
Nine Months in the Life of an All-flash File System
Lisa Gerhardt∗, Stephen Simms∗, David Fox∗, Kirill Lozinskiy∗,

Wahid Bhimji∗, Ershaad Basheer∗, and Michael Moore†
∗Lawrence Berkeley National Laboratory/National Energy Research Scientific Computing Center, CA, US;

and †Hewlett Packard Enterprise, US;
Email: ∗ {lgerhardt, ssimms, dfox, klozinskiy, wbhimji, ebasheer}@lbl.gov, and † michael.moore@hpe.com

Abstract—NERSC’s Perlmutter scratch file system, an all-
flash Lustre storage system running on HPE (Cray) ClusterStor
E1000 Storage Systems, has a capacity of 36 PetaBytes and a
theoretical peak performance exceeding 7 TeraBytes per second
across HPE’s Slingshot network fabric. Deploying an all-flash
Lustre file system was a leap forward in an attempt to meet the
diverse I/O needs of NERSC. With over 10,000 users representing
over 1,000 different projects that span multiple disciplines, a
file system that could overcome the performance limitations
of spinning disk and reduce performance variation was very
desirable. While solid state provided excellent performance gains,
there were still challenges that required observation and tuning.
Working with HPE’s storage team, NERSC staff engaged in an
iterative process that increased performance and provided more
predictable outcomes. Through the use of IOR and OBDfilter
tests, NERSC staff were able to closely monitor the performance
of the file system at regular intervals to inform the process
and chart progress. This paper will document the results of
and report insights derived from over 9 months of NERSC’s
continuous performance testing, and provide a comprehensive
discussion of the tuning and adjustments that were made to
improve performance.

Index Terms—File systems, Lustre, Flash, NVMe, I/O perfor-
mance.

I. INTRODUCTION

Perlmutter [1], National Energy Research Scientific Com-
puting Center’s (NERSC) [2] flagship High-performance com-
puting system, uses an all-flash Lustre file system [3] for high-
speed I/O. Built on HPE (Cray) ClusterStor E1000 Storage
System [4], with a size exceeding 36 PB, the file system is
capable of delivering a theoretical peak performance in excess
of 7 TB/s across the HPE Slingshot network fabric [5].

Because I/O is such a critical component of the work done
at NERSC, optimizing performance and reducing performance
variation are very important to ensuring efficient usage of
resources. This has been a challenge, in part because NERSC
serves more than 10,000 users from 1,000 different projects
and the resulting workload is diverse, representing multiple
disciplines. To enable Perlmutter to deliver performance to
I/O patterns ranging from traditional checkpoint / restart to
file-per-process random access data analytics, we turned to an
all-NVMe [6] solution.

While designing the all-flash solution, we based our deci-
sions on a quantitative analysis [7]. Being able to effectively
balance capacity and cost was one of the crucial pieces of
this analysis, which coupled with the latest market offerings,
could allow us to offer NERSC users the low latency and high

bandwidth that solid state storage promises. We determined
that all-flash was becoming more affordable and therefore the
perfect solution for Perlmutter. In the analysis we identified
the optimal file system capacity, purge policy, required SSD
endurance, and desired modern Lustre features. Years of
historic workloads were analyzed to identify projections for
performance and throughput needs. The outcome was that we
were able to quantitatively demonstrate that it was economical
and advantageous to deliver Perlmutter with an all-flash file
system, which was one of the first of its kind.

While NVMe devices offered excellent performance com-
pared with hard disks by eliminating slow downs from seeks
and performance variation across tracks on the platter, they
were not free from performance challenges. To achieve op-
timal and consistent performance with an NVMe file system
required a lot of specific tuning.

Working with HPE’s storage team, NERSC staff engaged in
an iterative process that through time, increased performance
and provided more predictable outcomes. Through the use of
IOR [8] and obdfilter-survey [9], NERSC staff were able to
closely monitor the performance of the file system at regular
intervals to inform the process and chart progress. This paper
will document the results of and report insights derived from
over 9 months of NERSC’s continuous performance testing,
and provide a comprehensive discussion of the tuning and
adjustments that were made to improve performance.

