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Abstract—In 2023, we saw a huge rise in the capability and
popularity of large language models (LLMs). OpenAI released
ChatGPT 3.0 to the public in November 2022, and since then,
there have been many closed and open-source LLMs that have
been released. It has been reported that training ChatGPT
3.0 took more than 10,000 GPU cards, making training a
foundational LLM out of reach for many research teams and
HPC centers, but there are many ways to use a pre-trained
LLM using GPUs at scales available at an HPC center. For
example, fine tuning a pre-trained model with site or application-
specific data or augmenting the model with Retrieval Augmented
Generation (RAG) to add specific knowledge to a pre-trained
model. The availability of open-source LLMs has opened the
field for individual researchers and service providers to do their
own custom training and run their own chatbots. In this paper,
we will describe how we deployed and evaluated open source
LLMs on Quartz and Big Red 200, a Cray EX supercomputer,
and provisioned access to these deployments to a select group of
HPC users.

Index Terms—HPC, LLM, Llama, Mistral, Cray

I. INTRODUCTION

Throughout 2023 and into 2024, there has been a steady
increase in the number of LLMs made available for research
and enterprise. These have come in a number of forms, a
variety of open-source options, options that are at no cost but
with restrictions on use, or for fee LLMs as-a-service. One
of the first releases was OpenAI’s ChatGPT 3.0, released to
the public in November 2022, and since then there has been
an explosion of available models. In addition to the major
LLM as-a-service offerings like ChatGPT, Bard, Copilot,
Grok, Claude, Titan, etc., there are thousands of open-source
variants that can be found on Hugging Face [1]. It has been
reported that training ChatGPT 3.0 took more than 10,000
GPU cards [2], and training a foundational model from scratch
is no small undertaking, requiring a huge amount of input data,
GPU resources, and model adjustment. Even if re-creating
foundational models or creating new foundational models is
out of reach for many research teams, there are many ways to
use a pre-trained LLM using GPUs at scales available at an
HPC center. The availability of open-source LLMs has opened
the field for individual researchers and service providers to do
their own custom training and run their own chatbots. In this
paper, we will describe how we deployed and evaluated open-
source LLMs, including Llama 2 [3], an open-source LLM

from Meta, and Mistral 7B [4] and Mixtral 8x7B [5], open-
source LLMs from Mistral AI [6], on Quartz and Big Red 200
and provisioned access to these deployments to a select group
of HPC users.

This paper is organized as follows: in section II we cover
some of the possible use cases for open-source LLMs, our
evaluation strategy, and the hardware that we employed to test
performance. Section III details how we deployed and tested
the various LLMs and the parameters of the various models.
In section IV we present the performance measurements and
our analysis. Finally, in sections V and VI we discuss different
platform options for deployment in a production setting and
future work.

II. MODEL SELECTION AND DESIGN CONSIDERATIONS

In investigating candidate models for use in our implemen-
tation, we restricted our options to open source models that
could be readily used by our academic research community
with minimal barriers. Llama 2, Mistral, and Mixtral were
selected for their broad usage support, relatively good reported
performance, and interest from our research community.

Llama 2’s collection of pretrained models and weights at 7
billion (7B), 13 billion (13B), and 70 billion (70B) parameter
sizes are provided by social media company Meta, and is
currently free to use for commercial and research use. It has
a native context window size of 4096 tokens, in which it
can receive input and produce output of up to a combined
4096 tokens. Llama-2-Chat, a fine-tuned chat model optimized
for dialogue, is also available with the same parameter sizes.
Larger parameter sizes express a higher number of weights
available to fit increasingly complex patterns of data, at the risk
of over-fitting to their training data and failing to generalize
responses to questions outside their training. This selection
of parameter sizes gives us options to optimize for while
searching for which model best fits an HPC use case.

