
Cloud-Native Slurm Management on HPE Cray EX
Felipe A. Cruz

Swiss National Supercomputing Centre
Lugano, Switzerland
felipe.cruz@cscs.ch

Manuel Sopena
Swiss National Supercomputing Centre

Lugano, Switzerland
manuel.sopena@cscs.ch

Guilherme Peretti-Pezzi
Swiss National Supercomputing Centre

Lugano, Switzerland
guilherme.peretti-pezzi@cscs.ch

Abstract—This work introduces a cloud-native deployment of
the Slurm HPC Workload Manager, leveraging microservices,
containerization, and on-premises cloud platforms to enhance
efficiency and scalability. Utilizing Kubernetes and Nomad’s APIs
alongside DevOps tools, the system automates system operations,
simplifies service configuration, and standardizes monitoring.
However, implementing a cloud-native architecture poses chal-
lenges, including complex containerization and resource man-
agement issues that are intrinsic to HPC.

Our solution implements an automated deployment and
management process of Slurm. Where some components are
containerized, others are deployed natively and are managed
via Kubernetes and Nomad, respectively. This approach ensures
consistent, automated, reproducible, and resilient Slurm man-
agement. The full paper will detail this implementation and its
benefits, underscoring the potential of modern software practices
to evolve HPC systems to meet the performance and flexibility
expected by our user base.

Index Terms—Cloud-native architecture, Workload Manager,
Microservices, On-Premises Cloud Platforms, Automated Oper-
ations

I. INTRODUCTION

Under a cloud-native approach [1], a High-Performance
Computing (HPC) system is architected as a collection of
small, loosely coupled services that can be independently
delivered. Moreover, this approach leverages on-premise cloud
platform deployments that enable a self-service model for
engineers to introduce controlled changes to the cluster while
streamlining service and infrastructure automation.

In this work, we present the application of cloud-native
management principles to Slurm [2], a well-known HPC
Workload Manager (WLM). This implementation puts in
practice a microservices approach, containerization of software
components, software-defined configuration for operation of
the services, continuous integration and delivery (CI/CD), and
on-premises cloud platforms to improve the efficiency and
scalability of managing this service, with the goal of fully
realizing the flexible capabilities of an HPE Cray EX system.

The foundation pilar of this work is achieved by leveraging
on-premises cloud platforms for the administration of Slurm,
making full use of Kubernetes [3] and Nomad [4] Application
Programming Interfaces (APIs) to orchestrate Slurm services
through declarative configurations. By doing so, we obtain
several advantages, including:

• Automation of operations such as service deployment,
updates, and self-recovery.

• Simplification of dynamic node configuration for large
clusters.

• Enhanced efficiency through automated resource alloca-
tion of system services across the infrastructure.

• Automated governance of system services on the infras-
tructure.

• Standardized interfaces that can be leveraged for auto-
matic detection of issues with services.

Often, implementations of the HPC software stack are
monolithic in nature, where all the software components
necessary for operation —such as OS, utilities, libraries, tools,
applications, and various core HPC services— are integrated
into a single, tightly coupled image. This approach is charac-
terized by:

• A single unit for building, configuring, and deploying,
which can make the cluster updates cumbersome and
slow, especially as the complexity of the stack increases.

• Management of applications is centralized, leading to
integration bottlenecks, which often have to compromise
flexibility among the many diverse application needs.

• Upgrades are complex processes, due to interdependen-
cies of software components all across the stack, often
requiring extensive testing to ensure full stack compati-
bility.

• Issue propagation, as a problem on a single software,
often requires full stack rebuild and redeploy.

In contrast, our cloud-native Slurm implementation is built
upon an automated, version-controlled deployment and man-
agement process, utilizing GitLab [5] for CI/CD, Terraform
[6] for service provisioning, Kubernetes for orchestrating the
Slurm controller and database daemons, and Nomad for native
slurmd agent deployment on the HPE Cray EX compute nodes.
This approach ensures consistent, repeatable, and version-
controlled infrastructure provisioning, significantly reducing
human errors, streamlining change management, and providing
a tangible structure to cloud infrastructure.

