Scalability and Performance of OFI and UCX
on ARCHER?2

Jaffery Irudayasamy
EPCC
The University of Edinburgh, UK
J.Irudayasamy @epcc.ed.ac.uk

Juan F. R. Herrera
EPCC
The University of Edinburgh, UK
J.Herrera@epcc.ed.ac.uk

Evgenij Belikov
EPCC
The University of Edinburgh, UK
E.Belikov@epcc.ed.ac.uk

Michael Bareford
EPCC
The University of Edinburgh, UK
M.Bareford @epcc.ed.ac.uk

Abstract—OpenFabrics Interfaces (OFI) and Unified Commu-
nication X (UCX) are both transport protocols that underlie the
HPE Cray MPICH library on HPC systems like ARCHER?2.
They can be selected at runtime by users. This paper presents
the scalability and performance of OFI and UCX transport
layer protocol implementations on ARCHER2, an HPE Cray EX
system that features Slingshot 10 interconnect. We use ReproMPI
microbenchmarks to study the performance of MPI collectives
and run experiments using some of the most commonly used
applications on ARCHER2. The results show that in most cases
OFI and UCX performance is comparable on under 32 nodes
(16384 cores) but for larger number of nodes OFI runs more
reliably. Ultimately, when it comes to applications there is no
one-size-fits-all solution and profiling can facilitate tuning for
best performance.

I. INTRODUCTION

The performance of MPI collective communication primi-
tives directly affects many commonly used HPC applications
that heavily rely on those primitives. When multiple under-
lying transport layer protocol implementations such as OFI
(OpenFabrics Interfaces) [1] and UCX (Unified Communica-
tion X) [2] are available on a system, we need to understand
performance and scalability trade-offs to be able to advise the
users on most efficient setup choices.

This paper presents the results of investigating scalabil-
ity and performance of OFI and UCX transport protocol
implementations used by the HPE Cray MPICH library on
ARCHER2, an HPE Cray EX system with Slingshot 10
interconnect, following a major software upgrade in 2023.
The results build on and extend previous work that has
demonstrated that for various applications and node counts
either OFI or UCX may result in better performance [3]. We
also complement Khorassani et al.’s comprehensive study [4]
by using larger number of nodes and larger applications, whilst
they also provide detailed results on GPU-aware communica-
tion and also discuss measurements using Slingshot 11.

To obtain reproducible and statistically sound results we use
the ReproMPI microbenchmark suite [5], [6] and methodology
advocated by its authors. Additionally, we run various test
cases for some of the most commonly used applications on

ARCHER? such as VASP, CASTEP, GROMACS, and NEMO.
Compared to previous work [3], the number and scale of runs
is substantially increased and, where relevant, we also report
the dispersion of the measurements. Additionally, ReproMPI
allows us to vary messages sizes in a similar way to the OSU
benchmark suite which is used for comparison.

We find that following the 2023 upgrade on ARCHER2
OFI performs much more reliably and in most cases matches
or outperforms UCX, which may require some tuning when
run on larger node counts. However, whilst we believe OFI
is a reasonable default, the best setting will depend on the
application and profiling can assist with performance tuning.

In particular, for a medium-sized CASTEP case, OFI and
UCX perform similarly for up to four nodes when highest
performance is reached. For GROMACS OFI matches UCX on
up to and including 16 nodes and outperforms UCX on larger
node counts. For NEMO we observe similar performance on
up to 512 nodes, where OFI starts to outperform UCX and the
difference in performance appears to increase with increasing
node count. For VASP, performance is similar up to 16 nodes,
but overall UCX achieves better scaling resulting in lower
elapsed runtime. Further studies are needed to investigate the
effects of various MPI-related environment variable settings
that may have a substantial effect on performance.

This paper is structured as follows. The methodology em-
ployed and experimental environment are described in II.
The applications chosen for the performance comparison are
listed in Section III. Section IV shows the performance results
and Section V dicusses the MPI profiles of the applications.
Section VI concludes.

II. METHODOLOGY

We build and run several microbenchmarks and selected
applications on the UK National Supercomputing Service
ARCHER2.

A. Experimental Environment

ARCHER? is an HPE Cray EX system with Slingshot 10
interconnect consisting of 5,860 nodes (a total of 750,080

cores). Each node comprises two 64-core 2.25 GHz AMD
EPYC 7742 Rome (Zen2) processors with the default fre-
quency set to 2 GHz, whilst 1.75 GHz and and 2.25 GHz
options are available via Slurm scheduler and module settings.
The standard nodes have 256 GiB DDR-4 DRAM, whilst
each of the 584 high-memory nodes has 512 GiB. HPE Cray
Slingshot 10 interconnect utilises interconnect system software
version 2.0.2 and uses two bi-directional 100 Gbps links per
node'. The Lustre parallel file system with support for striping
is used (/work, HPE Cray ClusterStor with 14.5 PB capacity
supported by 12 disk units (Object Storage Targets or OSTs)).