Mistral AI provides a 7B parameter large language model
that competes with the similarly sized Llama 2 7B and is
provided under an Apache 2.0 license. Mixtral 8x7B, a sparse
mixture of experts model (SMoE) LLM, acts as Mistral AI’s
70B model offering. In contrast to Llama 2, Mistral utilizes
sliding window attention to extend its defined context window
to 8192 without experiencing accuracy degradation and can



theoretically expand further. Mistral AI also provides fine-
tuned chat models with Mistral 7B Instruct and Mixtral 8x7B
Instruct.

A. Hardware and Platform Selection

With these models selected, we needed an LLM inference
platform with which to provide model-driven output based on
user input. To narrow the field of options supporting these
models, we evaluated the systems we intended to use and our
anticipated usage scenarios.

We initially considered two general types of interaction
with these models, one using the model for analysis of a
large corpus of data via batch scheduling, the other using
the model in a more interactive fashion to explore data sets
and interact via conversation. Casual, minimally intensive
interactions with lightweight models that could return reading-
speed results on less powerful but much more readily avail-
able CPUs would ideally be provided with as few hurdles
as possible. Performance-limited usage on login nodes or
unlimited usage on interactive CPU nodes would satisfy this
need and provide access to the basic end-functionality of these
LLMs. More complicated usage, such as large-scale document
summarization and the utilization of larger, more intensive
models would require GPU-accelerated hardware available via
scheduler-managed nodes. Ideally, our inference platform of
choice would enable us to serve both of these use cases.

Indiana University operates two batch-scheduled systems:
Big Red 200 and Quartz. Big Red 200, IU’s flagship HPC
system, is an HPE Cray EX with 640 CPU nodes and 64 GPU-
accelerated nodes equipped with four NVIDIA A100 40GB
GPUs. Quartz is IU’s high-memory system comprised of 90
CPU nodes and 24 GPU-accelerated nodes containing four
NVIDIA Tesla V100 32 GB GPUs.

Research Desktop (RED), an OpenStack-provisioned and
ThinLinc-managed cluster of virtual machines serving a VNC-
based graphical desktop front-end for Quartz, is also provided
to the IU research community alongside our scheduled sys-
tems. On this system, users run their workflows in a desktop
environment directly on the multi-user node they are assigned
upon starting a new session. These nodes are comprised of
48-core Intel Haswell CPUs and 362 GB of memory, though
usage policies limit users to 5 processes and 100GB of total
memory utilization.

Several popular solutions dedicated to deploying Llama 2
and other LLMs currently exist. vLLM [7], a Python library
developed for LLM inference and server-based deployment,
is a popular option for use cases that plan to heavily utilize
GPU hardware and handle many simultaneous requests to one
instance with load balancing. NVIDIA Triton [8] also provides
several server-provisioning solutions for deploying LLMs to
users through various containers and Python framework back-
ends, again heavily utilizing GPUs. As we imagined this
service and its usage existing completely within a high
performance computing context, with a single instance of
our selected models per user on an ad-hoc basis, we were
not interested in deployment platforms that were focused on

server-distributed inference and access. Additionally, these
platforms require GPU hardware to function, which would
leave the CPU-only workflows behind.

Llama.cpp [9], another popular alternative, is a C and
C++ framework designed to leverage the Llama 2 model to
perform model inference on a variety of end-user devices with
minimal requirements, low overhead, easy customizability,
and no emphasis on server distribution. Python bindings for
Llama.cpp via the llama-cpp-python package [10] are
also available, providing a convenient avenue for our users
working with the models in Python. Llama.cpp would enable
us to quickly deploy in an HPC context with potential for
CPU-only inferencing as well as distributing memory usage
across multiple GPUs and nodes, which would be beneficial
as we test larger model sizes. Therefore, out of our options,
we selected Llama.cpp to begin our testing with.

Model Unquantized (GiB) Q4 K M (GiB) Model Layers
Llama-2-7B 12.55 4.08 33
Llama-2-13B 24.25 7.87 81
Llama-2-70B 137.96 41.42 41
Mixtral-8x7B 86.99 24.62 33
Mistral-7B 13.49 4.07 33

TABLE I
UNQUANTIZED AND QUANTIZED MODEL SIZES.

