
Disaggregated Memory in OpenSHMEM
Applications – Approach and Benefits

Clarete Riana Crasta
HPC Business Group

Hewlett Packard Enterprise
New York, USA

clarete.riana@hpe.com

Ramesh Chandra Chaurasiya
Hewlett Packard Labs

Hewlett Packard Enterprise
Bengaluru, India

rameshc@hpe.com

Harumi Kuno
Hewlett Packard Labs

Hewlett Packard Enterprise
Milpitas, USA

harumi.kuno@hpe.com

Sharad Singhal
Hewlett Packard Labs

Hewlett Packard Enterprise
Milpitas, USA

sharad.singhal@hpe.com

David Emberson
HPC Business Group

Hewlett Packard Enterprise
California, USA

emberson@hpe.com

Ryan Menhusen
HPC Business Group

Hewlett Packard Enterprise
Colorado, USA

ryan.menhusen@hpe.com

Syed Ismail Faizan Barmawer
Hewlett Packard Labs

Hewlett Packard Enterprise
Bengaluru, India
sfaizan@hpe.com

Sajeesh K V
Hewlett Packard Labs

Hewlett Packard Enterprise
Bengaluru, India

sajeesh.kum.k-v@hpe.com

John Byrne
Hewlett Packard Labs

Hewlett Packard Enterprise
California, USA

john.l.byrne@hpe.com

Abstract—HPC architectures frequently handle High Perfor-
mance Data Analytics (HPDA) and Exploratory Data Analytics
(EDA) workloads where the working data set cannot easily fit into
node memory, causing applications to become bottlenecked by
I/O performance. This poses challenges for programming models
such as OpenSHMEM or MPI where all data in the working set
is assumed to fit in the memory of the participating compute
nodes. Often, data and results require additional I/O to be saved
for analysis by other applications, or for subsequent invocations
of the same application. Emerging disaggregated architectures,
such as CXL GFAM, enable data to be held in external memory
accessible to all compute nodes, thus providing a new approach
to handling large data sets in HPC applications. In this paper,
we present an approach to using disaggregated memory in
OpenSHMEM applications and demonstrate the benefits of using
disaggregated memory for HPC workloads.

Index Terms—Disaggregated Memory, HPC programming
models, OpenSHMEM, MPI

I. INTRODUCTION

The existing memory model of OpenSHMEM [1] supports
a remotely accessible memory segment called the Symmetric
Heap as shown in Figure 1. Each Processing Entity (PE)
contributes some memory to the symmetric heap, and all
memory in the symmetric heap can be accessed remotely by all
PEs using OpenSHMEM APIs. However, both OpenSHMEM
and MPI [2] require the application to perform I/O to storage
if the working set becomes larger than the aggregate memory
capacity available in the compute nodes. Furthermore, the
current memory model in OpenSHMEM is constrained to

Accepted for publication at CUG, Perth, Western Australia, May 5-9, 2024

homogeneous configurations, making it hard to support emerg-
ing architectures which include GPUs or other accelerators.
The OpenSHMEM community is addressing some of these
limitations to provide support for distributed irregular data
structures, heterogeneous configurations using CPUs, GPUs,
and accelerators as well as to support dynamic memory
allocations [10], [11], [14].

Fig. 1. Existing and Proposed OpenSHMEM Memory Model

In this paper, we describe experiments that integrate access
to disaggregated memory from OpenSHMEM applications,
and present evaluation results with two applications to demon-
strate the benefits of using disaggregated memory.

We start in Section II with details of our proposal, which
uses OpenSHMEM APIs to access the symmetric heap and
OpenFAM APIs [6] to access disaggregated memory. In
Section III, we start with an evaluation of the performance
of OpenFAM, which we have used to access disaggregated
memory. The evaluation is followed by descriptions of two
applications, Sparse Matrix Vector Multiplication (SpMV) and
LSD Radix Sort. In both cases, we outline a hybrid mode
that uses both the symmetric heap and disaggregated memory,
followed by a comparison of the hybrid mode version versus
the SHMEM-only version of each application. Section III
concludes with a a multi-pass FAM-based sort application to
highlight how disaggregated memory can be used effectively
by a sort algorithm for datasets that do not fit in compute node
memory. Section IV concludes the paper.