Each node provides non-uniform memory access (NUMA):
each NUMA region contains 16 cores subdivided into two
Core Complex Dies (CCD), which are themselves split into
two Core Complexes (CCX). Each CCX comprises 4 cores
sharing 16MB L3 cache, with private L2 cache of 512KB and
private L1 cache of 32KB per core.

During end of May and beginning of June of 2023
ARCHER?2 underwent a major software upgrade including
improvements to interconnect performance and reliability. This
upgrade also made available more recent versions of compil-
ers, libraries and various tools (e.g., CrayPat profiler).

The compute nodes are running Cray OS 2.4.109 (based
on SUSE Linux Enterprise Server 15 SP4) with Slingshot
interconnect system software version 2.0.2 and HPE Cray
Management Software (CMS) 1.3.1. Slurm is used to manage
the queues and schedule jobs. Prior to the upgrade a socket
referred to 16 cores that share a DRAM memory controller,
whilst after the upgrade the setting of a socket now refers to
a CCX (i.e. 4 cores sharing and L3 cache). Various compiler
suites are supported: the HPE Cray Compiling Environment
(CCE) 15.0.0, the GNU Compiler Collection (GCC) 11.2.0,
and AMD Optimizing Compiler Collection (AOCC) 3.2. Cray
MPICH 8.1.23 (based on MPICH 3.4a) is used as commu-
nication library, which supports OFI (OpenFabrics Interfaces)
and UCX (Unified Communication X) transport layer protocol
implementations. Among other libraries Cray LibSci 22.12.1.1
is available, along with FFTW 3.3.10.3 and CrayPat profiler
version 22.12.0.

B. Measurement procedure

For the measurements of several blocking MPI collectives
we rely on ReproMPI [5], [6], which is a microbenchmarking
suite and tool that allows for statistically sound benchmarking
by running a sufficient number of repetitions and by using
appropriate non-parametric statistical tests for analysis.
It is also possible to extract the raw data in addition
to a summary. We run ReproMPI for the following
blocking collectives: MPI_Bcast, MPI_Scatter,
MPI_Allgather, MPI_Gather, MPI_Allreduce,
MPI_Scan and MPI_Alltoall. We vary messages size
between 1 Byte and 1 Megabyte from 4 up to 512 nodes
(256 in most cases). Within a run the repetition varies from
5 to 500, 300 being the nrep repetition count setting used

Isee https://docs.archer2.ac.uk/user-guide/hardware/#interconnect-details

for most of the function calls. Due to larger run-time nrep
is set to 5 for MPI_Alltoall (and we use only 5 runs).
Each ReproMPI run is performed 10 times (srun calls). We
report the mean (across runs) of median runtimes (reported by
ReproMPI for a set of repetitions of each run). In some cases
largest message sizes are omitted due to memory limitations.
We also use OSU microbenchmarks for comparison, limited
to up to 128 nodes (64 in most cases). Please refer to the
Appendix section for the discussion of the OSU results.
Application runs are setup in different ways. Please refer to
each of the subsections below for the respective description of
the setup and figures of merits used to represent performance.

III. APPLICATIONS

This section will describe the applications used to carry out
the performance study.

A. CASTEP

CASTEP is a leading code for calculating the properties
of materials from first principles [7]. Using density functional
theory, it can simulate a wide range of material properties
such as energetics, structure at the atomic level, vibrational
properties, electronic response properties etc. In particular, it
has a wide range of spectroscopic features that link directly
to experiment, such as infra-red and Raman spectroscopies,
NMR, and core level spectra.

The present CASTEP code is written in Fortran 2003
using a modular structure. CASTEP employs three levels of
parallelism: G-vectors (i.e. basis-set), k-points, and bands.

The al3x3 simulation cell comprises a 270-atom (108 Al,
162 O) sapphire surface with a vacuum gap. There are only 2
k-points, so it is a good test of the performance of CASTEP’s
other parallelisation strategies.

CASTEP was run on ARCHER?2 using node counts of 1, 2,
4, 8, and 16. The testcase was executed 5 times and the best
performance per node count has been considered and plotted.

B. GROMACS

GROMACS (GROningen Machine for Chemical Simula-
tions) [8] is a versatile package to perform molecular dy-
namics, i.e., simulate the Newtonian equations of motion for
systems with hundreds to millions of particles. It is primarily
designed for biochemical molecules like proteins, lipids and
nucleic acids that have a lot of complicated bonded interac-
tions, but since GROMACS is extremely fast at calculating the
non-bonded interactions (that usually dominate simulations)
many groups are also using it for research on non-biological
systems, e.g. polymers.