III. IMPLEMENTATION

Constructing our deployment began with obtaining our
Llama 2, Mistral, and Mixtral models. The Llama 2 and
Llama-2-Chat 7B, 13B, and 70B parameter model weight files
were obtained via Meta’s downloading utility and placed in a
directory on Slate-Project, our high-capacity centralized Lustre
filesystem. Mistral 7B and Mixtral 8x7B were both obtained
from Mistral AI’s Hugging Face repository. The Llama.cpp
inference platform was also installed in several locations in the
directory, with GPU-accelerated installations compiled against
cuBLAS to properly utilize the NVIDIA cards. OpenBLAS
and other libraries are also supported for CPU and AMD GPU
use cases. The Llama.cpp platform provides several utilities
such as the convert Python utility, which can convert .pth
model weight files into a single compatible .gguf format,
which stores models for inference with GGML [11].

The resulting files can be run as-is with Llama.cpp, however
their file sizes can range from unwieldy to impossible to
run on many cards, such as Llama-2-70B’s 137.96 GB .gguf
file. Quantization, or reducing the precision of the model’s
parameters from floating point to lower bit representations,
can reduce the disk size and memory usage of these models
at the cost of some accuracy. This is a necessary evil, as
140 GB GPU cards are not yet widely accessible. Llama.cpp
provides a useful quantize utility to carry out this process
on the model’s .gguf file as well. This utility can quantize
models along a series of 2-6 bit quantization methods with
quantization mixes such as their k-quant method (denoted with
a K in their naming scheme) and adjustments to result size in
the range of small (S), medium (M), and large (L) [12]. Table I



Hardware Sample rate (tokens/sec) Prompt eval rate (tokens/sec) Evaluation rate (tokens/sec)
Llama-2-7B Q4 Model

1x V100 2241.93±103.91 352.77±13.68 100.95±1.09
2x V100s 2288.59±153.49 338.04±13.56 96.87±2.54
4x V100s 2209.57 ± 85.92 313.08 ± 1.13 92.21±0.98
1x A100 6955.15±167.64 373.38 ± 1.01 105.44±0.93
2x A100s 6779.31±131.60 370.82 ± 1.14 109.77±0.77
4x A100s 6905.26±242.50 375.77 ± 3.16 103.88±0.64
1x GH200 47 326.23±764.50 643.54 ± 7.78 179.19±2.55
1x Intel Haswell CPU (48 cores) 1617.01 ± 56.38 13.38 ± 6.33 6.76±0.99
1x AMD ROME CPU (128 Cores) 30 118.21±565.20 58.45 ± 3.13 7.95±0.12

Llama-2-13B Q4 Model
1x V100 2312.14 ± 62.60 204.07 ± 8.02 61.96±0.40
2x V100s 2355.67 ± 81.80 203.45 ± 6.50 61.21±0.21
4x V100s 2286.82 ± 91.54 194.98 ± 6.00 59.02±0.85
1x A100 6953.07±285.14 220.70 ± 0.50 68.18±0.51
2x A100s 6829.83 ± 85.49 243.92 ± 4.17 73.62±0.33
4x A100s 6840.84±310.00 223.03 ± 4.58 68.21±0.66
1x GH200 47 144.73±1081.21 413.40 ± 1.68 119.25±2.02
1x Intel Haswell CPU 48 cores 1373.64±173.39 12.23 ± 5.91 1.81±0.71
1x AMD ROME CPU (128 Cores) 29 563.71±394.85 33.00 ± 0.42 4.25±0.03

Llama-2-70B Q4 Model
1x V100 N/A N/A N/A
2x V100s 2323.69 ± 92.24 37.13 ± 1.53 15.57±0.09
4x V100s 2289.59 ± 91.42 37.58 ± 1.03 15.26±0.16
1x A100 6862.11±226.28 41.76 ± 0.18 19.37±0.09
2x A100s 6793.16±169.32 46.65 ± 0.05 20.63±0.08
4x A100s 6839.68±169.32 48.35 ± 1.92 19.41±0.24
1x GH200 45 498.37±1512.34 90.34 ± 0.38 36.76±0.22
1x Intel Haswell CPU 48 cores 1516.74±110.02 3.07 ± 0.82 0.73±0.23
1x AMD ROME CPU (128 Cores) 28 386.10±917.95 6.63 ± 0.37 0.93±0.01

