use color
to visualize network congestion across a given topology. Here,
the network congestion plot at the bottom shows network
congestion for six dragonfly groups, having 18 switches in
each group.

B. Simulation Validation

After simulation, our next goal was to identify a way
to verify and validate simulated network statistics. Initial
efforts to collect network-related data used CrayPat [10] and
Darshan+autoperf [7]. While these tools provided valuable
information, e.g., on time spent in specific MPI calls, it was
difficult to use these tools to compute statistics at fixed time
intervals over the course of the run; instead, statistics were
summarized across runs as a whole. For this reason, we
explored use of MPI tracing utilities to capture more fine-
grained statistics during job run time. Specifically, we explored
use of Libfabric’s hook fabric provider utility, fi hook3 and
MPI’s profiling interface, PMPI4. Using these utilities, we have
been able to capture MPI call details allowing us to identify
which ranks are interacting with one another, messages sizes,
and when the interactions occur during the run. Paired with
timestamps, this data allows us to bin MPI-related activity
over time to aggregate details such as message counts across
the target time interval. Though we have not yet done so,
we anticipate this approach to be helpful for validating SST’s
MPI-based spyplots capturing communication details between
ranks. Note, further investigation remains to find a way to
validate NIC-based spyplots.

Our long-term goal is to use the approaches used to validate
our network simulation scenarios (e.g., the planned workflow
in Fig. 4) to validate the digital twin. We use utilities such
as fi hook to extract statistics and use SST DUMPI and SST
Macro respectively to generate traces and simulate the traces.
We can compare the outputs of both methods to perform
validation studies.

C. Training Machine-learned NDTs

Once we are able to accurately simulate the network using
SST Macro, we can run simulations on a number of applica-
tions to curate a dataset for training a task-specific NDT as
shown in Fig. 5. In addition to data from the simulations, we
can also utilize data from the scheduler database, as well as
system telemetry data, which are described in more detail in
Table I. Because many different simulations will be required to

3https://ofiwg.github.io/libfabric/v1.13.1/man/fi hook.7.html
4https://github.com/hagertnl/mpi-trace
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Fig. 3. Sample SST Macro simulation results. From top to bottom: (1)
Fixed-time quanta visualization (1ms time epoch) from simulation of Nasa
Parallel Benchmark (NPB) class D block-tridiagonal solver at 1764 ranks, (2)
traffic pattern NIC spyplot running 1024 ranks on 16-node MiniVite random
geometric graph (RGG) benchmark, and (3) Network congestion plot.

curate an effective training dataset, integrating the validation
and simulation techniques into an existing test harness or
framework could help ease the process.

Depending on the end goal, different types of strategies may
be employed. Graph neural networks (GNN) are a natural fit
for modeling link-level network traffic, e.g., [11]. Recurrent
neural networks (RNN), such as Long Short-term Memory
(LSTM), along with temporal convolutional networks (TCN)
are able to capture the network’s temporal behavior for appli-
cations such as forecasting network traffic [6]. Reinforcement
Learning (RL) approaches are appropriate for solving opti-



Fig. 4. Workflow for validation of network simulations.

Fig. 5. Workflow for developing task-specific NDTs.

mization problems, such as routing, schedule, and workload
optimizations [4]. Almasan et al. [2] gives a good survey of
different approaches for developing machine-learned NDTs.

IV. CHALLENGES & OPPORTUNITIES

After presenting the methodology of developing of an NDT,
we now discuss the challenges and opportunities involved in
developing an NDT for Frontier.

A. Early Challenges

1) Data Availability: While telemetry data is readily avail-
able for power and cooling data, network-related telemetry
data must be obtained by systematically profiling applications.
Such a systematic analysis of applications can take a consid-
erable amount of time and research to develop a way to both
profile job workloads efficiently and extract the information
needed for validation with the NDT.