The benchPEP benchmark is part of the GROMACS
benchmark set, which includes typical simulation systems
from various research projects and covers a wide range of
system sizes from 6k to 12M atoms. benchPEP specifically
simulates 12 milliom atoms, representing peptides in water,
with a 2 femtosecond (fs) time step. All bonds in the system
are constrained, which means that the update step has to be
done on the CPU.

CASTEP was run on ARCHER? using node counts of 1, 2,
4,8, 16, 32, 64, 128, and 256. The nodes were fully populated,
so 128 MPI processes per node. The testcase was executed
5 times and the best performance per node count has been
considered and plotted.

C. NEMO

Nucleus for European Modelling of the Ocean (NEMO) is
a modelling framework for running simulations of the Earth’s
oceans [9]. The NEMO code is written in Fortran 2008 and
is comprised of three core engines, namely, OCE (ocean dy-
namics), SI° (sea-ice dynamics) and TOP (biogeochemistry).

The NEMO software also includes many reference config-
urations and tests. One of the tests, called BENCH [10] is
ideal for benchmarking performance since it requires simple
text-based input files (or namelists), and generates minimal
output. The impact of file system load, which can be significant
on a large shared system such as ARCHER?2, is therefore
minimised.

Essentially, the BENCH test allows you to run any NEMO
configuration with idealized grid and initial state. For this
paper we ran BENCH using the ORCA12 grid. It has a
horizontal resolution of 1/12 degree and 75 levels in the
vertical, making 991.6 million points in total.

BENCH was run on ARCHER? using node counts of 32, 64,
128, 256, 512 and 1024. The nodes were always half populated
with ocean tasks arranged such that was one idle core between
each process. And so, for ARCHER2, there were 64 ocean
processes per node. In the text that follows, NEMO namelist
parameters will be indicated using a monospaced font.

For the smallest node count (32), the number of simulation
steps (nn_itend) was set to 1000. The simulation time per
step is 300 seconds if using the ORCA12 grid. Running for
300k simulation seconds (or 3.47 simulation days) took around
30 mins when using 32 nodes. The number of simulation
steps was doubled when moving to the next node count in
order to prevent the run times from becoming too short (e.g.,
nn_itend = 32000 for 1024 nodes).

In NEMO, the horizontal dimensions are labelled ¢ and j.
At 32 nodes then the number of processors in the ¢ direction
(jpni) was set to 64 and the number of processors in the j
direction (jpnj) was 32, i.e., jpni X jpnj = 64 x 32 =
2048, the total number of ocean processes. Table I shows the
values of the aforementioned namelist parameters for each
node count.

TABLE I: NEMO namelist values

’ node count ‘ nn_itend ‘ jpni ‘ jpni ‘

32 1000 64 32
64 2000 64 64
128 4000 128 64
256 8000 128 128
512 16000 256 128
1024 32000 256 256

By default, the BENCH configuration features the PISCES
component, which is an initialism for Pelagic Interaction
Scheme for Carbon and Ecosystem Studies. This circula-
tion and bio-geochemistry model requires substantial mem-
ory bandwidth however, and could interfere with detecting
differences in communications performance between OFI and
UCX. We remove this possibility by deactivating the PISCES
component and instead run with just an age tracer, which
tracks the time-dependent spread of surface waters into the
ocean interior. We configure NEMO in this way by setting
two parameters in the namelist_top_cfqg file.

In_pisces = .false.
In_age = .true.
D. VASP

VASP (Vienna Ab initio Simulation Package) is a powerful
software tool for simulating materials at the atomic level. It
performs calculations like electronic structure and quantum-
mechanical molecular dynamics, all based on fundamental
physical principles. VASP leverages parallelization techniques
like MPI for efficient use of computing resources. Addi-
tionally, it can utilize OpenMP threading and OpenACC for
potential acceleration on GPUs. Notably, VASP is the most
popular code used on the ARCHER?2 computing machine.

We investigated the performance difference between OFI
and UCX for the VASP application on ARCHER2. We used
the pre-installed VASP 6 executable on ARCHER?2 and the
example input files for H20 adsorption on TiO2. We ran
the application with both OFI and UCX communication li-
braries. For OFI, we additionally tested the impact of the
MPICH_OFI_RMA_STARTUP_CONNECT flag. This flag sets
up connections between all processes (ranks) on each node
during MPI initialization. This can be beneficial for applica-
tions using remote memory access (RMA) with an all-to-all
communication pattern within each node.

To comprehensively assess performance, we executed the
application with these three different configurations, utilizing
1, 2, 4, 8, 16, 32, 64, 128, and 256 nodes. Each node utilized
64 tasks, with 2 cores assigned per task. We repeated these
experiments for each framework and each configuration for
three iterations. The results, including various plots depicting
LOOP+ (ionic step) performance, were obtained.