TABLE II
RESULTS OBTAINED FROM MULTIPLE SIZES OF LLAMA 2 MODELS QUANTIZED USING THE Q 4 K M METHOD. ALL VALUES ARE THE MEAN AND

STANDARD DEVIATIONS OF TOKENS PER SECOND FOR TEN RUNS.

describes the file sizes of both the unquantized 16-bit floating
point Llama2 models and those quantized with the Q4 K M
quantization method, which provides 4-bit k-quantization that
produces a medium-sized file with a balanced quality trade-
off. Q4 K M and Q5 K M, an additionally recommended 5-
bit quantization method that results in a slightly larger file size
and slightly better quality, were added to our implementation
for use. To test a competitor model, Mistral 7B and Mixtral
8x7B Q4 K M quantized models were also obtained.

Ultimately, our directory dedicated to holding these source
weights, quantized models, and utilities grew to a size of 2.7
TB. Once the models and Llama.cpp inference software are
available on the system, testing basic usage of the LLMs with
command-line-driven prompts is simple. Llama.cpp’s main
function provides options for tuning performance, such as
identifying the number of threads to spawn, layers to divert
to GPUs rather than run directly on CPUs, which model
to use, and the intended size limit of response desired. For
instance, the line in Listing 1 would ask the quantized Llama-
2-70B model to ”Write 100 words about Abe Lincoln” while
spawning 40 threads and offloading all of the model’s 81
layers to the visible NVIDIA A100s on one of Big Red 200’s
compute nodes, with results permitted to continue printing
until reaching the maximum of Llama2’s native 4096 context
window size or the natural conclusion of its answer, whichever
comes first. In the results described below for GPU based

runs we made sure all of the model layers were copied to
the GPU. In some instances the device memory was not
large enough to support the entire model. Llama.cpp will
distribute model layers as evenly as possible to all available
GPUs. As can be seen in the following section, this has little
impact on performance but does increase the total available
device memory and expands the size of the model that can be
deployed.

Listing 1. Sample LLM Prompt
main −m . . / l l ama −2−70b / ggml −model −Q4 K M .

gguf −n −2 − t 40 − n g l 81 −p ” Wr i t e
100 words a b o u t Abe L i n c o l n ”

IV. MODEL PERFORMANCE DATA AND ANALYSIS

In this section, we present performance data from a variety
of models, quantizations, and hardware platforms, including
CPUs, NVIDIA V100s, A100s, and GH200s. It should be
noted that in many discussions of LLMs the term performance
refers to the accuracy or repeatability of the model for a
variety of tasks. A number of benchmarks exist measure model
performance in different scenarios (e.g. MMLU, HellaSwag,
Winogrande, GSM8k, etc.) For this paper we are focusing
solely on the throughput of the model on the given hardware.
We provide some analysis of the suitability of different model
and hardware combinations for the aforementioned use cases.
The goal is to provide an estimate for the hardware that is



Hardware Sample rate (tokens/sec) Prompt eval rate (tokens/sec) Evalutation rate (tokens/sec)
Mistral-7B Q4 Model

1x A100 6737.70±100.07 339.38 ± 1.27 99.96±0.67
2x A100s 6792.47 ± 73.02 364.90±17.61 107.07±1.47
4x A100s 6828.18±185.50 343.95 ± 4.60 100.11±1.04
1x GH200 43 724.65±822.44 568.13 ± 3.38 174.03±1.58

Mixtral 8x7B Q4 Model
1x A100 6909.97±200.93 121.70 ± 0.55 55.89±0.42
2x A100s 6972.63±294.17 133.76 ± 0.57 56.85±0.61
4x A100s 6884.74±211.05 148.73 ± 2.76 56.22±0.82
1x GH200 42 184.38±611.81 207.72 ± 1.20 85.66±0.84

TABLE III
RESULTS OBTAINED FROM THE MISTRAL AND MIXTRAL MODELS QUANTIZED USING THE Q 4 K M METHOD. ALL VALUES ARE THE MEAN AND

STANDARD DEVIATIONS OF TOKENS PER SECOND FOR TEN RUNS.

needed to run a given LLM of a particular quantization in an
HPC environment.