2) Data Visualization: Dealing with vast amounts of net-
working data becomes a challenge as it complicates the scene
complexity when visualizing the digital twin. In the context
of the NDT, the current visualization captures all network
connections between Frontier nodes (e.g., Fig. 2). The amount
of interconnectedness, however, can make it challenging to
gain meaningful insights related to network traffic. In the
future, finding meaningful subsets of connections to visual-
ize could be beneficial for improving the usefulness of the
visualization component. Such a visualization tool could help
HPC engineers debug network congestion problems, that are
otherwise difficult to diagnose.

TABLE I
TYPES OF DATA USED TO TRAIN NDT.

Job-level Data

MPI Comm. Matrix Between parallel tasks (MPI Ranks)
NIC Comm. Matrix Between network endpoints

(Compute Nodes)
Network Congestion Values On each NIC (Intra-job interference)
Scheduling Info Compute time, Comm. time,

Est. runtime, Num. processes, Num. nodes
Power Power traces of GPU & CPU

Topology-level Data

Network Congestion Values On each NIC (Inter-job interference)
Scheduling Data Task-to-core mapping,

Job-to-node mapping
System Throughput All jobs completion time
Other System Metrics Average system utilization,

Bandwidth utilization

3) Differing Timescales: Incorporating an NDT into the
FDT (Fig. 1) presents a challenge as the timescale of interest
is several orders of magnitude faster than the timescales of
interest for cooling and power simulators. For example, the
switching technology of the dragonfly network is between
100 to 350ns [9], [14], whereas Frontier system telemetry
is typically collected at 15-second time quanta. To work
around this challenge, a separate module with its own built-
in scheduler for studying issues such as network congestion
could be used. Such a module could be used to compute the
amount of time spent in communication, which could be used
to augment CPU/GPU utilization traces informing the FDT.

4) Simulation Time: Another difficulty we encountered had
to do with the length of time required to replay the traces
through SST Macro. Queue policies on Frontier limit jobs to
two hours for less than 92 nodes. We estimated that replaying
a single MPI rank on each node of Frontier would take more
than 30 hours. Tools such as SST-Core seek to speed up this
process by ∼7x [18], which still does not provide enough
speedup to fit within a two-hour allocation.

5) Tools: Another hurdle to overcome involved evaluating
the different types of tools that could be used to generate the
type of data necessary to validate the NDT. With a variety
of profiling and tracing tools available, it was unclear which
tools would best align with our NDT goals. In particular, the
15-second operating interval of the FDT was problematic for
reasons noted in IV-A3. Initially, we explored using profiling
tools such as CrayPat [10] and Darshan+autoperf [7]. How-
ever, such tools were not able to profile the applications in a
temporal way. MPI tracing tools, such as fi hook, were found
to align better with our goals of extracting intercommunication
statistics at 15-second intervals.

B. Opportunities

While it has taken a considerable amount of time and
effort to understand and evaluate different types of tools and
benchmarks for validating and simulating an NDT, we believe
we now have an established approach that can be used towards
building an exascale NDT. Scaling the NDT to exascale will
require overcoming of the hurdles mentioned in Section IV,



and performing validations and simulations for a variety of
benchmarks at increasing scales. Once we have sufficiently
verified and validated the method, we plan to demonstrate
dynamic visualizations of network traffic within ExaDigiT’s
AR model, as well as integration of the network statistics into
the FDT for investigating energy efficiency.

V. CONCLUSIONS

The size and complexity of exascale HPC systems warrant
the investigation of new approaches for helping to ensure the
functionality, performance, and usability of such systems. An
approach explored for easing maintenance of the exascale
Frontier system is the use of digital twins to help inform
decisions related to the physical system. This exploration has
been pursued as a part of the international ExaDigiT project.
The incorporation of an NDT into the FDT has been a key
area of interest for the project.

This paper discussed early efforts investigating ways to
incorporate an NDT into ExaDigiT’s FDT. As a part of
this, the paper discussed NDT use cases, early challenges,
methodologies, and long-term goals for the effort. Next steps
include validating simulated results across a number of ap-
plications, developing effective dynamic visualizations of the
NDT, and working to identify meaningful time intervals to
operate an NDT in the context of the FDT. Moreover, we
would like to use these techniques discussed to develop models
for power predictions, study network congestion, and routing
optimization.
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