II. PROPOSAL

Emerging disaggregated architectures [3] provide a new
approach to handling large data sets in HPC applications by
supporting external memory accessible to all compute nodes
over a high-speed, low-latency fabric. In the context of this
paper, Disaggregated Memory (DM) [4] is a memory pool
which is accessible to all compute nodes over a high-speed
fabric. We also use the terms asymmetric memory or Fabric
Attached Memory (FAM) interchangeably with DM in this
paper. For the applications described, there is no requirement
that the disaggregated memory be persistent or be connected
via a dedicated memory interconnect [15], and it can be
provided by any of the compute nodes or using dedicated
memory servers in current HPC clusters. As shown in Figure 1,
DM augments the OpenSHMEM symmetric heap by providing
a pool of memory that is hosted independently of any PE, but
is globally accessible from all PEs in the application. Because
OpenSHMEM APIs do not provide access to disaggregated
memory, we use OpenFAM [4], [5] to manage and access
DM in the applications described in the paper. Given that the
size of DM is independent of the number of PEs used by the
application, and data within DM is outside the process address
space used by the PEs, DM adds the following capabilities to
OpenSHMEM applications:

• Independent scaling of memory and compute for ap-
plications, thus enabling compute resources required by
the application to scale independently of the memory
necessary for the application.

• Data availability across applications in workflows and
across application runs (e.g., for checkpoints) without
requiring data to be saved back to storage.

• The ability to allocate memory and provision data as part
of application deployment, thus reducing time needed
during application initialization.

In the future, disaggregated memory APIs can be wrapped
under existing OpenSHMEM APIs, so SHMEM applications
can continue to use a single API to access both the symmetric
and asymmetric heaps.

III. EVALUATION

We evaluate the benefits of disaggregated memory for
SHMEM applications using two applications - SpMV [13] and
LSD Radix Sort [12]. We compare SHMEM-only versions of
the applications, which only use the symmetric heap, to hybrid
versions that use both the symmetric heap and disaggregated
memory. In each case, we describe the design for the hybrid
application followed by a performance comparison of the
hybrid mode version versus the SHMEM-only version. In
all cases, OpenSHMEM APIs are used to access symmetric
heap, while OpenFAM APIs are used to access disaggregated
memory within the same application. Finally, we also present a
multi-pass FAM-based sort application that uses only disaggre-
gated memory to highlight the effective use of disaggregated
memory for datasets that do not fit in the symmetric heap.

All performance results presented in this section were
obtained on a cluster that consists of compute nodes and
memory nodes connected over HPE SlingShot interconnect
with 25 GB/s link bandwidth. Both the compute and memory
nodes have 2 sockets, each with 64 AMD EPYC 7763 cores.
The compute nodes have 1 TB memory and the FAM nodes
have 4 TB memory each. The nodes are configured with SLES
15 SP4 and OpenFAM 3.1. Cray OpenSHMEMx 11.56 is used
in the applications.

A. OpenFAM API performance numbers

As we are using OpenFAM to access and use disaggregated
memory in OpenSHMEM applications, we first present the
current throughput and latency numbers seen with OpenFAM
for simple get and put operations. For these measurements,
a single PE is configured on a compute node and a single
memory server is configured on the memory node. Tests are
conducted for both blocking and non-blocking get and put
operations for different data sizes. The time taken per call is
averaged over 10,000 iterations and used to calculate through-
put. Figure 2 and Figure 3 show the throughput obtained for
blocking get and put calls respectively as a function of message
size for different numbers of threads.

Fig. 2. fam get blocking

We observe that for blocking calls, the implementation can
reach close to link bandwidth at 2 MiB message size with
one thread, and at 16 KiB message size with 8 threads.
Figure 4 and Figure 5 show the throughput obtained with
non-blocking get and put calls for different message sizes

Fig. 3. fam put blocking

as the number of threads are varied between 1 to 8. As
expected, non-blocking performance is better than blocking
performance. The implementation can saturate the network at
16 KiB message size with a single thread, and can achieve
close to link bandwidth with 4 KiB messages with 8 threads.