This paper outlines an innovative approach to managing
Slurm deployments on HPC systems by harnessing the prin-
ciples of cloud-native architecture. Through the deployment
and orchestration techniques that we will describe, we present
a modular and flexible approach for building and managing
HPC services. The following sections will provide a detailed
view of a deployment architecture of Slurm, the dynamic
management processes that we have implemented, and the



Fig. 1. Diagram of the automated, version-controlled deployment and management process for a Slurm WLM environment using GitLab for version control
and CI/CD, Terraform for infrastructure provisioning, Kubernetes for container orchestration of slurm control daemons, and Nomad for deploying native
slurmd agent on the HPC cluster, with Slurm itself managing HPC job scheduling on HPC compute nodes..

operational results of integrating cloud-native principles to
HPC management. The overarching goal is to present a
template for HPC service delivery and management that can
make optimal use of HPC resources but, more importantly,
allow us agility to respond to the ever-growing computational
needs of performance and flexibility expected by our user base.

II. CLOUD-NATIVE PRINCIPLES AND HPC

In [7] paper, we introduced a novel approach by setting
up Cloud-Native High-Performance Computing (HPC) clusters
on HPE Cray EX systems. This approach applies cloud-
native principles to the deployment and management of HPC
clusters by leveraging the following key principles in a cloud-
native architecture: microservices, containerization, continu-
ous integration and continuous delivery (CI/CD), and DevOps
practices. By following such an approach, our objective is to
realize the same advantages that cloud computing has gained
from the application of these principles and apply them to the
management of the complex and dynamic demands of HPC
systems.

In a nutshell, the cloud-native HPC architecture is charac-
terized by several core principles:

• Microservices Architecture: In a cloud-native approach,
we break down the Cluster monolith into a collection of

microservices. The goal of the decomposition is to obtain
smaller, loosely coupled services that can be indepen-
dently developed and deployed for greater flexibility and
responsiveness to changes. Ideally, each service manages
its own dependencies and interacts with other services
through well-defined interfaces.

• Containerization: When possible, microservices are pack-
aged into containers, which include all necessary exe-
cutables, binary code, libraries, and configuration files.
Containers provide an isolated environment for each ser-
vice, ensuring consistency across different development
and production environments.

• Continuous Integration and Delivery (CI/CD): Leveraging
CI/CD pipelines to support deployment and testing pro-
cesses. This automation supports team collaboration and
transparency of deployments, while allowing for more
frequent updates and consistent deployment practices, re-
ducing the risk of errors and, when possible, deployment
of new features or updates without significant downtime.

• DevOps Practices: Integrating development and oper-
ations teams through DevOps practices enhances col-
laboration and streamlines workflows. This integration
facilitates a culture of continuous improvement, enhances
productivity, and reduces the time to deploy new features



or resolve issues.
Due to its advanced hardware and robust system man-

agement capabilities, the HPE Cray EX is well-suited for
implementing a cloud-native HPC approach. A key feature
is its support for Infrastructure as Code (IaC), enabling us to
manage the infrastructure via automation and programmable
interfaces. This functionality allows for the deployment of
independent configurations that can be individually updated
without affecting the entire system. Moreover, the HPE Cray
EX simplifies operations and enhances flexibility by enabling
the management of multiple clusters from a single, highly
configurable system. Deploying HPC clusters using a cloud-
native approach on HPE Cray EX brings multiple operational
and strategic benefits:

• Enhanced Flexibility: The microservice architecture en-
ables us to build a single system stack that can eas-
ily deploy and configure multiple independent clusters,
where each can respond to specific needs. This flexibility
is crucial for serving a variety of needs where compu-
tational, storage, and system service configuration and
composition can vary significantly between clusters.

• Increased Resilience: The use of microservices enhances
system resilience. In case of a service failure, it can be
updated and restarted independently with limited impact
on other services of the system, thereby improving overall
system response and reliability.

• Faster Innovation and Deployment: CI/CD and DevOps
practices reduce the cycle time for the development and
deployment of new hpc services, user applications, and
updates. This capability enables engineers to work inde-
pendently and more freely, accelerating iteration cycles
in service development.

Improved System Management and Maintenance: Cloud-
native principles facilitate better system management through
automation, monitoring, and maintenance capabilities. Tools
like Hashicorp’s Nomad and Kubernetes simplify service
deployment and management.