II. PERLMUTTER’S SCRATCH FILE SYSTEM

Perlmutter Scratch is a Lustre file system comprised of
16 metadata servers (MDSes), an initial 274 object storage
servers (OSSes), and a total of 3,480 NVMe drives. Lustre
OSS and MDS pairs are contained within ClusterStor E1000
enclosures and use the kfabric Lustre network driver (kfilnd)
to communicate with clients across Perlmutter’s Slingshot
network. LDISKFS (based on EXT4) is used for the back-
end file system. A full description of Perlmutter’s scratch file
system can be found in ”Architecture and Performance of
Perlmutter’s 35 PB ClusterStor E1000 All-Flash File System”
[10].

At deployment, the system provided 33 PB of usable space
from 274 OSTs, but the capacity was increased to 36 PB from
298 OSTs in December of 2023. Each of NERSC’s 10,000
users receives their own directory with default quotas of 20TB
and 20M inodes. Directories are spread across the 16 metadata
servers and user directory assignment is determined by the



TABLE I
TIMELINE OF MAJOR ACTIVITIES ON THE PERLMUTTER SCRATCH FILE

SYSTEM

Date Configuration Change
September 2023 SafeRet BIOS Update Applied [11]
October 2023 Trim Frequency Increased
November 2023 Lustre Checksumming Turned On [12]
December 2023 File System Capacity Increase

Weighted Free Space Allocator Turned On
Automatically Disable Writes for OSTs >75% Full

February 2024 User Data Purging Began

first letter of the username. The above mentioned capacity
increase is only one change that the system has undergone
since Perlmutter was accepted in July of 2023; a list of notable
events is shown in Table I.

III. DATA COLLECTION

After acceptance, Perlmutter’s high-performance scratch file
system displayed intermittent, unexpectedly low write perfor-
mance which prompted an investigation. The initial inquiry
began with the hourly collection of data from IOR to help
identify and evaluate the source of this occasional drop in
write performance. These IOR runs were performed on 32
GPU nodes, writing and reading back approximately 250TB of
data. The output files were striped so each run would interact
with every OST on the system. These regularly run IOR tests
gave us the ability to track changes in overall performance
and eventually helped provide a metric for the file system’s
quality of performance.

At the beginning of the investigation, ad-hoc testing with
obdfilter-survey revealed several OSTs intermittently, without
obvious cause, reporting very slow write rates between 25%
and 50% lower than expected. Due to the intermittent appear-
ance of the problem, a daily, off-hours obdfilter-survey test was
configured by NERSC staff in August of 2023 for further data
collection. Over the remaining course of the investigation these
reference obdfilter-survey data helped us to better understand
the storage server behavior, identify OSTs that required further
scrutiny, and verify the positive impact of remediation actions.
Figure 1 shows the measured obdfilter results since the daily
testing began.

IV. STORAGE SERVER CHALLENGES

The move to a Lustre system based on solid state media
presented challenges related to both, the solid state drives and
the operating system’s interaction with them as well as the
Lustre file system’s ldiskfs block allocation mechanism.

A. NVMe Related Issues

1) Garbage Collection: Both spinning disks and solid state
drives map logical block addresses (LBAs) to physical block
addresses (PBAs). In the case of spinning disks the LBAs have
a one to one correspondence with their PBAs, which represent
a physical location. An NVMe drive’s LBAs are more akin
to symbolic links which point to the correct PBAs, which
represent memory locations. So, while spinning disk systems

Fig. 1. Perlmutter Scratch obdfilter-survey OST Read and Write Rates

will support a physical overwrite of a disk location, solid state
storage systems will not overwrite data. Instead, data may only
be written into an empty space that is either unused or has been
erased. While SSDs will only permit erasure at the granularity
of a block, writes can be performed at the smaller granularity
of a page. In the case of a read-modify-write, the page that
has been read cannot be overwritten, so the modified page
is written into a blank page while the unmodified page is
marked as invalid. Garbage Collection (GC) in this context
can be seen as a drive level read, write, erase that allows valid
pages to be read and relocated into a new block, while pages
marked invalid are left behind and reclaimed through erasure.
GC occurs in the background and helps keep the NVMe drive’s
list of blocks available for new writes current.