Fig. 4. fam get non blocking

Fig. 5. fam put non blocking

Finally, Figure 6 shows the round-trip latency for OpenFAM
blocking get and put calls for short messages (8 bytes - 256
bytes) as the number memory servers is varied. In all cases,
the latency is less than 5 microseconds, and is constant as the
number of memory servers is varied.

B. SPMV

Sparse matrix-vector multiplication (SpMV) [13] is a pop-
ular computational kernel used in a diverse set of application
areas including scientific computing, economic modeling, and

Fig. 6. fam get put latency

information retrieval. The basic problem formulation is the
operation y = Ax, where A is a sparse matrix and x and y
are dense vectors.

1) Existing design and data layout: Our reference SHMEM
version of SpMV design assumes a one-dimensional row
partition scheme of the input sparse matrix. Each Processing
Entity(PE) owns a set of rows and the non-zeros within those
rows. The implementation evenly divides the rows and the
x-vector between PEs. Figure 7 provides an overview of the
SpMV algorithm executed by each PE. Each PE maintains a
subset of the input vector into its local memory, and reads the
remaining X vector into local memory from across the PEs.
It then iteratively reads a subset of A rows into local node
memory, performs the multiplication computation, and writes
the accumulated results back to the y-vector at its specified
offset in PE 1.

2) Design approach for data layout and communication
in hybrid mode: The hybrid mode also assumes a one-
dimensional row partition scheme. Figure 8 provides an
overview of the SpMV algorithm executed by each PE. As
in the SHMEM version, each PE owns a set of rows and the
non-zero values within those rows. The implementation evenly
divides the rows between PEs. The distinction is that the input
x-vector and the result y-vector are now placed in FAM instead
of the symmetric heap. We have made the following changes to
the algorithm and the data layout to the existing OpenSHMEM
implementation of SpMV.

• Each PE reads the x-vector into local memory from
FAM, performs the multiplication computation for its
own subset of A rows, and writes back the accumulated
results into FAM array. In the earlier design, each PE read
the x-vector values from across the PEs; with the change
in the data layout, each PE reads the x-vector from FAM.

• In the earlier design, all the PEs write the result vector to
PE 1. In the new design, each PE writes the result vector
in FAM, making it available to subsequent applications
or workflows avoiding data movement between different
memory hierarchies.

Fig. 7. SpMV SHMEM Version

3) Performance Testing: The SHMEM-only SpMV version
uses Lustre as secondary storage to host input matrix and
vector data and writes back the result into Lustre file system.
Each PE reads only a subset of the input matrix and a subset
of the input vector into its local memory. During computation,
each PE fetches the rest of the input vector from other PEs in
batches with a batch size of 1,024 elements. In this method,
each PE’s portion of the symmetric heap is used to hold a
portion of input matrix and a portion of input vector. The
hybrid mode SpMV version uses FAM instead of secondary
storage to host input matrix and vector data and writes back
the result into FAM. The rest of the logic for the hybrid
mode SpMV version is similar to the SHMEM-only version
described above.

The SHMEM-only SpMV and Hybrid Mode SpMV per-
formance tests were run on eight compute nodes with 2
PEs/node; a total of 16 PEs. Each PE is bound to a different
socket to maintain cache separation between the PEs. The
hybrid mode used 4 OpenFAM memory servers. Figure 9
shows the comparison of the performance of SpMV hybrid
mode application for matrix scale factor varying from 27 to
30. We see that as the problem sizes increase, the hybrid

Fig. 8. SpMV Hybrid Version

mode starts performing better than the SHMEM-only version,
with a significant difference visible by scale factor 30. The
trend suggests that the difference in performance between the
two versions increases as problem size increases. Since the
compute kernels are the same in both modes, the difference
in performance is attributable to the difference in I/O perfor-
mance.

Fig. 9. Performance Comparison of SpMV Algorithms

Fig. 10. Performance comparison of SpMV I/O time

Figure 10 shows the difference between the I/O times used
within the applications. The figure clearly shows the benefit of
using the faster FAM tier for storing both the x- and y-vectors
in FAM over the case where the vectors are stored in Lustre.