III. SLURM DEPLOYMENT ARCHITECTURE

The architecture of the cloud-native Slurm implementation
makes use of multiple cloud technologies to enhance the man-
agement of the workload manager. Kubernetes, Nomad, Ter-
raform, and GitLab are the core components of this approach
towards dynamic and robust system management. The system
is architected using a microservices approach where internal
components of the Slurm are modularized and managed using
different cloud platforms and tools:

A. Kubernetes

Kubernetes orchestrates containerized instances of Slurm
components such as the Slurm controller (slurmctld), Slurm
database daemon (slurmdbd), and Slurm rest daemon (slurm-
restd), each running within dedicated pods in a Kubernetes
tenant namespace. This setup enhances management by:

• Automating the deployment of Slurm components, ensur-
ing high availability and fault tolerance.

• Utilizing Kubernetes’ secrets management to handle sen-
sitive configurations securely, ensuring that components
such as Munge [8] (for authentication) are correctly
configured across deployments.

B. Nomad

While Kubernetes enters around managing containerized
applications, Nomad is employed to manage the deployment
of native services on Compute Nodes, a crucial aspect of
HPC operations. Nomad orchestrates the deployment of the
Slurm daemon (slurmd) on compute nodes, extensively using
its capability to manage non-containerized tasks. Key benefits
include:

• Nomad can manage native tasks using the “rawexec” task
driver. This allows for direct interaction with compute
node hardware, ensuring performance and no overheads.
This is crucial for components that are not suitable for
containerization due to their specific requirements or
complexities.

• Streamlined management of compute resources by No-
mad agents on cluster’s compute nodes, allowing us a
flexible mechanism to manage resources via software
without minimal latency on reconfiguration.

C. Terraform

Terraform plays a pivotal role in provisioning and managing
the underlying infrastructure for both Kubernetes and Nomad
environments. By using IaC, Terraform ensures that all service
components are deployed consistently and are reproducible.
This process is critical for:

• Quick and consistent setup of the required services,
reducing manual configuration errors and increasing de-
ployment speed.

• Central management of both containerized and native
service components, simplifying the complexity of op-
erating diverse technological stacks while ensuring that
the component deployment order is respected.

D. GitLab

GitLab integrates the entire deployment process through
GitLab runner implementation of CI/CD pipelines, automating
the deployment and version control of the Slurm imple-
mentation. This ensures that all deployments are consistent,
reproducible, and automated, streamlining the management of
service changes:

• Automated pipelines deploy updates and new configura-
tions of services without significant downtime, improving
the responsiveness to changes.

• Version control of configurations provides us with im-
proved tracking and management for all service changes.

The Slurm service deployment workflows begin with the
cluster owner pushing updates or configuration changes to the
GitLab repository that holds the Cluster configuration. These
changes trigger GitLab’s CI/CD pipelines, which manage
the deployment across the Kubernetes and Nomad platforms.
Artifacts used by Slurm are maintained in a JFrog container



Fig. 2. This diagram depicts the state transitions and synchronization of Nomad jobs, providin an example on the interaction between a slurmd job and a
munge job within a Nomad deployment. The slurmd job’s synchronization depends on the state transitions of the munge job, highlighting the dependency
between jobs being successfully deployed and operational before the next job can proceed. This interaction ensures that jobs dependent on each other respect
the necessary sequence for a stable and efficient deployment process. Note the sidecar lifecycle management task that starts concurrently with the munge
job’s deploy phase and it waits until end for termination. Consider now that the same illustration applies for any service that need to implement lifecycle and
interdependency management.

registry [9], with Kubernetes orchestrating the deployment of
the containerized application. Simultaneously, Nomad sched-
ules and manages native Slurm daemon tasks directly on the
compute nodes.

IV. DEPLOYMENT AND MANAGEMENT PROCESS

The architecture of the Slurm service is designed to effi-
ciently deploy and manage Slurm on vCluster environments,
it uses a hybrid model where services are deployed both
natively on compute nodes and containerized on a Kubernetes
cluster. Table I provides an overview of each component and
its deployment mechanism.

