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Motivation

• Resiliency a fundamental challenge 
for exascale systems
– ~60M components in Frontier

• Component counts and complexity 
lead to more and new failures

• Important to ensure system 
functionality, performance, and 
usability

• Talk captures investigation of 
network digital twins

https://www.flickr.com/photos/olcf/52117623843/in/album-72177720299483343/
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Frontier

https://www.flickr.com/photos/olcf/52117623763/in/album-
72177720299483343/

• 9,408 HPE Cray EX235a nodes

• Theoretical peak of 2 Exaflop
– Compute similar to 194,544 PS5s

• 74 cabinets weighing 8,000 pounds each
– Total weight similar to a Boeing 747

• 90 miles of network cables
– Perth to Wedge Island

• 700 PB of Lustre storage
– 25 Mt. Everests of DVDs
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Digital Twins

• National Academy of Sciences, Engineering, and Medicine 
(NASEM) define a digital twin as:
– “A digital twin

• is a set of virtual information constructs that mimics the structure, context, and 
behavior of a natural, engineered, or social system (or system-of-systems),

• is dynamically updated with data from its physical twin,
• has a predictive capability, and
• informs decisions that realize value.

– The bidirectional interaction between the virtual and the physical is 
central to the digital twin.”
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ExaDigiT

• Multidisciplinary international 
collaboration
– Academia, HPC centers, industry

• Community-driven effort to design 
open-source framework for digital twins 
of liquid-cooled supercomputers

• Effort guided by 8 working groups

• Differing progress across groups, e.g.,:
– Established cooling and power models
– Early investigation for network model
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Architecture Overview
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Resource Allocator and Power Simulator (RAPS)

• Enables replay and 
simulation of jobs

• Shows jobs running 
through queue

• Captures cooling, 
power, etc.

• Calculates efficiency, 
carbon emissions, etc.

• Replayed 183 days of 
Frontier data
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Frontier Augmented Reality (AR) Environment

• Interactive scene visualizing Frontier
– Implemented using Unreal Engine 5
– Interaction using Microsoft HoloLens

• Color-coded visualization of various 
data gathered on Frontier

• Filters allow viewing of:
– Cabinet interior (i.e., nodes),
– Cooling infrastructure,
– Network infrastructure,
– Power infrastructure, etc.
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AR Network Infrastructure

• Recently added network 
visualization capabilities

• Connections can be color-coded

• Currently displaying all connections
– Filter logic needed

• Network-related data not yet 
incorporated
– Working to identify and gather such 

data as a part of this work



1010

Network Digital Twins

• Mimics network infrastructure and transmission of data
– Dynamically updated with data from its physical twin

• Example Use Cases:
– Understanding and mitigating network congestion

• e.g., congestion studies and routing optimization

– Application fingerprinting
• e.g., characterize and model workloads

– Improve parallel discrete event simulator models (e.g., those in SST)
• e.g., validate network models at first-of-kind scales
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Target Use Case

• Short-Term: Extend RAPS functionality
– RAPS uses CPU and GPU utilization to model system power
– Improve workload modeling by adding network utilization

• Long-Term: Application fingerprinting
– Aim to collect:

• Message sizes and counts for transfers across network
• Network-related hardware power consumption

– Combine the two for application fingerprinting
• i.e., identify types of workloads stressing the network
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Tools

• SST/macro (Structural Simulation Toolkit)
– Platform to simulate full-scale machines and evaluate changes
– Models to estimate processing and network component performance

• SST DUMPI Trace Library
– Trace collection and replay tools for MPI applications
– SST/macro uses trace data to simulate machine variations

• Custom MPI Tracers
– fi_hook utility and PMPI used to trace calls

• Also explored CrayPat and Darshan+autoperf
– Too coarse-grained (e.g., summarized statistics after run)
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Goal

• Trace applications with SST DUMPI

• Replay traces with SST/macro 

• Trace applications with MPI tracer(s)

• Validate simulations
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Progress

• Generated fixed-time quanta charts 
with SST (top)
– Time-dependent histogram showing split 

between compute and MPI
– 1764 rank NAS Parallel Benchmark run

• Block tri-diagonal solve

• Generated spyplots with SST (bottom)
– Visualizes message counts or bytes 

between network endpoints
– 16 node miniVite run

• Graph analytics benchmark tool
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Progress (cont.)

• Explored CrayPat and Darshan
– Moved to tracing for more fine-grained data

• Evaluating two approaches
– Collecting traces using libfabric’s hook fabric provider utility, fi_hook
– Collecting traces using PMPI 

• https://github.com/hagertnl/mpi-trace

• Example output:

• Validation of SST a work in progress

[Rank 63] MPI_Irecv started 1713984327.205686331, ended 1713984327.205687046 (elapsed 0.000000715), moved 1572864 bytes from source 59
[Rank 63] MPI_Irecv started 1713984327.205688477, ended 1713984327.205688715 (elapsed 0.000000238), moved 1572864 bytes from source 62
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Challenges

• Data Availability
– Cooling and power data readily available

• Network data hasn’t been as readily available

– Manual data collection is time intensive
• Complicated by uncertainty in which tools are useful

• Data Visualization
– Node-level details easier to visualize

• e.g., GPU interconnectedness not needed when visualizing power

– Network visualization complex due to interconnectedness
• Difficult to gather meaningful insight from full view
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Challenges (cont.)

• Differing Scales
– Digital twin operates on 15-second intervals
– Network time scale much faster

• e.g., 100-350 ns for switching technology

– Unclear how to incorporate network data
• Aggregate data to align with 15-second interval?
• Operate network data on separate interval?

• Simulation Time
– Explored use of simulation to inform network digital twin
– Tens of hours to simulate runs with SST/macro

• Turn-around time not feasible
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ExaDigit Integration Goals

• Explore AI/ML as simulation alternative
– Train on validated simulation data
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ExaDigit Integration Goals (cont.)

• Extend Resource Allocator and Power Simulator capabilities
– Capture network-related data
– Study relationship between network and power

• Extend augmented reality scene
– Visualize messages sent/received
– Filter network components shown to meaningful subsets

• Explore ways to passively gather network data
– Eliminate need to manually gather data
– Capture network-related data across all jobs
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Conclusions

• Network digital twin important to overall digital twin
– Frontier’s scale helpful for validation

• Unclear how to best integrate a network digital twin
– Separate operating intervals?

• Challenging to find tools aligned with goals
– Suggestions?

• Tracers found most helpful
– Anticipate manual data collection and processing
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ExaDigiT Collaborations

• Monthly meetings and standalone working group meetings:
– Visual Analytics
– Application Fingerprinting
– Power & Cooling
– Use Cases & Architectures
– Documentation
– Networking
– AI/ML/RL
– Verification, Validation, and Uncertainty Quantification (VVUQ)

• If interested, contact Wes Brewer: brewerwh@ornl.gov
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