2) Trimming: While GC is the mechanism that allows space
occupied by invalid data to be reclaimed, the means by which
the operating system communicates acts of deletion to drives
is called trimming. While the drive knows to allocate a block
for data via a write there is no implicit way for the drive
to know a file has been removed and its associated data can
again be usable capacity. Trimming is, at a high level, the
process of communicating to the underlying NVMe devices
which blocks are no longer in use by the file system. On many
file systems, including ClusterStor, this is done through the
fstrim command. As free blocks are communicated to the
underlying NVMe devices the devices in turn erase the blocks
so they are available for new writes. As the full capacity of the
drive is written, even if data is removed, write performance
begins to slowly decrease as the available pool of erased blocks
is consumed. Performance can be restored by executing a trim
on the drives. Without timely trimming, drives don’t receive
the necessary information to remove deleted data and GC will
treat those data as valid, to be migrated. This problem of
performance loss from the migration of deleted data is called
write amplification.

3) Drive Utilization: As utilization on Perlmutter Scratch
has increased, the pool of free blocks on the NVMe devices has
decreased. Blocks holding valid data can neither be trimmed



nor take part in GC. So, when the file system has available
capacity but the drives do not yet know through a trim, only
a re-use of LBAs will cause writes to new memory addresses
and therefore trigger GC. Additionally, if a trim has not been
performed in a timely fashion, the re-use of LBAs could result
in additional GC work from write amplification.

In general, a drive aims to perform GC at an opportune time
of low use. However, if there are a large amount of incoming
writes, as happens during an I/O test, the drive may need to
perform GC during a write workload. Through the collection
and analysis of NVMe drive telemetry logs by the drive vendor
it was verified that individual devices were entering GC during
a write workload which can increase write latencies by orders
of magnitude.

4) Writeback Throttling: The final drive related piece of
the investigation pertains to the kernel’s writeback throttling
mechanism. The mechanism helps maintain device responsive-
ness by limiting incoming writes as drive latency increases.
This is a generally beneficial behavior because an increase
in drive latency is often correlated with device load, and
continuing to fill the drive queue will likely exacerbate the
issue. However, a corner case emerged on ClusterStor with
NVMe because of GC on a Redundant Array of Independent
Disks (RAID) device. As previously observed, high latency
can occur when a device enters GC and a ClusterStor E1000-
based NVMe flash Object Storage Target (OST) is comprised
of 12 NVMe devices. Any of those single NVMe devices
entering GC will cause I/O at the RAID level to suffer
increased latency because the I/O won’t complete until all
devices have completed the write. Further, since all devices
are managing their internal space with slight variations, the
devices will go into GC due to the incoming writes within
the window of test but likely not for the same I/Os. In the
case of Perlmutter’s scratch it was observed that a relatively
small number of requests were seeing extraordinarily high
latency, occurring at slightly different times across the 12
devices. The high latency of a few outstanding commands
would trigger the kernel’s writeback throttling mechanism
which would inadvertently throttle requests to the drives not
in GC. While this process was occurring on the order of
milliseconds, the observed impact on write performance was
largely consistent when drives were in this state. By simply
disabling the kernel’s writeback throttling mechanism we were
able to recover 10% of write performance when GC during
writes was the limiting factor.

5) Problem Mitigation: The recommendations to address
this group of issues are relatively straightforward and cur-
rently implemented on Perlmutter Scratch. First, disable write
back throttling. This eliminated the previously described
drive starvation resulting from to high latency seen from
drives entering GC. The second recommendation is to per-
form a more frequent trim which will keep free blocks
on the NVMe devices more closely aligned with current
file system usage, and reduce reliance on LBA re-writes
and GC to reclaim space. The application I/O performance
impact during trim is minimal. Third, reset the ldiskfs