For profiling, we employed the CrayPat Lite module, avail-
able on ARCHER2. We ran the application using 8, 32, and
64 nodes across three configurations, and MPI profiles were
obtained for comparative analysis.

IV. EXPERIMENTAL RESULTS

In this section we present our measurement results, starting
with microbenchmarks run using ReproMPI, followed by
application performance. Note the logarithmic scale for the
ReproMPI figures.

A. ReproMPI Microbenchmark

We run ReproMPI for various collectives and observe
that there is no single winning configuration: for different
collectives, message sizes and number of nodes either OFI
or UCX may perform better as shown below. However, after
the upgrade OFI performs more reliably and in most cases
outperforms or matches UCX. UCX tends to behave less
robustly with increasing number of nodes and message sizes.

__________ O mm et ——m === =©
JEPSSECY
g,gl—e———f
© 1073
c
o
O
L3
&
£
3
£
=1
c
2 -4
e L O S ——— =
K N T S et ¢ st i
B -
QU
=
10—5.
0 50 100 150 200 250
Node(s) count
—¢ OFI1B =i UCX10B —6— OFI1KB —&- UCX10KB —&- OFI IMB
=% UCX1B —-©- OFI100B =~ UCX 1kB OFI100kB -G~ UCX 1IMB
~A~ OFI 10B -3 UCX 100B ~&- OFI 10KB UCX 100KB

Fig. 1: MPI_Bcast performance

Figure 1 demonstrates performance of MPI_Bcast for up
to 256 nodes. We observe that for message sizes larger than
1000 bytes OFI consistently outperforms UCX by up to 38%
(for messages for size 10° on 256 nodes). However, for smaller
messages UCX performs slightly better. A somewhat similar
picture can be observed in Figures 2 and 3 for MPI_Scatter
and MPI_Gather, respectively. For these collectives OFI
slightly outperforms UCX in most cases, except for smallest
message size of 1 byte and smaller node counts of under 128
nodes. Additionally the difference is close to 2x in favour of
OFI on 256 nodes for largest message size of 10° bytes. For
MPI_Scan, Figure 4 illustrates OFI outperforming UCX for
message sizes over 10% by up to 3.2x (form message size of
10° bytes, dropping to 1.7x for 10%-byte messages), whilst
for smaller messages using UCX consistently results in lower
run times, with differences up to 2.5x (for 1-byte messages).

Figure 5 illustrates the behaviour of the MPI_Allgather
collective, where in most cases OFI outperforms UCX, by
up to around 33% (for 512 nodes and message size of 100
bytes). Figure 6 depicts the performance of MPI_Allreduce
for which we observe UCX outperforming OFI for in all
cases, except for message size of 10° using 128 or more
nodes and for message sizes of 103 or fewer bytes for node
counts of fewer or equal to 32. Finally, Figure 7 presents
the performance of MPI_Alltoall, which leads to highest
absolute run times and scales less well than other collectives.
In part this is why we only used up to 128 nodes and messages
sizes of up to 10° for these runs. We observe OFI performing
on par with or slightly better than UCX in most cases.

Median runtime in seconds

Median runtime in seconds

Median runtime in seconds

._.
15}
o

=
o
4

—
o
1

IS

10-54

150 200 250
Node(s) count
-~ OFI 1008

-G UCX 100B

50 100

—»~ OFI 1B
= UCX 1B

~A— OFI 10B
/- UCX 10B

—— OFI 1KB
- UCX 1KB

~&— OFI 10KB
-3~ UCX 10KB

Fig. 2: MPI_Scatter performance

10724

10734

104 4

1014

,_;
5]
&

—
o
|

w

=
o
I

150 200 250
Node(s) count
-6~ OFI 100B

-G uUcx 1008

50 100

~» OFI 1B
=>& UCX1B

—#— OFI 108
=/ UCX 10B

~4— OFI 1KB
- UCX 1kB

~&— OFI 10KB
=3~ UCX 10KB

Fig. 3: MPI_Gather performance

0

50 100 150 200

Node(s) count
—>& OFI 1B =/ UCX 10B —e— OFI 1KB ~(3- UCX 10KB -6~ OFI 1MB
=> UCX 1B ~&— OFI 100B -O- UCX 1KB OFI 100KB -3 UCX 1MB
A~ OFI10B -G~ UCX100B —&- OFI 10KB UCX 100KB