Table II shows the performance of Llama 2 7B, 13B, and
70B models quantized using the Q 4 K M method on a
variety of hardware. The Q4 quantized models were the lowest
precision models we tested across the 7B, 13B, and 70B sizes.
As the model size increases from 7B to 70B, the runs are more
demanding, and the number of tokens generated per second
decreases consistently across all hardware. The Llama.cpp
’main’ function will provide a number of timings if logging
is enabled. In table II we present the main three measures
provided by Llama.cpp. The sample time is a measure of
the amount of time spent in selecting the next likely token,
prompt evaluation time is a measure of time spent evaluating
the input file or prompt input before generating new text, and
evaluation time is a measure of the time it took to generate the
output. Each of these timings are accompanied by the number
of runs or tokens generated and so can be converted into a rate
of tokens per second, which is what we present throughout
the rest of this paper. Also provided by Llama.cpp, but not
reported here, is the model load time which is simply the
amount of time taken to copy the specified number of layers
from the model into the GPU device(s) memory.

All three measures, sample rate, prompt evaluation rate, and
evaluation rate exhibit similar patterns. We will focus on the
evaluation rate as it tends to take the longest and so has the
smallest rates and smallest standard deviation. As noted above,
as the model size increases, the evaluation rate decreases. This
decrease is not exactly, but nearly, linear with the number
of model parameters. For all of the metrics, the run-to-run
deviation is relatively small (5% or less) with the standard
deviation for the evaluation rate being around 1% for the GPU
runs. As noted above, distributing the model among multiple
cards does not provide a performance benefit, in many cases
a small performance decrease (<10%) is seen, but this will
often be an acceptable penalty to have access to a larger pool of
device memory and be able to host larger models. For instance,
the 70B model does not fit on a single V100, but fits on
the rest of the platforms. Successive generations of NVIDIA
GPUs perform incrementally better than their predecessor with
the V100 to A100 jump giving a 5% to 10% performance
boost. Not surprisingly, the NVIDIA GH200 GraceHopper

SuperChip performs the best among the hardware we tested,
doubling the performance of the V100s for the 70B model.
However, we noticed some anomalous timing for the GH200
load times with load times being 100x the load time on a
single A100 card. At the time of writing the GH200 node
had only just been made available for testing, so we suspect
there is some misconfiguration of the memory subsystem that
is causing long device load times. The CPU-only runs are
slower but still usable for interactive use with a 7B model,
but with a 13B model it is borderline and with 70B model,
the performance is not suited for interactive usage.

We ran the Llama 2 7B, 13B, and 70B models quantized
using the Q 5 K M method on the same hardware as the
Q4 models. The largest performance differences in token
generation between Q 4 K M and Q 5 K M were in the
5% to 10% range, so decisions between the two quantization
methods should not be based on performance. The qualitative
performance difference between the two models remains to be
investigated, but in the interest of keeping things concise, we
are not including the Q5 performance results here.

A. Model and Quantization Alternatives

According to Mistral AI, Mistral 7B outperforms Llama 2
13B on all benchmarks [13] and Mixtral 8x7B model matches
or outperforms Llama 2 70B, as well as GPT3.5, on most
benchmarks [14]. These evaluations focus on the accuracy
rather than the throughput of the model, however both Mistral
7B and Mixtral 8x7B outperform Llama models in throughput
as well. In addition, both models have a smaller memory
footprint than comparable Llama models and have a larger
32K context window (as compared to Llama’s 4K window). In
table III we show the performance of Mistral 7B and Mixtral
8x7B model quantized using the Q 4 K M method. While
the evaluation rate of Mistral 7B is comparable to Llama 7B,
it beats Llama 13B model handily. The Mixtral 8x7B model
outperforms the Llama 2 70B model by at least 2 times on
A100 and GH200 hardware. The relative standard deviation
of the throughput is in line with the Llama 2 results for both
Mistral and Mixtral.