allocation pointer to the beginning of the logical device
through a /proc file system entry at a 15 minute interval i.e.
/proc/fs/ldiskfs/md0/mb_last_group. This will
encourage the re-use of LBAs and give drives more oppor-
tunity to perform GC before streaming writes force high-
latency requests. The preference for sequentially writing all of
the device’s LBA space without reuse comes from its origins
on rotational media where sequential writes were optimal for
physical drive heads. As described above, using all LBAs
presents a sub-optimal behavior for flash-based media where
LBA and physical block mapping are not fixed. Finally, the
most impactful change is to reduce OST utilization. Although
initial expectations were that the media characteristics of
NVMe drives would allow for full or near-full performance
at high levels of utilization, we have seen that the necessary
management of free blocks within the drive on live, production
file systems does not match those expectations. The effects
described in this section and inefficiencies in the current block
allocator algorithm (described in the next section) suggest an
optimal fullness value is currently around a surprising 75% of
file system capacity.

B. Lustre Block Allocator Issues

Sitting above the NVMe and block-level RAID devices in
the storage stack is the ldiskfs file system which is based on
ext4 and runs on the Perlmutter Scratch OSTs. While a full
discussion of ldiskfs block allocation is beyond the scope of
this paper, what follows is a discussion of the investigation
into and subsequent findings about ldiskfs block allocator
performance.

When a freshly formatted Lustre file system begins allo-
cating blocks on an OST for incoming data, it has a fairly
trivial task. With many large, contiguous areas available to be
allocated, the work required from the file system is minimal.
As the file system ages, space is allocated and freed across
the underlying OSTs, leaving a wide variety of contiguous
blocks ranges. As both the count of ranges of contiguous
blocks and contiguous blocks themselves decrease, the block
allocator must perform more work, scanning for free blocks.
As previously mentioned, the ldiskfs block allocator was
developed in an era of rotational media and was not only
optimized for that media but had performance requirements
aligned with those type of OSTs. Although the size of NVMe
based OSTs is smaller the higher supported throughput of
NVMe-based OSTs has created new performance profiles for
solid state block allocation. As one of the first large scale
NVMe file systems, Perlmutter Scratch has helped illuminate
these new demands as the file system has aged and utilization
has increased.

1) Kernel Profiling and Findings: Linux kernel profiling
on multiple OSSes via perf [13] was performed to further the
investigation into the continued degraded write performance.
A kernel module, available via a support request to HPE, is
required in order to run perf on E1000 nodes. The profiling
results showed both fast and slow write performance, and
a closer evaluation identified time spent in block allocation



Fig. 2. Pre/Post Investigation obdfilter Monthly Write Rate Distribution

as a significant differentiator between the two. Higher CPU
utilization was also visible on the OSSes with slower OSTs.

Next, the ldiskfs block allocation statistics
were compared between fast and slow OSTs
which are located in the mb alloc stats file here:
/proc/fs/ldiskfs/md0/mb_alloc_stats
Comparing the statistics highlighted a large number of
useless c1 loops. The word ”useless” in this context refers to
an allocation request that executed a given loop but found no
blocks to allocate. The increased CPU demand and associated
latency of these useless c1 loops were the source of the
decreased write performance. Empirical tests showed that this
process started to become really inefficient around a threshold
of 75%. This discovery has been unexpected and the issue is
currently being investigated further.

2) Problem Mitigation: Given the complexity of the
block allocator and time to fully verify a solution across
OST types and all workloads a workaround was im-
plemented using ldiskfs loop thresholds to skip over
the c1 loop. The recommendation was to set the value
of/sys/fs/ldiskfs/md0/mb_c2_threshold to 25
from 15.

/sys/fs/ldiskfs/md0/mb_c1_threshold:25
/sys/fs/ldiskfs/md0/mb_c2_threshold:25
/sys/fs/ldiskfs/md0/mb_c3_threshold:5

After implementation of the new block allocator loop thresh-
olds, the the long tails in the obdfilter-survey results were
greatly diminished in January and February as shown in Figure
1. The net positive effect of the investigation into OST write
performance can be seen in Figure 2. The distribution of
obdfilter-survey write measured during the month our efforts
began compared to the month the investigation concluded
illustrates a significant shift. In specific terms, the investigation
yielded an increase in mean write rate from 15.1 GB/s to 19.9
GB/s - a 30% improvement. More importantly for application

workloads, the minimum observed value increased from 260
MB/s to 9,032 MB/s. These measurements were run on all
OSTs regardless of their current failover status, fullness, or uti-
lization by application workloads. The dramatically improved
minimum observed rate, while not ideal, aligns with what
one would expect in cases where individual OST utilization
exceeds 75%.