Fig. 4: MPI_Scan performance

Median runtime in seconds

Median runtime in seconds

Median runtime in seconds

10° 4

H
<

1024

10-34

104 4

._.
)
&

._.
=)
IS

100 4

10-14

10724

10734

0 100 200 300 400 500
Node(s) count
—»~ OFI 1B ~#— OFI 10B —&— OFI 100B —H— OFI 1KB ~&— OFI 10KB
=» UCX1B =A- UCX10B ~-G- UCX 100B = UCX 1KB -3~ UCX 10KB
Fig. 5: MPI_Allgather performance
0 50 100 150 200 250
Node(s) count
—>» OFI 1B ~/+ UCX 10B —H— OFI 1KB =3 UCX 10KB -~ OFI 1MB
= UCX 1B =&~ OFI 100B =~ UCX 1KB OFI 100KB -G UCX 1MB
~A— OFI 108 =G UCX100B —e— OFI 10KB UCX 100KB
Fig. 6: MPI_Allreduce performance

20 40 60 80 100
Node(s) count
=~ OFI 1B ~£— OFI 10B -&~ OFI 100B —6— OFI 1KB
= UCX 1B =/r UCX 10B -3 UCX 1008 ~{ UCX 1KB

Fig. 7: MPI_Alltoall performance

120

~&— OFI 10KB
-3 UCX 10KB

B. CASTEP

Figure 8 shows the performance of OFI and UCX when
CASTEP is run using up to 16 nodes, a total of 2,048 MPI
processes. The blue solid line represents the performance
of OFI, while the orange dashed line represents UCX. The
performance is measured in SCF cycles per second.

~— ofi

0.075 ucx

e
°
3
=]

0.065

0.060

0.055

0.050

Performance (SCF cycles/s)

0.045

0.040

0.035

8 10 12 14 16
Nodes

Fig. 8: CASTEP al3x3 testcase

Given the medium size of the benchmark, the best perfor-
mance is achieved when using 4 nodes (512 MPI processes),
and decreases when the number of nodes is 8 and 16. There
is not a significant difference between the performance of OFI
vs UCX independent of the number of nodes, although UCX
performs slightly better when the node count is higher or equal
to 4 nodes (512 MPI processes).

C. GROMACS

Figure 9 shows the performance of OFI and UCX when
GROMACS is run using up to 256 nodes, a total of 32,768
MPI processes. The blue solid line represents the performance
of OFI, while the orange dashed line represents UCX. The
performance is measured in nanoseconds (ns) per day.

~— ofi
ucx

40

Performance (ns/day)

0 50 100 150 200 250
Nodes

Fig. 9: GROMACS benchPEP testcase

GROMACS scales well up to 64 when OFI is used. On the
other hand, the performance does not improve when using
UCX with a node count larger than 32. Compared to the
performance comparison reported in [3], OFI demonstrates a
better performance when the node count is higher than 16.

D. NEMO

Figure 10 shows for NEMO 4.2.2, the OFI vs UCX per-
formance in terms of simulation years per day (SYPD) of
runtime. The NEMO BENCH test was used to run an idealised
configuration that incorporated the ORCA12 grid. The NEMO
executable was generated using the HPE CCE15 compiler.

2004 © OF =
X UCX °

17.51

15.0

SYPD

2.5 1 Q

0.01

32 64 128 256 512 1024

Nodes

Fig. 10: NEMO 4.2.2 BENCH (ORCA12) has been run three
times for a range of node counts on ARCHER2 using OFI
and UCX. The plot points are the performance averages in
Simulation Years Per Day of runtime. The plot points for the
1024-node runs are accompanied by horizontal lines indicating
the minimum and maximum performance. At other node
counts, those lines are too close to the average to be properly
distinguished.

For the UCX runs it was necessary to set two environment
variables in order to guarantee job completion.

export UCX_IB_REG_METHODS=direct
export UCX_TLS=rc ,dc, self ,sm

The first setting avoids memory allocation errors [11]. The
second variable, UCX_TLS, was set so as to exclude the
Unreliable Datagram (UD) transport protocol, otherwise the
NEMO UCX runs start to fail with UD endpoint (unhandled
timeout) errors for node counts of 128 or above.

The results show that OFI and UCX performance is very
similar until node counts of 512 and 1024, at which point OFI
begins to lead. This performance gap appears to grow with
node count. At 1024 nodes, the OFI performance is 19 SYPD,
whereas UCX achieves 13.8 SYPD, and so, compared to UCX,
OFI gives a speedup of 1.38 (at 512 nodes the speedup is 1.23).
An identical trend is seen with GCC-compiled NEMO, albeit
with an SYPD performance that is approximately 10% lower.

E. VASP

In Figure 11, we observe the performance of LOOP+
represented as ionic calculations per second across various
communication frameworks. The error bar are standard de-
viations. Notably, after 16 nodes, runs utilizing UCX and OFI

0.020 4 E‘

0.015 4

- OFl
~E- OFI | MPICH_OFI_RMA_STARTUP_CONNECT=1

0.010 4

Performance(LOOP+ per s)

0.005

0.000 A

0 50 100 150 200 250
Node(s) count

Fig. 11: VASP LOOP+ performance: OFI vs UCX

with the RMA startup flag enabled exhibit superior scaling,
while standard OFI runs demonstrate comparatively poorer
scaling. Overall, runs employing OFI with the RMA startup
flag enabled demonstrate the best scaling, indicating that the
LOOP+ step primarily involves all-to-all communication calls.