We additionally compared the throughput of the unquan-
tized Llama, Mistral, and Mixtral models. While the memory
requirements are ≈3x larger for the unquantized model com-



Hardware Sample rate (tokens/sec) Prompt eval rate (tokens/sec) Evalutation rate (tokens/sec)
Llama-2-7B Unquantized Model

1x A100 6824.21±264.88 779.75 ± 6.60 67.12±0.33
2x A100s 6877.40±285.39 780.04 ± 2.44 67.13±0.22
4x A100s 6732.86±705.88 738.01±18.71 58.42±1.92

Llama-2-13B Unquantized Model
1x A100 6848.63±174.41 468.88 ± 1.36 40.11±0.15
2x A100s 6924.93±237.62 467.11 ± 1.39 40.08±0.12
4x A100s 6939.41±271.30 432.97±100.83 38.01±0.86

Llama-2-70B Unquantized Model
1x A100 N/A N/A N/A
2x A100s N/A N/A N/A
4x A100s 6708.44±149.34 52.57 ± 4.52 8.00±0.02

Mistral-7B Unquantized Model
1x A100 6753.46±127.31 703.63 ± 3.47 63.16±0.22
2x A100s 6755.95 ± 85.77 706.50 ± 3.91 63.22±0.21
4x A100s 6732.86±135.55 687.74±13.35 58.42±0.81

Mixtral 8x7B Unquantized Model
1x A100 N/A N/A N/A
2x A100s N/A N/A N/A
4x A100s 7006.53±305.25 40.96 ± 0.30 31.39±0.15

TABLE IV
RESULTS OBTAINED USING UNQUANTIZED MODELS. ALL VALUES ARE THE MEAN AND STANDARD DEVIATIONS OF TOKENS PER SECOND FOR TEN RUNS.

pared to the Q4 quantization, it is still possible to run even
the largest Llama 2 70B model using multiple A100 cards.
We only tested the unquantized models on the A100 cards as
the V100 cards did not have quite enough memory to fit the
70B model and the GH200 node only contains a single GPU.
Table IV shows that for the prompt evaluation rates for the
unquantized model are much higher than the 4Q quantized
model, but the evaluation rate, the rate at which the output
is generated, tends to be slower by as much as a factor of
2. Although the unquantized models do offer improved model
output accuracy, due to the fact that the bulk of the time for
most applications is in generating output, one should consider
a quantized model if throughput is an important metric.

V. LLM PLATFORM FOR A RESEARCH COMMUNITY

Many universities and other research institutions are begin-
ning to offer Azure AI services and OpenAI based custom
ChatGPT services for their user bases. These solutions can
become expensive and introduce data security concerns. There
are many advantages to setting up on-premise LLM access,
including potentially large cost savings, better control over
data, and more control over customization. With an objective
of providing an accessible experience to both experts and
novices alike, we intended to design a platform on our HPC
systems that is simple to use and readily permits researcher
investigation into LLM utilization.

To grant users access to the Llama.cpp implementation
described in the previous sections, we provided end-user
access to our deployment directory using Indiana Univer-
sity’s implementation of ColdFront [15]. In IU’s ColdFront
implementation, RT Projects, we created a ‘project’ containing
a resource allocation for a storage directory on a centrally
accessible Lustre filesystem, where we can add users. RT
Projects synchronizes membership changes on the site with the
LDAP group that is populating the permissions in the Lustre

directory. Adding new users to the ‘project’ is easy, and the
request process for being added provides a natural gate to
validate and onboard newcomers. To further facilitate usage,
Lmod modules containing paths to our Llama.cpp install, all
model files, and our custom scripts were placed on our system.
Separate modules were created for CPU and GPU workflows,
each pointing to the Llama.cpp installation intended for each.