V. MAINTAINING OST FREE SPACE

Managing free space on a file system can be very chal-
lenging. A runaway multi-node job, for example, can rapidly
consume a lot of file system space. What our file system
investigation has shown is that while maintaining free space
is a challenge, it is also a solution. To maintain acceptable
performance, it is imperative to maintain a minimum of 25%
free space on the file system OSTs. Toward that end NERSC
has implemented different mechanisms to manage the free
space on Perlmutter Scratch such that no single OST will
exceed 75% of its capacity.

A. File System Policy and Purging

NERSC uses on-file system metadata indexing information
generated by ClusterStor Data Services to automatically purge
eligible files from the file system and maintain a desired
overall file system utilization. The overall target threshold
for Perlmutter Scratch can be adjusted to ensure the system
doesn’t exceed the 75% OST target fullness.

Per NERSC policy, all user generated files on Perlmutter
Scratch are eligible for automated purging with few excep-
tions. Each user is provided with a weekly list of files that
look likely to be purged in the coming week, so attentive users
can archive important files at risk of being purged.

When file system utilization exceeds the target threshold,
the file age and size information gathered from the metadata
indexes are used to calculate a purge horizon such that if
all files older than the horizon were deleted the file system
utilization would drop below the desired utilization threshold.
For the purposes of the purging process, NERSC uses the most
recent of three parameters (access time, modification time, and
inode change time) to determine the age of a file so that older
files are mostly deleted first. While NERSC advises users
that files on Perlmutter Scratch become eligible for purging
at 8 weeks of age, the current calculated purge horizon is
approximately 365 days. We expect this number to fluctuate
as usage changes on the system.

B. Automated OST Monitoring and Management

In addition to managing overall file system utilization,
mechanisms have been implemented to reduce the likelihood
that individual OSTs will exceed the 75% threshold. NERSC
enables Lustre’s Weighted-Free-Space allocator with aggres-
sive settings to encourage the file system to keep OST usage
relatively balanced. Users can specify file layouts that can
reduce opportunities for the file system to make placement
decisions, but this is fairly rare (most users either keep the
default striping of 1 file per OST or only specify the number



Fig. 3. Perlmutter Scratch IOR Write Rates [MB/s] before and after enabling
SafeRet.

of OSTs they’d like file striped across). On the rare occasions
when individual OSTs exceed 75% utilization, object creation
on those OSTs is temporarily disabled, removing them from
consideration by both the Lustre round-robin and weighted-
free-space allocators. Natural attrition from file removal occurs
through time and eventually lowers OST utilization. As a last
resort, files that have large footprints on overly full OSTs can
be identified using the metadata indexing information, and
migrated using, e.g., lfs migrate.

VI. ADDITIONAL PERFORMANCE CHALLENGES

Over the 9 month period of Perlmutter Scratch operation
there were several other unexpected issues that were presented.
Because the nature of these problems involved security and
data integrity, the proposed workarounds were not optional,
yet have had a quantifiable impact on performance.

A. Security mitigation for microprocessors aka SafeRet

In August of 2023, AMD released a CVE warning of a
side channel vulnerability on AMD CPUs that may result
in speculative execution at an attacker-controlled address,
potentially leading to information disclosure [14]. Dubbed
”Inception”, AMD released a BIOS patch and NERSC en-
abled a SafeRet kernel feature to further protect against this
vulnerability in September of 2023. Because of the added
overhead to each calculation, we measured a decrease in
mean write bandwidth values of 14%. Figure 3 shows the
write rates for IOR runs from two 240-hour periods before
and after these BIOS updates were applied. This performance
drop could be somewhat mitigated by disabling the SafeRet
kernel feature, but this would be incompatible with NERSC’s
security posture. Also, the relative gain in performance would
be negated by the effects of having to enable checksums in
November.