When we see Figure 12 showing the elapsed time of the
VASP applcation runs with error bars indicating the standard
deviation. we see that for larger node the runs using OFI with
RMA flag enabled runs longer that the UCX runs, even though
it exibited better LOOP+ performance scaling than the UCX
runs in Figure 11.

4000 1 ~&- OFI
~E- OFI | MPICH_OFI_RMA_STARTUP_CONNECT=1

—J— ucx
3500 A

3000 -

N
%
=3
S]

N
(=]
o
o

Elapsed time(s)

1500 A

1000 -

500 1

0 50 100 150 200 250
Node(s) count

Fig. 12: VASP elapsed time: OFI vs UCX

V. MPI PROFILING

In this section we present CrayPat application profiles based
on sampling using default reporting settings. The profiles show
the fraction of time spent in MPI communication with a
breakdown by MPI call, excluding calls that contribute less
than 1% to the execution time.

A. NEMO

We profiled the 32 and 256 node runs for OFI and UCX us-
ing CrayPat Lite in sampling mode. Predictably, the percentage
of the runtime spent doing MPI operations grows with node
count. At 32 nodes, approximately 10% of the runtime is spent
in MPI — this is the case for both OFI and UCX. The MPI
runtime percentages differ at 256 nodes however: for OFI it
is 20%, but for UCX it is 32%.

The majority of NEMO’s MPI operations involve point-to-
point communications (i.e., halo swapping). There are some
all reduce operations also, which take up a diminishing portion
of the runtime as the node count is increased. It is clear from
the profiling results that the greater MPI runtime percentage
seen for UCX is driven by an increase in the time it is
taking to do point-to-point MPI calls such as MPI_RECV and
MPI_TISEND. At 32 nodes, those two operations account for
around 7% of the runtime for both OFI and UCX. At 256
nodes, that percentage increases to 14% for OFI, but for UCX,
it rises to 25%. Figure 10 indicates that this divergence widens
for the higher node counts of 512 and 1024.

B. CASTEP

Table II shows the percentage of the MPI runtime with
respect to the total runtime. Results with 1 and 2 nodes are
not included in the table due to its similarity.

TABLE II: CASTEP MPI profile

Nodes I 4 \ 8 \ 16
OFI | UCX | OFI | UCX | OFI | UCX
MPI (%) 67.1 38.1 | 83.8 329 | 91.6 66.3
MPI_ALLTOALLV 29.1 9.0 | 50.0 10.5 | 65.4 21.5
MPI_BARRIER 13.3 44 | 151 3.0 | 120 14.0
MPI_ALLREDUCE 12.5 9.8 9.7 7.9 7.8 16.3
MPI_GATHER 10.6 13.7 | 10.6 10.5 5.6 12.5

We can observe that the percentage of MPI runtime is larger
than 80% when OFI is used on 8 and 16 nodes. MPI function
MPI_ALLTOALLV is predominant all cases except when UCX
is used with 4 nodes. When OFI is used with 16 nodes, 65.4%
of the samples are related to MPI_ALLTOALLV.

C. GROMACS

Table III shows the MPI profile obtained using CrayPat Lite
for 8 and 64 nodes.

When using 64 nodes, MPI_Scatterv takes most of the
time with OFI, but doesn’t appear for UCX (i.e., the sampling
percentage is less than 0.95% of the total).

D. VASP

Tables IV, V, and VI present the percentage of total runtime
used by different MPI function calls. Across eight nodes,
the profiles for all three configurations are quite similar.
However, when running on 32 and 64 nodes, we notice that
in the default OFI configuration (Table 1V), the MPI all-
to-all communication step takes up a larger portion of the
runtime compared to the other configurations. This, along with

TABLE III: GROMACS MPI profile

Nodes I 8 \ 64
OFI | UCX OFI | UCX
MPI (%) 36.0 36.9 88 71.0
MPI_Recv 3.0 22 | 185 25.0
MPI_Waitall 124 12.8 1.6 15.1
MPI_Sendrecv 5.7 9.5 2.4 11.3
MPI_Alltoall 2.3 4.0 1.5 10.4
MPT_Comm_split 6.6 6.6 9.9 9.6
MPI_Bcast 34 14 1.8 43
MPI_Scatterv 2.0 - | 51.6 -

Figure 11, suggests that the all-to-all collective communication
negatively affects scaling under the default OFI setting.

