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WHY Al / ML FOR HPC DATA CENTERS?

Large number of metrics (thousands)

Real-time data streams at NREL datacenter: X10"3) facility data points per
minute and X107°6) Eagle data points per minute.

Do not know where to look.
Data is coming real time at high rates

Threshold-based methods (setpoints) are used, but produce many false
positives and thus not scalable

Some anomalies can only be identified in high-dimensional spaces
(multiple meftrics).

Setpoints and Dashboards are not always sufficient to identify anomalies

Broad range of problems (not only anomaly detection)

—

Anomaly Detection (single metric and multi-metric models)
Forecasting

Preventative maintenance

Reducing carbon footprint by optimizing datacenter ops (Digital Twins)
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AIOPS MACHINE LEARNING FRAMEWORK
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AIOPS MACHINE LEARNING FRAMEWORK

From statistical to machine learning models for time series data

Uni-variate models ‘
Multi-variate models ‘

enable

Anomaly Detection
Failure Prediction
Forecasting
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AIOPS MACHINE LEARNING FRAMEWORK
AlOps Failure Prediction Framework: Overview

Some failures are easily predictable, while others are extremely hard to predict.

2 types of failures. Some failures occur suddenly, while others are preceded by some specific set of events.

These occurrences could be anomalies or, at times, simply a normal sequence of events,

We can frain a model to understand these events, and during inference, could potentially predict them even before they
happen.

To accomplish this, we require historical data with known and accurately labeled failures.
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AIOPS MACHINE LEARNING FRAMEWORK

AlOps Failure Prediction Framework: Online Inference and Offline fraining architecture
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AIOPS MACHINE LEARNING FRAMEWORK

AlOps Failure Prediction Framework: Machine Learning Models

e We use LSTM and fully connected neural networks for
failure prediction.

e LSTMs very effectively capture and uftilize long term
dependencies in sequential data.

» Anomaly detection models, which are part of AlOps itself label
the data.

e Models are uni-variate, with each being frained and uftilized for
inference on a single metric.

» Models employ a semi-supervised approach, wherein labeled data
is automatically generated from existing detection models.
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AIOPS DASHBOARDS

Univariate anomaly detection dashboard for Coolant Distribution Units (CDUs)
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AIOPS DASHBOARDS

AlOps alert overview
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AIOPS DASHBOARDS
Connection with HPCM PCIM visualization

Click metric source to open PCIM interface
for this device. This metric will be shown
inside a pink rectangle.
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AIOPS DASHBOARDS

Visualizing IT metrics

Green is nominal , red represent
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AIOPS DASHBOARDS

Visualizing Slingshot metrics
|
Switches are displayed in the group orientation Green is nominal, red represent anomalous
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AIOPS DASHBOARDS

Visualizing Slingshot metrics

Switches are displayed in the group orientation Green is nominal , red represent anomalous
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AIOPS DASHBOARDS

Visualizing Slingshot metrics

]
details of all ports inside the switch. Green is nominal , red represent anomalous
@ 88 General / Slingshot Physicdl Context Congesti... ¢ =2 i+ B & @ Last24 hours UTC ~ Q& a - 3
Q < PhysicalContext Congestion.rxPaus@|Perce Switch x2012c5r7 GrouplD 12
g .ok Danomalous
I E E Port status for Congestion.rxPausePercent- of switch x2012c5r7
23] 0 |1 |2 10 (11 |12 |13 |14 |15 |16 (17 |18 |[19 |20 |21 |22 |[23 |24 |25 |[26 ||27 |28 |29 |30 |31 33 |34 |35 (36 |37 |38 |39 40 |41 |42 |43 44 |45
N HEEEEEEEEEN HREEEEEEEEEEEEEEEEEEe
2 46 |47 48 56 |57 |58 59 60 |61 62 63
[ HEEEEEEN
EH
O
®
©

: © 2024 Hewlett Packard Enterprise Development LP I 15



STATUS AND FUTURE WORK

CURRENT STATUS

* AlOps has been deployed in NREL’s production environment since June 2020.
*  AlOps has detected 50% more hardware-related anomalies (using historical data).
*  AlOps has shown that 40% more high priority incidents that turned into critical events could have been prevented by demonstrated early anomaly detection.
*  AlOps supports MLOps, Automation of Model fraining/creation and reload, model re-training and performance monitoring.
*  AlOps supports anomaly detection for
*  Facility metrics CDU (cooling distribution unit), CRC (cooling rack controller), ARCS (Adaptive Rack Cooling System)
* IT telemetry metrics , with new Grafana visualization panel
* Slingshot telemetry metrics , with new Grafana visualization panel
* AlOps supports metric forecast and failure prediction for CDU metrics

* AlOps is integrated with HPCM 1.11 and CSM 1.4
* AlOps Integration with GreenLake : A proof of concept (POC) has already been conducted in collaboration with the Green Lake COM team for the purpose of
anomaly detection and the reduction of carbon emissions by optimizing the data center ops.

FUTURE WORK - 2024

*  Multi-variate failure prediction

* Platform independent solution that can be easily leveraged across HPE infrastructure portfolio (GreenLake).
* Analyzing and predicting job failures.

* Log analytics : Anomaly Detection and Diagnosis from System Logs through Deep Learning.
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