Fig. 4. Perlmutter Scratch IOR Write Rates [MB/s] before and after enabling
checksums.

B. Checksum Performance Impact

At the present time, HPE recommends that sites run Lustre
with checksums disabled by default. NERSC followed this
recommendation until November of 2023, when HPE issued a
communique advising that all Lustre systems using kfilnd on
SlingShot 11 activate checksums. This change would eliminate
the possibility of data corruption that might result from a
newly discovered bug involving the incorrect reuse of an
RDMA memory key (RKEY). Before the communique and
up to the change there had been no indication that any data
corruption had occurred on Perlmutter scratch. However, after
activation, NERSC observed two incidents where checksums
had caught potential data corruption.

While NERSC currently has no plans to disable checksums,
the assured data integrity provided does come with a per-
formance penalty. Figure 4 shows write rates for IOR runs
performed over two 240-hour periods, one with checksums
enabled, and one without. Enabling checksums caused a 17%
drop in mean write bandwidth values (from 673320 MB/s ±
31779 to 554012 MB/s ± 37846).

VII. MEASURING PROGRESS AND CHARACTERIZING
”NOISE”

When navigating the investigation of and solutions for mul-
tiple problems on a production system, it can be a challenge
to establish a reasonable way to measure progress and assess
what success looks like.

The intermittent problem of low OST performance could
be seen in the regular IOR runs. We quantify the performance
variability in our IOR data using the coefficient of variation
(COV, defined as the ratio of the standard deviation to the
mean) over a 48-hour period. Since the longest wall time
allowed for jobs on Perlmutter is 24 hours, choosing a 48 hour
averaging period for this metric limited the impact of any one
particular workload. For a target value, NERSC chose a COV



Fig. 5. COV values for Perlmutter Scratch IOR Write Rates [MB/s] over
time. The red horizontal line denotes the desired value of 8%.

of 8% or below, which aligns with the expected variation for
Perlmutter’s application benchmarks.

Fig. 5 shows the COV as a function of time for Perlmutter
Scratch. By the start of 2024 most of the configurations
designed to reduce performance variation had been applied and
a corresponding drop in the frequency of large COV values
was observed.

Taking a closer look at the 2024 figures, one can see that
Perlmutter Scratch performance has largely stabilized since the
beginning of the year. Fig 6 shows the mean write bandwidth
values in MB/s from hourly 32-node IORs along with the
corresponding COV values. Instances where an IOR run did
not finish in its allotted time window are recorded as zeros.
There are 13 days when the COV rose above the target value
of 8%. For five of these days, we could not find a discernible
cause for the elevated COV (2024-01-01, 2024-01-23, 2024-
01-25, 2024-02-28, 2024-03-23). Four instances of an elevated
COV were related to the file system being too full (2024-01-
29, 2024-02-16, 2024-03-01, 2024-03-05). One instance was
due to a single OST filling up very quickly. The other three
stemmed from our OST load balancing mechanism, described
in Section V-B, marking a large number of OSTs as read
only. This meant only about 50 OSTs were available, resulting
in slower write rates. Finally, the last two were a result
of system failures, one within the Lustre file system where
a single OST failed silently and another when Perlmutter
experienced a system-wide issue with the proper resolution
of DNS addresses.

VIII. CONCLUSION

Over the course of nine months NERSC and HPE staff
worked together to better understand performance problems
and provide more predictable file system performance. To
achieve progress, we set up processes to collect data on a
live production system which not only helped us address our
primary performance issue, but helped NERSC to more easily

Fig. 6. Mean Perlmutter Scratch IOR Write Rates [MB/s] (the error bars are
the standard deviation for the day) and the COV values over the same period.

assess the performance impact of necessary system changes
and establish a metric to assess the relative performance health
of the Perlmutter Scratch file system.

Our experiences during this span have underscored two
things. First, this investigation has made clear the difficulty of
diagnosing performance issues on a heavily used file system
while in production. While the COV of our IOR tests has
proven informative and very useful, there were still five
performance events in Section VII for which we could find
no obvious cause. NERSC will continue to work with HPE to
better understand and mitigate these events.