A. Containerization and Orchestration of Daemons on Kuber-
netes

The Slurm components deployed via Kubernetes have been
containerized to isolate dependencies and simplify deployment
procedures. The containerized components include slurmctld,
slurmdbd, mariadb [10], slurmrestd, and necessary authentica-
tion services like munged and ssd.

1) General Details for Kubernetes Deployment Configura-
tion:

• Containers are executed within Kubernetes Pods, encap-
sulating them in a controlled environment.

• Volumes:
– ConfigMaps: Used to store shared configuration data,

allowing uniformity across deployments.

– Secrets: Employed to securely manage sensitive data,
such as authentication keys.

– PersistentVolumeClaims: Utilized for storing persistent
data that needs to survive pod restarts or failures.

• Environment Variables passed on to Pods are used for
providing configurations specific to each deployment,
such as SLURM_CLUSTERNAME, SLURM_SPOOLDIR,
and timezone settings.

• Component interoperation is achieved via Networking
and shared storage:
– Ports are used for communication between compo-

nents, with slurmctld listening on port TCP:6817
and slurmdbd on TCP:6819.

– Shared Mounts: Utilized across containers to facili-
tate inter-container communication and data sharing.
Common mounts include read-write access on directo-
ries like /etc/munge from munge-confdir, /munge
from munge-secret, /var/run/munge from munge-
rundir, and /var/spool/slurm from slurm-data.

• Mounts: Key for operational consistency, these Ku-
bernetes volume mounts manage configuration files
(/etc/munge, /etc/slurm), secrets, and data di-
rectories across components, ensuring they are secure and
consistent across the deployment.

• File Permission Settings: Handled by an initialization
container which configures file ownership and permis-
sions to suit operational requirements, such as setting



TABLE I
OVERVIEW OF KEY SLURM COMPONENTS: DEPLOYMENT METHODS AND FUNCTIONAL DESCRIPTIONS

Component Deployment Functionality

Slurm Control Daemon
(slurmctld)

Containerized and managed as Pod by
Kubernetes

Acts as Slurm’s central management daemon, controlling all
other service daemons and allocating resources in the HPC
cluster. Key service for orchestrating workload management
across the compute infrastructure.

Slurm Database Daemon
(slurmdbd)

Containerized and managed as Pod by
Kubernetes

Provides an interface to the database that records Slurm job
data.

Database for Slurm Data
(mariadb)

Containerized and managed as Pod by
Kubernetes

Serves as the backend database for Slurm, storing all related
data.

Slurm REST API (slurmrestd) Containerized and managed as Pod by
Kubernetes

Provides a REST API for Slurm, offering a programmatic
interface through a web-based API.

Slurm Compute Node Agent
(slurmd)

Native on Compute Nodes, managed
by Nomad

Manages the execution and monitoring of tasks on each
compute node, communicating with slurmctld to manage
workloads.

Munge Authentication
(munged)

Support component deployed natively
on Compute Nodes and containerized
on Kubernetes pods

Provides authentication services by creating and validating
credentials, ensuring secure cluster operations.

Slurm Client Commands Support component deployed natively
on Compute Nodes and containerized
on Kubernetes pods

Includes commands like squeue, srun, sbatch, scontrol,
sacct, sinfo, etc., enabling users to submit and manage jobs
on the cluster.

chmod 0755 on necessary directories, compensating for
Kubernetes’ default volume permission settings.

2) Specific Kubernetes Pod Configurations: Each compo-
nent is configured within its pod to optimize performance and
security.

3) Slurm Control Daemon:

• Init Container: Prepares shared mounts.
• Containers:

– slurmctld: Utilizes configmap for slurm.conf,
sssd.conf; secret for munge.key,
mail.rc; environment variables like
SLURM_CLUSTERNAME, SLURM_SPOOLDIR,
TZ; and multiple mounts for configuration and
runtime data.

– munged: Handles authentication, mounting
/etc/munge and /var/run/munge.

– sssd: Manages system security services directory,
mounting /etc/sssd and /var/lib/sss.

4) Slurm Database Daemon:

• Init Container: Sets up shared mounts.
• Containers:

– slurmdbd: Similar to slurmctld, with specific
mounts for its configuration.

– munged and sssd: As above, supporting authentication
and security services.