TABLE IV: VASP MPI OFI profile

Nodes [s] 32] o]
MPI (% runtime) || 252 [46.3 [5658 |

MPI_ALLTOALLV 6.6 | 23.8 | 38.2
MPI_BCAST 8.4 9.9 7.7
MPI_BARRIER 5.8 6.9 4.9

MPI_ALLREDUCE 33 52 5.5

TABLE V: VASP MPI OFI (RMA startup enabled) profile

Nodes [s8] 3] e]
MPI (% runtime) || 22.6 [33.8 [387 |
MPI_BCAST 97 [16.1 | 197
MPI_BARRIER 4.2 10.8 12.6
MPI_ALLTOALLV 4.0 2.1 1.7
MPI_ALLREDUCE 3.6 4.2 4.1

TABLE VI: VASP MPI UCX profile

Nodes [s8] 3] e]
MPI (% runtime) [| 27.5 [43.7 [507 |
MPI_BCAST 106 | 199 | 24.1
MPI_ALLTOALL 5.8 9.4 10.2
MPI_BARRIER 4.1 9.3 11.3
MPI_ALLTOALLV 3.9 3.4 1.5
MPI_REDUCE - - 3.5

When employing OFI with the RMA startup flag enabled,
the percentage of runtime consumed by the all-to-all commu-
nication call appears to be significantly reduced (Table V),
likely contributing to the improved scaling seen in Figure 11.
Table VI reveals that the default UCX configuration manages
collective communication effectively, showing improved scal-
ing compared to default OFI runs as depicted in Figure 11.

VI. CONCLUSION

Although the best transport protocol and its settings depend
on various factors such as the number of nodes and the
specific application being run, we find that after the major

2023 upgrade on ARCHER?2 and compared to the 2022 results,
OFI performs much more reliably and can be recommended
as default choice, whilst UCX may require some tuning when
run on larger node counts. This is supported by the results
measuring blocking collectives using ReproMPI.

Using various popular applications we make several further
observations. For a medium-size CASTEP case, OFI and UCX
perform similarly up to four nodes when highest performance
is reached and then UCX scales somewhat better; this is
also confirmed by the profiles visible as difference in the
percentages spent in MPL. For GROMACS, OFI matches UCX
up to and including 16 nodes and outperforms UCX on larger
node counts (speedup of ca. 3.2x). For NEMO, we observe
similar performance up to 512 nodes, where OFI starts to
outperform UCX and the difference in performance appears to
increase with node count from then on (speedup of 1.23x on
512 nodes and 1.38x on 1024). Profiles show that the fraction
spent in MPI increases faster for UCX, which also requires
aforementioned changes to environment variables to enable
the runs on 128 nodes and above. For VASP, performance
seems to be similar up to 16 nodes, where OFI requires an
additional environmental variable setting which allows it to
reach higher performance in LOOP+, however, overall UCX
achieves better scaling (up to 32-64 nodes range as opposed
to 16 nodes for OFI) resulting in a lower elapsed runtime.

In summary, choosing the right transport protocol may be
critical for achieving optimal performance in parallel applica-
tions, but there is not a one-size-fits-all solution. Users should
consider their specific context and requirements when making
this decision, whilst OFI appears a suitable default.

Future investigations will continue to explore the impact of
routing protocols on performance and study the performance
of inter-node GPU-aware communication.

ACKNOWLEDGEMENTS

This work used the ARCHER2 UK National Supercom-
puting Service (https://www.archer2.ac.uk). We gratefully ac-
knowledge the valuable advice of many members of the
ARCHER?2 CSE team to carry out this project.

REFERENCES

[1] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard,
and J. M. Squyres, “A brief introduction to the OpenFabrics Interfaces
- a new network API for maximizing high performance application
efficiency,” in 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects. 1EEE, 2015, pp. 34-39.

[2] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss ef al., “UCX:
an open source framework for HPC network APIs and beyond,” in
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE, 2015, pp. 40-43.

[3] M. Bareford, D. Henty, W. Lucas, and A. Turner, “OpenFabrics and
UCX: Performance on the ARCHER2 HPE Cray EX system,” CUG
2022.

[4] K. S. Khorassani, C.-C. Chen, B. Ramesh, A. Shafi, H. Subramoni, and
D. K. Panda, “High performance MPI over the Slingshot interconnect,”
Journal of Computer Science and Technology, vol. 38, no. 1, pp. 128—
145, 2023.

[5] S. Hunold and A. Carpen-Amarie, “Reproducible MPI benchmarking
is still not as easy as you think,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 12, pp. 3617-3630, 2016.

[6] S. Hunold, “Verifying Performance Guidelines for MPI Collectives at
Scale,” in Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and
Analysis, 2023, pp. 1264-1268.