In laying the groundwork for our deployment to end users,
we created two primary scripts wrapping around Llama.cpp’s
main program, one that would provide a straightforward and
lightweight chat function called tellme, and the other deliv-
ering summaries of users’ text files at a higher computational
cost called summarize 1. These would serve as simple entry
points for users to use our models in some of its more standard
use cases before moving on to using our repository of models
directly in their own work.

We ultimately opted to use Llama-2-Chat as our default
model for these scripts. Though Mistral does provide im-
pressive performance, we found that more of our users were
interested in using Llama 2 specifically. This popularity is
likely due to Meta’s size and reputation as a heavily invested
competitor in this space, which makes the opportunity to test
it very appealing. Since our scripts were specifically targeting
conversational interactions, we opted to use the variant of
Llama that was fine-tuned for chat, Llama-2-Chat, for these
end-user-facing implementations. Whereas standard Llama 2
provides text completion of provided prompts based on the
model’s training, Llama-2-Chat provides more question-and-
answer style results that are more akin to a ’chatbot’ style of
output. The chosen parameter sizes we used were influenced
by the weight of activity ascribed to the script and intended
target system resources.

Research Desktop, our cluster serving as a VNC-based

1Our source code can be found on GitHub .

https://github.com/IUResearchApplications/hpc_llm/


graphical desktop frontend for Quartz, was considered early
in development as a low-barrier venue for our platform’s
users to interact with LLMs in small runs. As mentioned
earlier, Research Desktop’s ’good citizen’ usage policies limit
users to 100GB of memory utilization and up to 5 threads
of parallelism. As a system that is intended to accommodate
medium-memory low-parallelism workloads interactively, it
was well suited to running the smaller models, such as the
7B and 13B Llama2 models. The login nodes for both Big
Red 200 and Quartz were similarly identified as a venue for
quick access, and are also restricted in computational capacity,
to a greater degree than Research Desktop is. Anything that
required larger models or heavy processing were to be directed
to batch job submissions on our GPU partition. Therefore, our
scripts and recommended usage guidelines were crafted with
these limits in mind.

A. Chat Functionality

The tellme command feeds the argument’s prompt to
the quantized Llama-2-Chat-7B model, using Llama.cpp’s
main for inference. It prints results per-token until either
its ’thought’ is complete and control is passed back to the
user, or its context window is filled and the session closes.
Control can be taken back by the user to interject at any time
with the Control+C keyboard shortcut. Llama-2-Chat-7B,
being optimized for dialogue and selected for its light weight,
made it ideal for tellme as a quick-use utility when working
on a login node or Research Desktop when limited to a few
processes. Listing 2 shows how this utility is used.

Listing 2. Sample tellme Usage
t e l l m e Why i s t h e sky b l u e ?

While Research Desktop’s nodes lack GPU-accelerated
hardware and are multi-user by nature, an average token
generation performance of 6.76 tokens per second on the
Llama-2-Chat 7B Q 4 K M model was still achievable on the
system as permitted by a single unprivileged user on one node
with 5 threads, which was considered an acceptable reading
speed for American English readers. Though the 13B and
70B Q 4 K M models both technically fit within the memory
requirements, we found the output to be too slow to be usable
in a conversational setting. Similar performance with the 7B
model was observed on the Quartz and Big Red 200 login
nodes. As loading the 13B and 70B models were not realistic
possibilities in a production environment on the login nodes,
we ultimately decided to only use the 7B model for tellme.
When using tellme on a GPU node on either Big Red 200
or Quartz, the script runs at full capacity and offloads all
layers to the GPUs, providing much-improved performance as
described in section IV. In future iterations, we would likely let
GPU-accelerated runs use the 13B or 70B parameter versions
instead.