5) Slurm REST API on Kubernetes Pod:

• Init Container: For mount preparation.
• Containers:

– slurmrestd: Uses secrets and mounts similar to
slurmctld but tailored for REST API needs.

– munged and sssd: Provide necessary backend support.

6) Backend Database on Kubernetes Pod:

• MariaDB: Employs PersistentVolumeClaims to
ensure data persistence across sessions and deployments,
crucial for maintaining stateful application data.

B. HPC Service Deployment Using Nomad

HashiCorp Nomad is a multi-purpose workload orchestrator
that facilitates the deployment and management of both non-
containerized and containerized applications in on-premises
and cloud environments. It supports our cloud-native strategy
by providing flexible and efficient tools for deploying and
managing traditionally complex services that are difficult to
containerize. Key aspects of using Nomad, which bring sig-
nificant benefits, include:

• Nomad Job Specifications. HPC services deployed
through Nomad follow specific job specifications and are
designed to follow a microservice architecture. The goal
is to have smaller, independently manageable compo-
nents, to simplify integration, updates, and maintenance.

• Task Drivers. Nomad offers various task drivers for exe-
cuting jobs. However, on compute nodes we mostly rely
on the Raw Exec Driver to execute commands without
isolation. This allows tasks to interact directly and tightly
with the host HPC system, which is central to many HPC
services.

• HCL for Job Definitions. Services configurations in No-
mad are written using the HashiCorp Configuration Lan-
guage (HCL). This declarative language streamlines the
specification of job settings and parameters, enhancing
clarity and maintainability.

1) On slurmd Service:



1 job "slurm-cn" {
2 priority = 95
3 datacenters = ["${var.datacenter}"]
4 type = "system"
5 group "slurmd-cn" {
6 # Each task is scheduled on a

↪→ different node
7 constraint {
8 operator = "distinct_hosts"
9 value = "true"

10 }
11 task "slurmd" {
12 driver = "raw_exec"
13 user = "root"
14 config {
15 command = "/usr/sbin/slurmd"
16 args = ["-D", "-Z", "--conf-

↪→ server", "${var.slurm-ctld
↪→ -host}", "--conf", "
↪→ Feature=compute"]

17 }
18 }
19 network {
20 port "slurmd" {
21 static = 6818 # host linked port

↪→ to TCP 6818
22 }}}}

Listing 1. With filename ’slurmd.hcl’. Contains a Nomad job
description of Slurm daemon on compute nodes for Slurm

The Slurm daemon (slurmd), a key component of the Slurm
cluster, is responsible for managing job execution and resource
allocation on the compute nodes of an HPC system. When
deploying slurmd with Nomad, the deployment adapts to
accommodate its specific requirements, convoluted to con-
tainerize due to its complex and central role in many other
HPC operations. As such, we opted to deploy this component
natively and manage it via Nomad in the following way:

• Job Specification. The deployment of the slurmd via No-
mad follows a Nomad job specification. This specification
details how the Slurm daemon should be deployed, con-
figured, and managed. The job uses Nomad’s HashiCorp
Configuration Language (HCL) to define the deployment
parameters, see Listing IV-B1.

• Raw Exec Driver. Due to the slurmd need for close
control of host system resources, it is deployed using
Nomad’s raw exec task driver. This driver executes the
slurmd directly on the host without any form of virtualiza-
tion or containerization, providing the daemon complete
access to the host’s resources. This is required by the cur-
rent daemon implementation in order to manage system
resources and schedule jobs on the compute nodes.

• Deployment Strategy:
– Job Deployment Type System. The Slurm daemon

(slurmd) runs as a Nomad Job type System. This setup
ensures that the slurmd is run on every eligible compute

Fig. 3. This diagram illustrates the dependency and deployment sequence of
Nomad jobs for various services. Each vertical line represents a different ser-
vice, with the sequence of actions shown from top to bottom. This deployment
sequence ensures that services with dependencies are correctly synchronized
based on their respective readiness states, maintaining operational stability
and coherence. In this example, the deployment of SPANK plugins depends
on Slurm, which in turn depends on Munge while other services like DCGM
start independent from the rest.

node within the cluster.
– Configuration and Command Parameters. The Nomad

job specification for slurmd includes any configuration
parameters and command-line arguments necessary for
the daemon’s operation.