C. LSD Radix Sort

LSD Radix Sort is an algorithm based on non-comparative
sorting. The sort is performed in multiple iterations, with a
number of digits sorted in each iteration. The number of digits
selected is called the radix size, which is determined based on
the processor’s cache size. Every iteration of LSD Radix Sort
algorithm begins with selecting the radix size number of least
significant digits and then repeating the iteration for the next
set of digits from right (least significant) progressing incre-
mentally to the left (most significant). Within each iteration
bins of a histogram are created for the selected radix size and
are used to represent the frequency of occurrence of every
digit. Once the histogram is generated, the ranks of the keys,
which indicate the position of the key in the sorted order of
keys, are determined. For parallel LSD Radix Sort, as shown in
Figure 11, every PE works in its input data set and determines
the histogram and the ranks local to the PE for its portion
of input data set. Before repeating the iteration for the next
set of digits towards the right, all participating PEs exchange
histograms and ranks to arrive at the global histogram and
global ranks for the entire input dataset handled by all the
PEs. The PEs then exchange keys based on global ranks and
arrive at sorted order for the selected radix size digits. The
process is repeated for next set of digits in the key.

We next cover the existing design of the SHMEM version of
Parallel LSD Radix Sort, the changes for hybrid mode, data-
layout, and communication methods along with implementa-
tion details to understand and compare the communication
patterns in the two versions. We address the various phases of
Parallel LSD Radix Sort algorithm and outline the SHMEM-
only and hybrid mode implementations of each phase. The
SHMEM-only version of the LSD Radix Sort uses OpenSH-
MEM APIs for communication among PEs. All the data items
used by the algorithm are allocated on the symmetric heap
by all the PEs. For hybrid mode, we take the SHMEM-only

Fig. 11. Parallel LSD Radix Sort Algorithm

version of the LSD Radix Sort application as the base and
modify it to use FAM wherever required across the different
phases as summarized in Figure 12.

1) Phase 0: Partitioning of dataset: This is a preliminary
phase before the beginning of the LSD Radix Sort algorithm.
In the SHMEM-only version, each PE reads its portion of
the input into its node local memory from the disk using file
system I/O calls. In the hybrid mode implementation, each
PE reads its portion into the input buffer from disaggregated
memory using fam_get_blocking() routine.

2) Phase 1: Accessing keys and computing the local his-
togram: In this phase, each PE reads its portion of the input
data set. The PEs then select the least significant radix size
of every key and populate the local histogram for every digit
in the portion of the key. The PEs also maintain local prefix
data. The local prefix helps in maintaining the input order
when there are keys of same value in the input data set. This
is required for maintaining sort stability. There are no changes
to the hybrid mode version as every PE works on its own input
buffer and computes its own PE-specific local histogram.

Fig. 12. Phases of LSD Radix Sort with proposed changes for using
Disaggregated Memory

3) Phase 2: Local rank computation and Send buffer up-
date: In this phase,

• Each PE computes the local rank of keys.
• If the same key occurs multiple times, then each occur-

rence has one higher rank than the previous occurrence
of the same key in the order the keys are found in input
data.

• Each PE arranges its input keys in a send buffer in the
order of local rank of radix digits.

Like Phase 1, no change is needed for hybrid mode for this
phase as every PE computes its own local rank and then works
on updating a local copy of its send buffer.

4) Phase 3: Global histogram: In this phase, the algorithm
computes a global histogram of all keys across all PEs using
all-reduce communication. Every PE will have the same view
of the global histogram. In the SHMEM-only version, every
PE receives a local histogram of bucket size 2radix bits from
every other PE using GET calls. So, if N PEs are participating
in the application run, the total number of communications
calls, in worst case, is N(N − 1). For the hybrid mode, every
PE writes its local histogram at its corresponding offset in the
FAM buffer and then waits on the barrier for every other PE
to complete. Once all the PEs meet at the barrier, they all
read the combined local histogram from FAM with just one
communication call. In this case, if N PEs are participating,
the total number of communication calls, even in worst case,
would be a maximum of 2N (with one-way big payload due
to combined local histogram).

