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The ‘What’
• Large Language Models have been rapidly increasing in 

popularity and availability. These provide conversational and 
assistant AI functionality.

• LLM as-a-service offerings such as ChatGPT, Bard, and Copilot 
can be accessed through cloud-hosted interfaces.

• Open-source alternative models such as Meta’s Llama and 
Mistral AI’s Mistral and Mixtral provide opportunities for local 
deployments.

• The software space providing inference utilities for these 
models is also growing.



The ‘Why’ (Our Motivations)

• Broad interest from our userbase.

• 28 distinct research groups using our systems have 

identified LLMs as their primary research focus.

• 6 groups identified Llama 2 in particular

• Free-to-use alternatives that limit remote interaction 

security concerns.

• User support integration



LLM Selection
• Llama 2 by Meta

• Free for commercial and research use

• Pretrained models and weights at 7 billion (7B), 13 billion (13B), and 70 billion (70B) 
parameter sizes 

• Fine-tuned chat model, Llama-2-Chat, also provided

• Native context window size of 4096 tokens 

• Mistral and Mixtral by Mistral AI
• Free for use via Apache 2.0 License

• Pretrained models and weights, Mistral 7B providing 7 billion parameter size and 
Mixtral 8x7B acting as the equivalent to Llama 2’s 70B model

• Fine-tuned chat models, Mistral 7B Instruct and Mixtral 8x7B Instruct, also provided

• Utilizes sliding window attention to extend its defined context window to 8192, can 
be extended further to 32K



Hardware
• Big Red 200

•  HPE Cray EX with 640 CPU nodes and 64 GPU- accelerated nodes 
equipped with four NVIDIA A100 40GB GPUs. 

• Quartz
• high-memory system comprised of 90 CPU nodes and 24 GPU-

accelerated nodes containing four NVIDIA Tesla V100 32 GB GPUs. 

• Research Desktop (RED)
• OpenStack-provisioned and ThinLinc-managed cluster of virtual 

machines serving a VNC-based graphical desktop front-end for Quartz. 
48-cores and 362 GB of memory available per node.



Use Cases

• Heavy analysis of a large corpus of data, LLM 
augmentation
• GPU-accelerated work that relies on HPC capabilities and 

can be batch-scheduled

• Lightweight interactive usage, such as exploring small 
data sets and asking questions conversationally.
• Work that can be done on more plentiful and accessible 

CPU nodes



Inference Platforms
• Server-deployed inference platforms such as vLLM and NVIDIA 

Triton provide options for interactions with these LLMs
• We were interested in ad hoc, single-instance-per-user provisioning and 

thus did not need server provisioning

• These generally require GPU hardware, leaving our CPU usecase behind

• Edge-device inference platforms such as Llama.cpp provide ad 
hoc inference regardless of the presence of GPU hardware.

• Utlimately, we found Llama.cpp, which is C and C++ with 
optional Python bindings, easy to use. 
• Llama.cpp is supported by other platforms such as LangChain as well



Implementation

• Llama 2 and Llama-2-Chat 7B, 13B, and 70B models, 

and Mistral 7B and Mixtral 8x7B stored in Lustre high-

capacity file system Slate-Project

• Llama.cpp provides the Python ‘convert’ utility to 

convert model weights into .gguf format, which stores 

models for inference with GGML



Quantization
• These base models can be very large!

• Quantization, reducing the precision of the model’s parameters from 
floating point to lower bit representations, can reduce the disk size and 
memory usage of these models at the cost of some accuracy. 

• Llama.cpp provides the ‘quantize’ utility to quantize models along a series 
of 2-6 bit quantization methods 
• quantization mixes such as their k-quant method (denoted with a K in their naming 

scheme)

• adjustments to result size in the range of small (S), medium (M), and large (L) 

• We generally opted for the Q4_K_M quantization method, which provides 4-
bit k-quantization that produces a medium-sized file with a balanced quality 
trade- off. 



Quantization

• Quantizing models can aid in running larger-parameter 
models that couldn’t otherwise fit on a single GPU.

• Ultimately, our directory containing our models, platform, 

and utility scripts grew to 2.7 TB 



Llama.cpp usage

• The ‘main’ function provides options for running and 
tuning performance:
• model to use

• intended size limit of response desired

• number of threads to spawn 

• layers to divert to GPUs rather than run directly on CPUs

main −m ../llama−2−70b/ggml−model−Q_4_K_M.gguf −n −2 −t 40 −ngl 81 −p ”Write 100 words 
about Abe Lincoln”



Benchmarking Llama 2
• Performance data from a variety of models, quantizations, and 

hardware platforms, including CPUs, NVIDIA V100s, A100s, and 
GH200s
• We are measuring performance here solely as the throughput of the model 

on the given hardware

• Goal is to provide an estimate for hardware requirements to run a 
given LLM of a particular quantization in an HPC environment

• Used Llama.cpp provided timing output for Llama 2 7B, 13B, and 70B
• Both unquantized models and models quantized with the Q_4_K_M method 

are compared



Benchmarking Llama 2
• Llama.cpp provides timing output for:

• Sample time -  a measure of the amount of time spent in selecting the next 
likely token

• Prompt evaluation time - a measure of time spent evaluating the input file 
or prompt input before generating new text

• Evaluation time - a measure of the time it took to generate the output

• Model load time - amount of time taken to copy the specified number of 
layers from the model into the GPU device(s) memory (we did not report 
this timing)

• 10 runs per model using the following prompt and parameters:

main −m ../llama−2−70b/ggml−model−Q_4_K_M.gguf −n 
−2 −t 40 −ngl 81 −p ”Write 100 words about Abe 
Lincoln”





Benchmarking Llama 2 - Results
• Runs are more demanding as the parameter size increases, and the number 

of tokens generated per second decreases consistently across all hardware. 

• As the model size increases, the evaluation rate decreases at a rate not 
exactly, but nearly, linear with the number of model parameters. 

• For all of the metrics, the run-to-run deviation is relatively small (5% or less) 
with the standard deviation for the evaluation rate being around 1% for the 
GPU runs. 

• Distributing the model among multiple cards does not provide a 
performance benefit
• In many cases a small performance decrease (<10%) is seen, but this will often be 

an acceptable penalty to have access to a larger pool of device memory and be able 
to host larger models. 



Benchmarking Llama 2 - Results
• Successive generations of NVIDIA GPUs perform incrementally better than their 

predecessor with the V100 to A100 jump giving a 5% to 10% performance boost. 

• The NVIDIA GH200 GraceHopper SuperChip performed the best, but we encountered 
anomalously (100x) higher model load times than on a single A100 card
• We suspect there is some misconfiguration of the memory subsystem that is causing long device 

load times 

• CPU-only runs are slower: 7B remains usable for interactive use, 13B borderline, and 
70B unsuitable for interactive use.

• While we tested Q_5_K_M quantized models as well, we observed the largest 
performance differences in token generation between Q 4 K M and Q 5 K M were in the 
5% to 10% range, so decisions between the two quantization methods should not be 
based on performance. 
• Qualitative performance remains to be investigated



Model Alternatives
• Mistral 7B and Mixtral 8x7B were also benchmarked with the same 

run parameters.

• Mistral 7B and Mixtral 8x7B outperform comparabe Llama models in 
throughput, have a smaller memory footprint than comparable 
Llama models, and have a larger up-to-32K context window (as 
compared to Llama’s 4K window). 



Quantization
• We additionally compared the throughput of the unquantized Llama, 

Mistral, and Mixtral models. 

• Memory requirements are ≈3x larger for the unquantized model vs. 
quantized, but it is still possible to run even the largest Llama 2 70B 
model using multiple A100 cards. 

• Prompt evaluation rates for the unquantized model are much higher 

• The evaluation rate tends to be up to 2x slower

• If throughput or GPU card availability is a concern, consider a 
quantized model





LLM Community Platform
• Access to our model and platform repository is managed via IU’s 

implementation of ColdFront (an HPC management system developed by 
Center for Computational Research, University at Buffalo)

• Lmod modules containing paths to our implementation are made available.
• Separate modules were created for CPU and GPU workflows, each pointing to the 

Llama.cpp installation intended for each.

• Two primary scripts wrapping around Llama.cpp’s main program provide 
quick usage functionality in standard use cases:
• tellme - straightforward and lightweight chat function 

• summarize - summaries of users’ text files at a higher computational cost

• Utility scripts use Llama-2-Chat to provide the fine-tuned conversational 
experience expected from this form of service.



tellme
• Feeds an argument’s prompt to the quantized Llama-2-Chat-

7B model, using Llama.cpp’s main for inference, and returns 
live per-token response.
• 7B model chosen for its interactive evaluation rate speed and light 

weight on CPU-only nodes



summarize
• Ingests either a single text file or a directory of text files for inference with 

main using the Llama-2-Chat-13B model 
• To provide the model with structure for the prompt and expected output, a new file 

with a template wrapped around an ordered list of concatenated files to be 
summarized is created and used as input

• A GPU node is required to use this command– the 13B model is used as it 
comfortably fits on both V100 and A100 cards. It can be run interactively or in batch.

• RoPE scaling can be used to expand the context window, at the cost of some result 
reliability





summarize
• In a task analyzing course feedback responses, we found it 

struggled to give every individual comment equal weight and 
focused more heavily on singularly lengthy comments and 
topics that humans wouldn’t likely fixate on. 

• Context window is still limiting when analyzing larger corpora.



Next Steps
• Open access to interested researchers and users. 

• Create thorough user education on the reliability of model results, risk of 
‘hallucinations’, and data privacy and security

• Provide more model varieties, including updates to our currently-supported 
LLMs such as the recently released Llama 3 model. 

• Providing a simplified method to enable Retrieval-Augmented Generation 
(RAG) capability with users’ own datasets, and provisioning our own RAG 
augmented with IU’s HPC documentation and support ticket content to 
provide answers to simple system usage questions 

• Using alternative models such as Mistral for our utility scripts.