– Service Dependency. Before the Slurm daemon starts,
other essential services, such as Munge (for authentica-
tion), must already be running. Service job dependency
is discussed further in the following section.

2) On Services Nomad Jobs Synchronization: Nomad job
synchronization plays a crucial role in managing the deploy-
ment sequence and interactions of services orchestrated by
Nomad, especially during scenarios like service restarts or
compute node reboots. In case of these events, the orchestrator
automatically reschedules services, making it essential to
ensure the correct start order of services is maintained.

Our approach to synchronization is at the level of individual
Nomad Jobs, not across the entire microservices deployment.
Each Nomad Job follows a sequence of states from the deploy-
ment to the termination shown in Figure 2. This design choice
preserves the decoupled nature of deployments. To facilitate
this, we’ve developed a synchronization library that provides
standardized functions for managing job states throughout
their lifecycle, including deployment, running/ready, and re-
moval phases. This library also includes mechanisms for state



locking and unlocking, supporting sequential service startups
based on interdependencies. For example, the deployment
of SPANK plugins must precede that of Slurm, which may
depend on Munge, see Figure 3. By means of this synchro-
nization library, Nomad can effectively enforce the deployment
sequence of services on compute nodes, ensuring operational
coherence and reliability.

C. On Terraform, Nomad, and Kubernetes

We use Terraform as the front-end interface where all
cluster and service definitions are expressed. This allows our
engineering teams to manage the configuration and control of
cluster services as code. Nomad and Kubernetes, on the other
hand, provide the back-end execution platforms to physically
deploy and manage the slurm components. They ensure that
the declared state of the services deployed matches the desired
state declared in Terraform. This allows us to streamline
infrastructure management while also enhancing the flexibility
for managing cluster services.

1) Terraform as IaC interface: Terraform serves as the
Infrastructure as Code (IaC) interface for the HPC cluster, en-
abling the definition and configuration of HPC infrastructures
through code within a Terraform description file (main.tf),
which outlines the resources of the HPC cluster and its
services as modular Terraform components. Each Terraform
module represents a deployable service for the HPC cluster.
The terraform configuration files are maintained in a version-
controlled GitLab repository, using tags to manage versions
of services, enhancing reusability, updates, and rollbacks.
Moreover, Terraform actively manages the state of the in-
frastructure services, ensuring that it always aligns with the
configurations declared in the main.tf file. When changes are
detected, Terraform coordinates with providers like Nomad
or Kubernetes to apply necessary updates, maintaining the
infrastructure in its desired declared state.

2) Service Providers: Nomad and Kubernetes act as service
providers to Terraform, taking on the role of executing deploy-
ments as specified by Terraform. Both providers receive job
specifications from Terraform, to then schedule and run these
jobs on suitable infrastructure. Moreover, the providers are
responsible for dynamically managing resources and schedul-
ing tasks across the distributed infrastructure, ensuring that
services operate reliably and according to the configurations
defined in the infrastructure code.

3) Synchronization Management: The Jobsync tool, dis-
cussed in the previous Nomad section, manages deployment
synchronization and is crucial for maintaining inter-service
dependencies. This tool ensures that service deployments are
executed in the correct order and state, as defined by the
Terraform configuration.

V. CHALLENGES AND SOLUTIONS

Transitioning to a cloud-native architecture is not devoid of
challenges. Integrating Slurm, traditionally an HPC service,
into a microservices architecture presents several complexities.
Challenges identified include:

• Components can be hard to containerize due to complex
inter-process communications.

• Conflicts between cgroups of microservices and container
runtime.

• Conflicts involving Linux namespaces usage by microser-
vices with container runtime.

• Complex management of containers’ underlying infras-
tructure resource access (crucial when accessing special-
ized hardware).

• Difficulties in executing privileged applications within
containers.

• Challenges in maintaining long-lived, stateful applica-
tions not originally designed for dynamic redeployment.

• Subtleties in managing Linux namespaces for services
like the slurmd agent on compute nodes, which spawns
child processes.

• Complex services interdependencies, non trivial manage-
ment of service lifecycle for automated scripted deploy-
ment.