5) Phase 4: Global prefix (or prefix histogram): This phase
consists of a communication call to get the prefix histogram of
all keys across all PEs. There is no change from SHMEM-only
version to hybrid mode for this phase.

6) Phase 5: Global rank computation: In this phase, each
PE computes the global rank of its own keys using the global
histogram of all keys and the prefix histogram. There is no
change from SHMEM-only version to hybrid mode for this
phase.

7) Phase 6: Send counts: Send counts which indicate the
number of keys that need to be transferred to a destination
PE are computed by dividing the global rank of keys within
the PE by the number of keys per PE. Each PE sends the
corresponding count value to the destination PEs. The data
item used for send counts is send_counts[nworkers] As
send counts are computed and communicated from each PE to
every other PE, in the SHMEM-only version, OpenSHMEM
put calls are used followed by barrier. For the hybrid mode,
each PE writes send counts to FAM and waits on the barrier for
this operation to complete across all the PEs. These counters
are then read from FAM by PEs using single FAM get, as
shown in the code snippet below.

for (i=0 ; i<nworkers ; i++){
myFam->fam_put_nonblocking(

&send_counts[i],
rs_fdp_recv_counts,
((nworkers*i)+worker)*sizeof(long),
sizeof(long));

}
myFam->fam_quiet();
// Let all the PEs update their send_counts
to other PEs recv_counts
myFam->fam_barrier_all();

// Get our recv_counts from FAM
myFam->fam_get_blocking(

recv_counts,
rs_fdp_recv_counts,
nworkers*sizeof(long)*worker,
nworkers*sizeof(long));

8) Phase 7: Send displacements: The displacements rep-
resent the starting index of keys in the send buffer for
every PE. The send (and receive) displacements are com-
puted by all the PEs using send (and receive) counts
in this phase. The data item used for displacements is
send_displacement[nworkers] which captures where the el-
ement from send buffer will be placed in target buffer.

9) Phase 8: Exchange of keys: In this phase, the PEs
use all-to-all communication to exchange keys (elements in
problem buffer). In the SHMEM-only implementation, each
PE uses the 128-bit version of OpenSHMEM put to send “send
count” keys to all other PEs. This phase ensures that the keys
are sorted across PEs (based on the current radix digit) but
does not guarantee sorted order within the PE. There were
no changes made to this phase in the hybrid mode because
moving elements from send to receive buffers is most likely
to be local access depending on the nature of the input.

10) Phase 9: Local histogram update: This phase updates
the local histograms based on the keys received in Phase 8.
This phase is mostly compute-bound, so there is no change
from SHMEM-only version to hybrid mode.

11) Phase 10: local rank update: In this phase, each PE
computes then updates the local rank of keys. Similar to Phase

2, this ensures the sorted order of keys within the PE. This
sorted receive buffer serves as input for the next radix loop.
There are no changes to the hybrid mode version for this phase.

Phases 2 to 10 are repeated for the next significant radix
digit through to the most significant radix digit. Eventually the
sorted output is put to FAM at respective offsets as opposed
to the disk storage used for the SHMEM-only version. The
SHMEM-only version of LSD Radix Sort has been modified
to work in hybrid mode using the approach (OpenFAM APIs
and OpenSHMEM APIs working side by side) mentioned in
Section II to access FAM.

D. The LSD radix sort SHMEM-only version and Hybrid
mode performance comparison

In this subsection, we compare the performance of LSD
Radix Sort with and without disaggregated memory. The
results are obtained from running these applications with
problem sizes varying from 64 million to 512 million elements
per PE. Thirty-two PEs across 8 compute nodes (4 PEs/node)
and 16 OMP threads per PE were used for running the tests.
From initial experiments, we see that with the hybrid mode,
when the application uses disaggregated memory and when
the problem sizes fit in DRAM the end-to-end application
time is ˜45 to ˜55 percent better than the SHMEM-only
version as shown in Figure 13. The trend suggests that the
difference in performance between the two versions increases
as problem size increases. Figure 14 shows the disk access
time vs FAM access time for the SHMEM and hybrid modes
of the application. As with SpMV, this indicates that the faster
storage offered by FAM may contribute significantly to the
performance difference observed between the two versions.