Second, the value of an organized and performant purging
system cannot be understated. In addition to ensuring free
space for users, it is also necessary to keep solid state OSTs at
less than 75% of capacity to maintain good performance. Once
NERSC’s purging efforts catch up from the current backlog,
we expect the perturbations we see from load-balancing OSTs
to cease.

The scale at which Perlmutter Scratch operates has helped
illuminate some of the challenges of using Lustre on solid
state media. Ideally some of the challenges around block
allocation can be improved in the future for solid state media.
Additionally, factors such as fragmentation and configured
NVMe drive write per day could further improve the fullness
threshold required for optimal performance. As others plan
for their future file system, we hope our experiences will help
provide them with relevant data. For those that may not have
used Lustre with NVMe, we have tried to show some ways
that spinning disk and solid state media differ in this context.
For those that have, we hope that our experiences will inspire
them to share theirs to help build a wider base of knowledge
in this area.

ACKNOWLEDGMENT

The authors would like to thank John Fragalla, Jeff Hudson,
Peter Bojanic, Cory Spitz, Alexander Zarochentsev, Chris



Walker, and Jeremy Higdon and the HPE Cray ClusterStor
engineering team for their insights in designing, evaluating,
and deploying this platform.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract DE-
AC02-05CH11231. This research used resources and data
generated from resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] “Perlmutter (NERSC-9) System,” 2024. [Online]. Available:
https://docs.nersc.gov/systems/perlmutter/

[2] “National Energy Research Scientific Computing Center,” 2024.
[Online]. Available: https://www.nersc.gov

[3] “Lustre file system,” 2024. [Online]. Available: https://www.lustre.org/
[4] “Cray ClusterStor E1000 Storage Systems,” 2024. [Online]. Available:

https://buy.hpe.com/us/en/enterprise-solutions/storage-solutions/cray-
clusterstor-storage-systems/cray-clusterstor-e1000-storage-systems/cray-
clusterstor-e1000-storage-systems/p/1012842049

[5] “HPE Slingshot interconnect,” 2024. [Online]. Available:
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html

[6] “NVM Express specifications,” NVM Express, Inc., Tech. Rep., 2024.
[Online]. Available: https://nvmexpress.org/specifications/

[7] G. K. Lockwood, K. Lozinskiy, L. Gerhardt, R. Cheema, D. Hazen, and
N. J. Wright, “A Quantitative Approach to Architecting All-Flash Lustre
File Systems,” in High Performance Computing, M. Weiland, G. Juck-
eland, S. Alam, and H. Jagode, Eds. Cham: Springer International
Publishing, 2019, pp. 183–197.

[8] The Regents of the University of California, “IOR.” [Online]. Available:
https://github.com/hpc/ior

[9] P. Schwan, E. Barton, J. McIntyre, M. MacDonald, and C. White,
“obdfilter-survey.” [Online]. Available: https://github.com/lustre/lustre-
release/tree/master/lustre-iokit/obdfilter-survey

[10] G. K. Lockwood, A. Chiusole, L. Gerhardt, K. Lozinskiy, D. Paul, and
N. J. Wright, “Architecture and Performance of Perlmutter’s 35 PB
ClusterStor E1000 All-Flash File System,” in Cray Users Group, 2021.
[Online]. Available: https://cug.org/proceedings/cug2021 proceedings

[11] “Speculative Return Stack Overflow (SRSO),” 2024. [Online]. Available:
https://docs.kernel.org/admin-guide/hw-vuln/srso.html

[12] “Chapter 23.5.1 Managing the File System and I/O
Other I/O Options (Lustre Checksums),” in Lustre Soft-
ware Release 2.x Operations Manual. [Online]. Available:
https://doc.lustre.org/lustre manual.xhtml#idm140334719896864

[13] “perf: Linux profiling with performance counters.” [Online]. Available:
https://perf.wiki.kernel.org/index.php/Main Page

[14] “Return Address Security Bulletin ”INCEPTION”,” Advanced
Micro Devices, Inc., Tech. Rep., 2023. [Online]. Avail-
able: https://www.amd.com/en/resources/product-security/bulletin/amd-
sb-7005.html