[71 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. 1. J.
Probert, K. Refson, and M. C. Payne, “First principles methods using
CASTEP,” Zeitschrift fiir Kristallographie - Crystalline Materials,
vol. 220, no. 5-6, pp. 567-570, 2005. [Online]. Available: https:
//doi.org/10.1524/zkri.220.5.567.65075

[8] M. J. Abraham, T. Murtola, R. Schulz, S. Pidll, J. C. Smith, B. Hess,
and E. Lindahl, “GROMACS: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers,” Soft-
wareX, vol. 1, pp. 19-25, 2015.

[91 NEMO Consortium, “NEMO community ocean model,” https://www.

nemo-ocean.eu, 2024.

G. Irrmann, S. Masson, Eric Maisonnave, D. Guibert, and E. Raffin,

“Improving ocean modeling software NEMO 4.0 benchmarking and

communication efficiency,” Geoscientific Model Development, vol. 15,

pp. 1567—-1582, 2022. [Online]. Available: https://doi.org/10.5194/

gmd-15-1567-2022

“ARCHER2 Known Issues,” https://docs.archer2.ac.uk/known-issues,

2024.

[10]

[11]

APPENDIX: REPRODUCIBILITY

Full details of the benchmarks are available on GitHub:
https:// github.com/ARCHER?2-HPC/performance_ofi-ucx

The repository includes:

o Benchmark descriptions and input decks

¢ Job submission scripts

o Build instructions and versions of software used
o Raw results and outputs from benchmark runs

« Profiling outputs for different node counts

o Analysis scripts

APPENDIX: OSU RESULTS

For comparison we ran the OSU MPI Benchmarks for
matching blocking collectives (except MPI_Scan) on 8, 16,
32, 64, and in some cases 128 nodes for various message
sizes (we report measurements for sizes of 4, 128, 1024, 8192
and 32768 bytes). The runtime is reported in microseconds
(note the logarithmic y-axis scale). Overall we mostly observe
similar trends to the ReproMPI results.

106 4

105 4

104 4

runtime (microseconds)

103 4

102 4

20 40 60 80 100 120
Number of nodes

- OFI-4B
ucx-48

~#— OFI-1288B
=/ UCX-128B

—©— OFI-1024B
-G UCX-1024B

OFI-8192B
5 UCX-8192B

OFI-32768B
-3 UCX-32768B

Fig. 13: OSU: MPI_Allgather performance

runtime (microseconds)

runtime (microseconds)

runtime (microseconds)

102
20 40 60 80 100 120
Number of nodes
—- OFI-4B —A— OFI-128B —©- OFI-1024B —— OFI-8192B ~&— OFI-32768B

% UCX-4B =A- UCX-128B =G UCX-1024B (- UCX-8192B -3 UCX-32768B

Fig. 14: OSU: MPI_Allreduce performance

10°
10° /
2
- 8'/
P
10° /
20 40 60 80 100 120
Number of nodes
>~ OFI-4B —A— OFI-128B —©- OFI-1024B ~{— OFI-8192B -&- OFI-32768B
% UCX4B =A UCX-128B -G UCX-1024B ~(- UCX-8192B -G UCX-32768B
Fig. 15: OSU: MPI_Alltoall performance
-0
--=0
L--©
1014
FooR
10 20 30 40 50 60
Number of nodes
- OFI-4B —A- OFI-1288 —©&- OFI-1024B —{— OFI-8192B —&— OFI-32768B

< UCX-4B =A UCX-128B =G~ UCX-1024B (- UCX-8192B -G UCX-327688

Fig. 16: OSU: MPI_Bcast performance

runtime (microseconds)

runtime (microseconds)

runtime (microseconds)

1024 | | | E—— —_—

L

<

=
o
2

10 20 30 40 50 60
Number of nodes
- OFI-4B —A— OFI-128B —-©— OFI-1024B —0— OFI-8192B ~&— OFI-32768B

= UCX-4B =/r UCX-128B -G~ UCX-1024B ~(~ UCX-8192B -0~ UCX-32768B

Fig. 17: OSU: MPI_Gather performance

—
o
2

10 20 30 40 50 60
Number of nodes
=~ OFI-4B —A— OFI-128B —&— OFI-1024B —O— OFI-8192B

~&~ OFI-32768B
= UCX-4B =/r UCX-1288B -G~ UCX-1024B ~(~ UCX-8192B -0~ UCX-32768B

Fig. 18: OSU: MPI_Reduce performance

10°

104 4
103 4
1074
101 4

10 20 30 40 50 60
Number of nodes
¢ OFI-4B —A— OFI-128B —©- OFI-1024B ~$— OFI-8192B

~&~ OFI-32768B
= UCX-4B =/r UCX-1288B -G UCX-1024B ~(~ UCX-8192B -0~ UCX-32768B

Fig. 19: OSU: MPI_Scatter performance