Fig. 13. Performance Comparison of Sort Algorithms

E. Multi-pass sort using FAM

Distributed sort algorithms process data in parallel using
multiple nodes and require data exchange to move data
between nodes at various phases. In addition, due to the
limited amount of local memory that is available on individual
nodes, the data on a given node might need to be sorted in
multiple passes. Therefore, the performance of distributed sort
algorithms depends on the network bandwidth available to
load data in multiple passes and to exchange intermediate
data among the nodes. The efficiency of a sort algorithm

Fig. 14. Performance comparison of compute time

is measured based on the amount of data the algorithm can
process per unit of time.

Our experiments show that coordination, barriers, and com-
munication between PEs running on different nodes, as well
as disk access in multiple passes when node-local memory is
not sufficient to hold the entire data range, are the largest con-
tributors to the sort time. For large (petabyte scale) problems,
it is unrealistic to assume that the entire sort data would fit in
the DRAM or symmetric heap of all the participating nodes.
Traditional distributed sort algorithms including SHMEM-
based algorithms do not work very well with multi-pass
sort logic and the coordination, barriers, and communication
requirements in these algorithms prove to be expensive for the
sort functionality.

The graph in Figure 14 shows the time taken for disk access
in the LSD radix sort single pass algorithm when data is
accessed from disk in the SHMEM-only version vs FAM in the
hybrid version. There is an exponential increase in disk access
time with the SHMEM-only version. In the above experiments,
for both the SHMEM-only version and the hybrid versions, the
entire problem size was loaded into the DRAM of the nodes.
For problem sizes that do not fit in the DRAM of the nodes,
we need a multi-pass sorting algorithm. From our analysis of
the results of LSD Radix Sort we see that the disk access
for input read, and output write is the major contributor to
the overall sort time and multipass sorting algorithms will
have multiple iterations of disk access leading to very large
sort times. The difference only widens for a multi-pass algo-
rithm as with multi-pass algorithms there is disk access even
within the algorithm logic. Thus we next describe an efficient
FAM-based approach which improves sort performance by
overlapping sort logic with communication and using fewer
barriers, and less coordination and communication between
the nodes. FAMSort is an algorithm with BurstSort logic
efficiently leveraging FAM. FAMSort is designed to work with
data sets larger than the available DRAM across nodes, to
overlap sort logic with communication, and to have limited
barriers, coordination, and communication between the PEs.
The logic takes advantage of FAM by using it for incremental
construction of large, shared data structures and by enabling
dynamic worker coordination through work queues in FAM.
We provide an overview of FAMSort in the remainder of
this section. Existing BurstSort algorithms build a trie (prefix

Fig. 15. BurstSort

tree), placing suffixes into limited sized buckets as shown in
Figure 15. Full buckets burst into new tries. The algorithm is
similar to MSD Radix Sort but faster for large data sets as
it is more cache-efficient due to related radixes being placed
closer together. But BurstSort loses these benefits when scaled
beyond a node for large HPC data sets. Just using FAM to store
the input data for the distributed BurstSort algorithm will not
solve the communication and co-ordination overhead that is
involved when the input data set is distributed between the
nodes/PEs. We explain how we use the BurstSort logic with
FAM efficiently through the enhanced FAMSort algorithm.

Fig. 16. FAMSort

The entire FAMSort process is divided into two phases as
shown in Figure 16. The first phase assumes that the input
data is available in FAM and accessible to all PEs. The input
data consists of FAM data items with complete records to be
sorted and data items that hold only the keys extracted from
the records. We next highlight the steps in each of the phases
followed by a detailed description of the two phases including
the logic and data structures involved in the algorithm.

1) FAM Sort Process Phase 1 – Store keys and indexes into
Burst tree:

• Gather keys from the input data items that contains
the keys and an index that points to the corresponding
complete record in the FAM.

• Insert the key + index into burst tree maintained in
DRAM.