As we have shown, our implementation addresses these
challenges by architecting Slurm microservices deployment to
leverage the strengths of different on-premise cloud platforms
and tools, ensuring that key slurm components are automati-
cally deployed and managed:

• Slurm Control Daemon: This central management entity,
responsible for resource allocation, job monitoring, and
overall cluster management, is containerized and man-
aged through Kubernetes.

• Slurm Database Daemon: This component interfaces with
databases for job, node, reservation data storage, etc., and
is also containerized and Kubernetes-managed.

• Slurmd daemon on compute nodes: Functioning natively
on compute nodes to monitor and manage tasks, this
daemon, due to its non-container-friendly nature and
associated challenges, is deployed and managed through
Nomad’s ”rawexec” task driver, complementing Kuber-
netes’ orchestration capabilities.

VI. CLOUD-NATIVE OPERATION

We will now illustrate some of the key operational scenarios
for cloud-native Slurm deployment.

A. Cluster Bootstrapping

Terraform is used to define and configure the services for
the cluster through a version-controlled specification. Ensuring
that every component of the slurm cluster is described in
a consistent, repeatable manner. Such descriptions, config-
urations, and associated artifacts are stored and versioned,
enabling not only reuse but also sharing across different cluster
deployments, or even different organizations.

When a cluster administrator decides to deploy a new HPC
cluster, they leverage Terraform that automates the bootstrap-
ping process. Terraform acts by requesting service providers
like Nomad and Kubernetes to orchestrate the instantiation of
all services described in the Terraform configuration. Because
the infrastructure resources are already in an alive state,



ready and waiting for deployment commands, the process of
spinning up a new cluster becomes significantly faster and
more streamlined. This orchestration includes setting up the
entire infrastructure in a manner that adheres to predefined
configurations, ensuring that the deployed service is promptly
operational and configured for HPC. This infrastructure as
code approach accelerates the deployment process while also
enhancing the reliability and consistency of the HPC services
deployed.

B. Service Reconfiguration On A Live Cluster

A well-designed Slurm microservice can be effectively
managed using a cloud-native approach to minimize impact
on end-users while enhancing operational flexibility and effi-
ciency. Consider that the Slurm workload manager utilizes a
slurm.conf configuration file, which is a central component
for defining the behavior of the Slurm cluster, including
scheduling parameters and job management. This file is a
versioned artifact, stored in a repository to ensure that any
changes made are traceable, reversible, and consistent.

When the administrator of the cloud-native cluster needs
to modify parameters within the Slurm configuration, these
changes are implemented by updating the versioned slurm.conf
file and the corresponding service definition within the de-
ployment architecture managed by Kubernetes. The updated
configuration can then be redeployed to the Slurm controller
via Kubernetes without shutting down or disrupting the active
Slurm worker nodes. This means that while the controller
is being updated, the compute nodes continue to operate
undisturbed, processing jobs already in the queue.

This method of managing updates exemplifies a delicate
aspect of HPC services and automation: the design of the
system has to leverage platform functionality by means of
version control, service decomposition, and dynamic resource
management in order to ensure minimal disruption to scientific
users. The ability to update a central component like the Slurm
controller without impacting the broader HPC system enables
seamless, continuous service to users, even during configura-
tion transitions. This approach can enhance the user experience
by maintaining service availability while allowing for more
agile and responsive management of the HPC environment,
accommodating evolving user community needs.

C. Node Management

One important operational capability is to dynamically
reconfigure HPC cluster resources to meet varying needs
at runtime. This is facilitated by Nomad’s scheduling and
resource management features. In this case, we can use the
code description of Nomad jobs to arrange or assigning com-
pute nodes across different target usage pools, such as batch
computing, high-throughput computing, interactive computing,
and cluster services.

Moreover, Nomad allows service developers to specify
constraints within the job definition, to define infrastructure
conditions under which jobs should run. For instance, these
constraints can be used to ensure that compute nodes are

assigned to Slurm queues that match their capabilities. For
example, nodes equipped with high-memory can be program-
matically constrained to join memory-intensive queues.