Overall, we found the response time suitable for this use-
case and the responses to our questions more often correct
than not, though the Llama-2-Chat 7B model still appears to be

susceptible to ‘hallucinations’, sometimes providing responses
that are nonsensical, incorrect, or irrelevant.

B. Document Summarization Functionality

The summarize script ingests either a single text file or
a directory of text files for inference with main. To provide
the model with structure for the prompt and expected output,
a new file with a template wrapped around an ordered list
of concatenated files to be summarized is created. This file
is then used as the full prompt for main, which will use the
Llama-2-Chat-13B model. Since this can be a heavy operation,
summarize requires using a GPU node to execute. The 13B
parameter model was preferred over the 7B as it provides
more reliable responses, and over the 70B as it provides a
faster response and comfortably fits within a single V100 or
A100 GPU, which is what we anticipate a typical user will be
requesting for this task.

Listing 3. Sample input template for multiple document summarization
### I n s t r u c t i o n :
Summarize t h e f o l l o w i n g m u l t i p l e t e x t s :
### I n p u t :
### FILE 1

. . .
### FILE 2

. . .
### Response :

Another consideration for document summarization tasks is
that most documents or directories of documents will contain
more tokens than Llama2’s models can handle within its
native context window of 4096 tokens. Llama.cpp provides
an implementation of RoPE context scaling [16], which can
be used to enable the model to process more tokens at
the cost of some stability and reliability. In our testing, we
anecdotally found the results to still be fairly reliable when
extending the RoPE scale by 2 and expanding to an 8192
token context window. Though summarize is structured for
fairly interactive, rapid examination of data sets, it can also
be utilized in batch submissions for the analysis of large data
sets.

However, we still encountered some reservations with the
results of summarization with Llama 2. In a task analyzing
course feedback responses, we found it struggled to give every
individual comment equal weight and focused more heavily on
singularly lengthy comments and topics that humans wouldn’t
likely fixate on. The context window limit is still difficult to
contend with for analysing large corpora in a single session
as well. In our future work, summarize may benefit from
using Mistral Instruct or Mixtral Instruct instead of Llama-2-
Chat to take advantage of its increased base context window
and scaling via sliding window attention, since token limits
are the main limitation with Llama 2 in this setting.

VI. FUTURE WORK

With the foundation of this platform laid out, we aim to
open access to researchers that are incorporating LLMs in their



research, as well as friendly users that are curious about them.
The IU HPC user community encompasses a broad range of
subject expertise and computing skill levels, and not all users
will have prior experience with HPC or LLMs. By providing
access to a pre-trained Llama 2 LLM on HPC, users could
become familiar with both and could attract more academic
diversity to these spaces.

We have already identified 28 distinct research projects
using our systems that are investigating LLMs. Six of these
have singled out Llama models as a specific model of interest,
such as one hoping to leverage Llama 2 to analyze voter
preferences in elections. Providing this platform for these
users could expand their options for getting started quickly.
Additionally, the centralized location and simple accessibility
of these models could reduce the number of ’duplicate copies’
of these models on our storage systems, potentially saving
terabytes of storage capacity. We would like to provide more
model varieties centrally through this platform, including
updates to our currently-supported LLMs such as the recently
released Llama 3 model.

Many of these projects aim to fine-tune a pre-trained model
with site or application-specific data or augment the model
with Retrieval Augmented Generation (RAG) to add specific
knowledge to a pre-trained model. Another one of our next
steps is providing a simplified method to enable RAG capa-
bility with users’ own datasets, and provisioning our own RAG
augmented with IU’s HPC documentation and support ticket
content to provide answers to simple system usage questions
as they arise for users and serve as an additional onboarding
resource.

The deployment of these LLMs and their accessibility to
end users will be experimental at this next stage, and must be
denoted as such to newcomers. Thorough user education on
the reliability of model results, risk of ‘hallucinations’, and
data privacy and security will need to be created and refined
as the field evolves. LLM usage trends are adapting quickly,
and we are interested in following where it goes in a method
that is open and fair for our community.
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