• Periodically traverse depth-first moving key partitions to
FAM.

2) FAM Sort Process Phase 2 - Aggregate Partitions and
Sort:

• Generate work queue tasks of partitions. A task is created
for each of the prefixes in the range of prefixes.

• Compute nodes/PEs then acquire each of the tasks.
• If the number of keys in a task exceeds a given threshold,

the bucket is pushed to the next level.
• PEs then Sort combined partitions with similar ranges.
• Sorted indices are finally written back to FAM.

The final data in FAM consists of the top-level prefix index
table, sorted indices, and original data records as shown in Fig-
ure 17. The top-level prefix index table defines ordered groups
of sorted indices and their location in FAM. Sorted Indices are
pointers to non-contiguous locations on FAM where original
input data is stored. Sorted indices help in re-structuring
original data for incremental updates. The original data records
remain in place saving data movement performance, and we
propose that the compute nodes leverage sorted indices for
fam_gather() operations.

There is no range partitioning of the data in the first phase,
avoiding the communication overhead involved in the range
partitioning algorithms. Keys are added to a trie structure as
they are processed, and once the buckets are full, buckets burst
into new tries. These structures are maintained in DRAM and
pushed to FAM when a certain limit is reached. The bucket
contents are written depth first in the tree maintaining the
sorted order. This allows for PEs to process portions of the
input data depending on the amount of DRAM available. Use
of FAM for creating work queues helps in optimal coordina-
tion between the PEs. It is implemented to work with limited
barriers and coordination between PEs. The algorithm allows
for keys to be partitioned dynamically, and partitions are based
on the quantity of data and not value limits which increases PE
utilization by avoiding empty buckets. The distribution of key
values determines the ranges applied to each bucket. The data
driven algorithm helps ensure uniform performance. Buckets
with deterministic sizes help load balance.

Fig. 17. FAMSort

3) FAMSort Performance Evaluation: We currently have a
single-threaded implementation of FamSort. Thirty-two PEs
were distributed across 8 compute nodes (4 PEs/node) for this
evaluation. The graph in Figure 18 shows the comparison of
the performance of FAMSort, LSD RadixSort hybrid mode,
and SHMEM-only version. We leverage the results for LSD
RadixSort from the experiments described in the previous

section. FAMSort was run with problem sizes varying from
128 million to 1024 million keys. At smaller problem sizes,
FAMSort takes more time to complete when compared to the
two versions of LSD RadixSort, but as the trend suggests, the
FAMSort performs better as the problem size increases while
the time taken for LSD RadixSort hybrid and SHMEM-only
versions increases almost exponentially. The results show that
though there is FAM access within the algorithm for input read
and intermediate data structure writes, FAM Sort performs
well. This provides an effective multi-pass sort algorithm for
problem sizes that do not fit in DRAM.

Fig. 18. FAMSort Results

IV. SUMMARY

Competing approaches to enhance OpenSHMEM to en-
able large working sets use file-system and/or object-store
abstractions [14] which do not include generic disaggregated
memory in the base memory model, and also require IO
extensions to support external memory/storage. We have not
seen other benchmarks and results which quantify the per-
formance impact to OpenSHMEM applications by effective
utilization of both symmetric heap and disaggregated memory
within the same OpenSHMEM application. Our experiments
use multiple memory models in the same application. The
approach described in the paper can be extended to other
programming models such as MPI that allow co-existence of
multiple frameworks. As future work, we can further enable
the use of disaggregated memory by integrating the capability
to address disaggregated memory directly into OpenSHMEM
for effective resource utilization and ease of programming.
We believe the approach described in this paper can be
used to support CXL GFAM [18] access in OpenSHMEM
applications, where CXL GFAM is configured as DM. We
plan to validate this when we have access to CXL GFAM.

ACKNOWLEDGMENT

We thank Mark Pagel, Naveen Ravi, Danielle Sikich of
the Cray OpenSHMEMx Team for their valuable support. We
thank HPE’s OpenFAM team, Application and Benchmarking
Team for their contribution to OpenFAM and Radix Sort
experiments. We thank the OpenSHMEM community for their

valuable support. We thank Ryan Menhusen and Darel Emmot
for their contributions to the FAMSort algorithm.