Additionally, the datacenter attribute of a Nomad job con-
figuration can be dynamically used for targeted deployment
of compute nodes across different stages for CICD pipelines,
such as testing, staging, or production environments. This en-
ables a flexible and efficient use of resources, where nodes can
be dynamically reassigned between different software-based
redeployments based on current operational needs, without
requiring physical reconfiguration or significant downtime.

The described flexibility in resource allocation and job
scheduling makes possible HPC clusters that adapt to changing
requirements and priorities. Nomad features can be lever-
aged to manage resource management smoothly via software
configuration, as such, it is possible to use computational
resources efficiently, reduce operational costs, and maintain
high levels of service availability and performance across
various clusters.

VII. CONCLUSION

The implementation of a cloud-native architecture for Slurm
on the HPE Cray EX supercomputer presents a novel ap-
proach to the deployment and management of HPC systems’
services. This innovative approach to HPC decomposes the
often-used monolithic management of an HPC system into a
more dynamic and modular framework, enabling agile system
deployments to respond to the evolving demands of modern
HPC.

The transitioning to a microservices-based architecture for
Slurm deployment offers granular control over each of its
components, allowing for independent development and main-
tenance by different engineering teams. This separation of con-
cerns reduces the complexity associated with managing large-
scale systems while opening the door toward the ability to
introduce updates and improvements with minimal disruption
to the overall system. By following the proposed approach
for managing Slurm to other HPC services, engineers can be
given the autonomy to innovate with limited risk of conflicts
across services.

The integration of Kubernetes, Nomad, and the CSM within
this architecture can support a range of cloud-native fea-
tures such as automated deployments, self-healing processes,
live service reconfigurations, and compute node management.
These capabilities facilitate a robust operational approach to
adapting via code to varied dynamic needs. Moreover, the use
of infrastructure as code through Terraform further streamlines
the deployment process, ensuring consistency, reproducibility,
and efficiency in the use of deployed HPC resources.

Moreover, the adoption of a cloud-native strategy promotes
a collaborative environment across teams by leveraging con-
tinuous integration and delivery pipelines. This setup helps us
accelerate the deployment iteration time while ensuring that
changes are approved and tracked, helping operate reliable
and robust HPC services. Additionally, the flexibility of this



architecture supports rapid response and resolution of prob-
lems given by changing requirements.

In conclusion, the presented cloud-native Slurm deployment
on HPE Cray EX is a forward-looking approach that harnesses
the benefits of modern software practices and tooling. It
reshapes HPC cluster management by offering a scalable,
resilient, and efficient platform to meet the needs of contem-
porary HPC, optimizing HPC cluster management while also
aligning with CSCS’s strategic goals of enhancing flexibility
and improving operations to enable world-class scientific
innovation.

REFERENCES

[1] Cloud Native Computing Foundation, ”Who we are. Cloud Native
Definition.” [Online]. Available: https://www.cncf.io/about/who-we-are/.
[Accessed: Jan. 20, 2024].

[2] A.B. Yoo, M.A. Jette, and M. Grondona, ”SLURM: Simple Linux Utility
for Resource Management.”

[3] Kubernetes, ”Production-Grade Container Orchestration.” [Online].
Available: https://kubernetes.io/. [Accessed: Jan. 20, 2024].

[4] Hashicorp, ”Nomad documentation.” [Online]. Available: https://
developer.hashicorp.com/nomad/docs. [Accessed: Jan. 20, 2024].

[5] Gitlab, ”Gitlab Runners.” [Online]. Available: https://docs.gitlab.com/
runner/. [Accessed: Jan. 20, 2024].

[6] Hashicorp, ”Introduction to Terraform.” [Online]. Available: https://
developer.hashicorp.com/terraform/intro. [Accessed: Jan. 20, 2024].

[7] Felipe A. Cruz and Alejandro J. Dabin, “Deploying Cloud-Native HPC
Clusters on HPE Cray EX,” in Proceedings of the Cray User Group
(CUG) Conference, 2023.

[8] MUNGE Authentication Service. Available online: https://dun.github.io/
munge/ (Accessed on May 8, 2024).

[9] JFrog - Software Supply Chain Platform for DevOps & Security.
Available online: https://jfrog.com (Accessed on May 8, 2024).

[10] MariaDB Foundation. Available online: https://mariadb.org (Accessed
on May 8, 2024).