REFERENCES

[1] “OpenSHMEM Specification 1.5.” http://openshmem.org/site/Specification
(accessed Sep. 05, 2020).

[2] “Message Passing Interface.” https://www.mcs.anl.gov/research/projects/mpi/
(accessed Oct. 07, 2022).

[3] I. Peng, R. Pearce, and M. Gokhale, “On the Memory Underutilization:
Exploring Disaggregated Memory on HPC Systems,” in 2020 IEEE
32nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2020, pp. 183–190. doi:
10.1109/SBAC-PAD49847.2020.00034.

[4] K. Keeton, S. Singhal, and M. Raymond, “The OpenFAM API: A
Programming Model for Disaggregated Persistent Memory,” in OpenSH-
MEM and Related Technologies. OpenSHMEM in the Era of Extreme
Heterogeneity, Cham, 2019, pp. 70–89. doi: 10.1007/978-3-030-04918-
8 5.

[5] “OpenFAM: A library for programming Fabric-Attached Memory.”
https://openfam.github.io/index.html (accessed Aug. 29, 2021).

[6] “DAOS and Intel® OptaneTM Technology for High-Performance
Storage,” Intel. https://www.intel.com/content/www/us/en/high-
performance-computing/daos-high-performance-storage-brief.html
(accessed Apr. 01, 2022).

[7] Y. Shan, S.-Y. Tsai, and Y. Zhang, “Distributed shared persis-
tent memory,” in Proceedings of the 2017 Symposium on Cloud
Computing, New York, NY, USA, Sep. 2017, pp. 323–337. doi:
10.1145/3127479.3128610.

[8] “Rethinking software runtimes for disaggregated memory,” Penn State.
https://pennstate.pure.elsevier.com/en/publications/rethinking-software-
runtimes-for-disaggregated-memory/fingerprints/ (accessed Apr. 01,
2022).

[9] daos-stack/daos. DAOS Storage Stack, 2020. Accessed: Aug. 27, 2020.
[Online]. Available: https://github.com/daos-stack/daos

[10] Extending the OpenSHMEM Memory Model to Support User-Defined
Spaces : Aaron Welch, Swaroop Pophale et al.

[11] OpenSHMEM Memory Spaces. GitHub: OpenSHMEM,
2021. Accessed: Jun. 21, 2021. [Online]. Available:
https://github.com/openshmem-org/specification/wiki/Memory-Spaces

[12] https://www.growingwiththeweb.com/sorting/radix-sort-lsd/
[13] http://www.cslab.ece.ntua.gr/cgi-bin/twiki/view/CSLab/SPMV
[14] https://github.com/Sandia-OpenSHMEM/SOS [2]M. Grodowitz, P.

Shamis, and S. Poole, “OpenSHMEM I/O Extensions for Fine-Grained
Access to Persistent Memory Storage,” in Driving Scientific and
Engineering Discoveries Through the Convergence of HPC, Big Data
and AI, vol. 1315, J. Nichols, B. Verastegui, A. ‘Barney’ Maccabe,
O. Hernandez, S. Parete-Koon, and T. Ahearn, Eds. Cham: Springer
International Publishing, 2020, pp. 318–333. doi: 10.1007/978-3-030-
63393-6 21.

[15] Y. Sun et al., “Demystifying CXL Memory with Genuine
CXL-Ready Systems and Devices.” arXiv, Mar. 27, 2023. doi:
10.48550/arXiv.2303.15375.

[16] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J.
Demmel, “Optimization of sparse matrix-vector multiplication on
emerging multicore platforms,” in SC ’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, Nov. 2007, pp. 1–12. doi:
10.1145/1362622.1362674.

[17] Extreme Sort, https://www.eolymp.com/en/problems/7712
[18] D. D. Sharma, R. Blankenship, and D. S. Berger, ”An Introduction to

the Compute Express Link (CXL) Interconnect”, arXiv, Mar. 22, 2024.
https://arxiv.org/abs/2306.11227v2.

