

CSM-based Software Stack Overview 2024

Harold Longley, HPE Jason Sollom, HPE

May 8, 2024

Agenda

CSM Software Stack Release 24.03

Boot Orchestration Service Version 2 (BOS v2) in CSM-1.4

Configuration Framework Service Improvements in CSM-1.4

Configuration Framework Service Improvements in CSM-1.5

Power Control Service (PCS) in CSM-1.4

CSM Software Stack Release 24.03

Key features for CSM Software Stack Release 24.03

- Installation and Upgrade Automation Framework (IUF)
- Installation and Upgrade improvements
- Management nodes
 - SLE 15 SP5 on management nodes
- Compute and application node environment
 - SLE 15 SP5
 - x86_64
 - aarch64
 - AMD ROCm 5.7
 - NVIDIA HPC SDK 23.9
 - Rootless run-time containers on compute nodes

What is different in the software recipe 24.03?

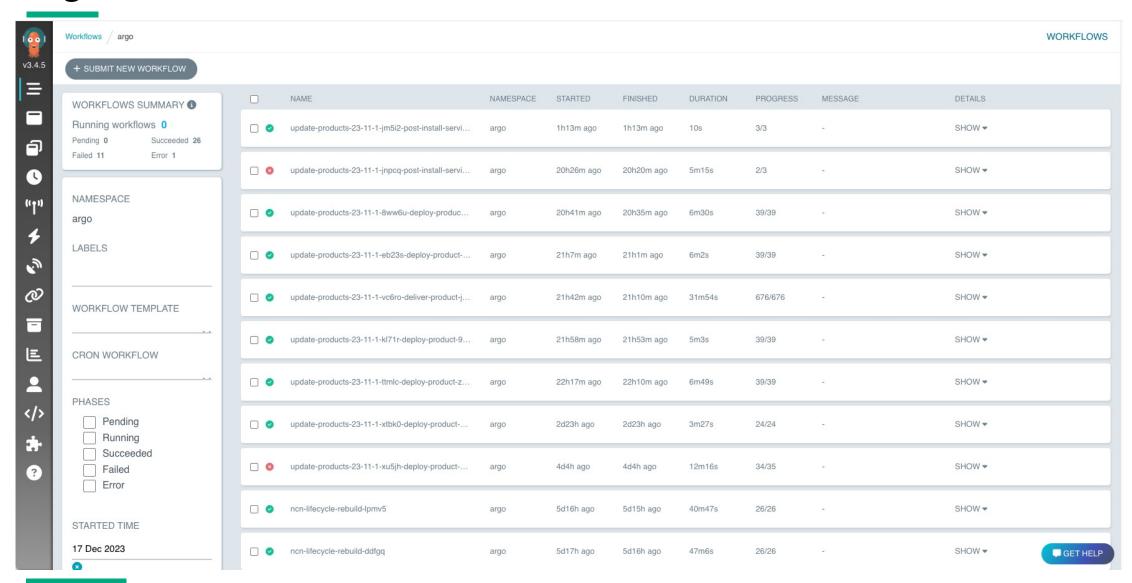
- Software installation workflow with IUF
- New CSM functionality
- New hardware support
- Compute nodes and UANs
 - New features
- SMA
 - New features
- Slingshot
 - New features

Installation and upgrade framework (IUF)

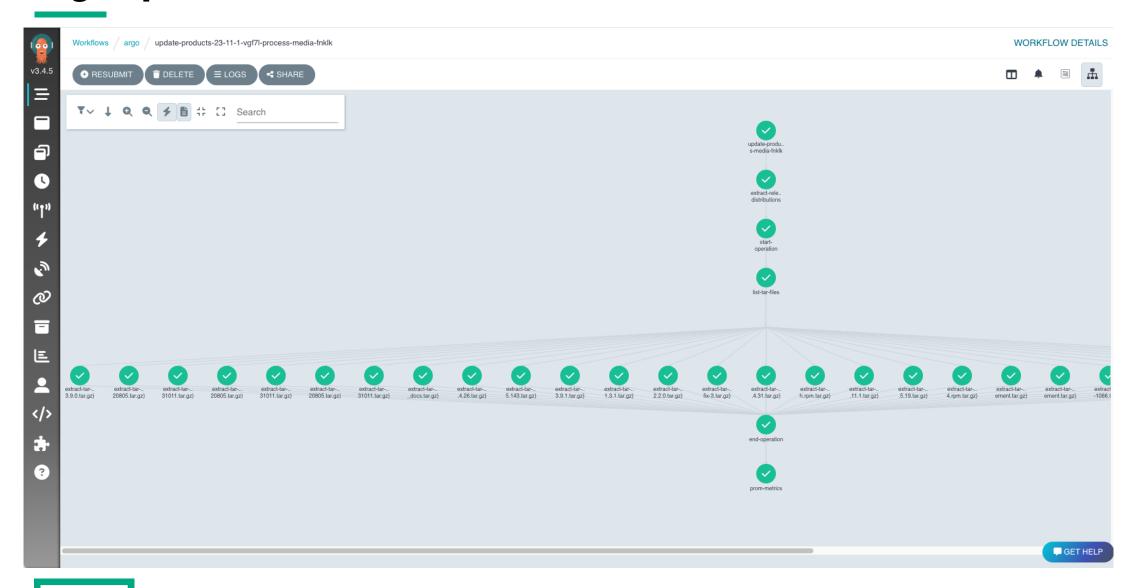
- Decreases the time it takes to install or upgrade products
- Provides a centralized and common installation/upgrade experience across all non-CSM products
 - Each product distribution includes an iuf-product-manifest.yaml file which IUF uses to determine what operations are needed to install, upgrade, and deploy the product
 - IUF groups the install, upgrade, and deploy operations into stages
 - The administrator can execute some or all of the stages with one or multiple products in a single activity
 - IUF arguments for all stages can be specified prior to execution in order to automate the operations and minimize user interaction
- IUF utilizes Argo workflows to execute and parallelize IUF operations
 - iuf CLI invokes Argo workflows based on the subcommand specified
 - Argo UI provides visibility into the status of the operations
 - IUF provides metric and annotation capabilities
 - Can view status and record historical information associated with an install or upgrade
- IUF enhancements in CSM 1.5
 - Argo-driven upgrade automation for utility storage nodes
 - Ceph upgrade added to automated storage upgrade
 - Added support for specifying IMS image and recipe architecture
 - Improved logging
 - IUF stage for management-nodes-rollout consumes logs from ncn-rebuild

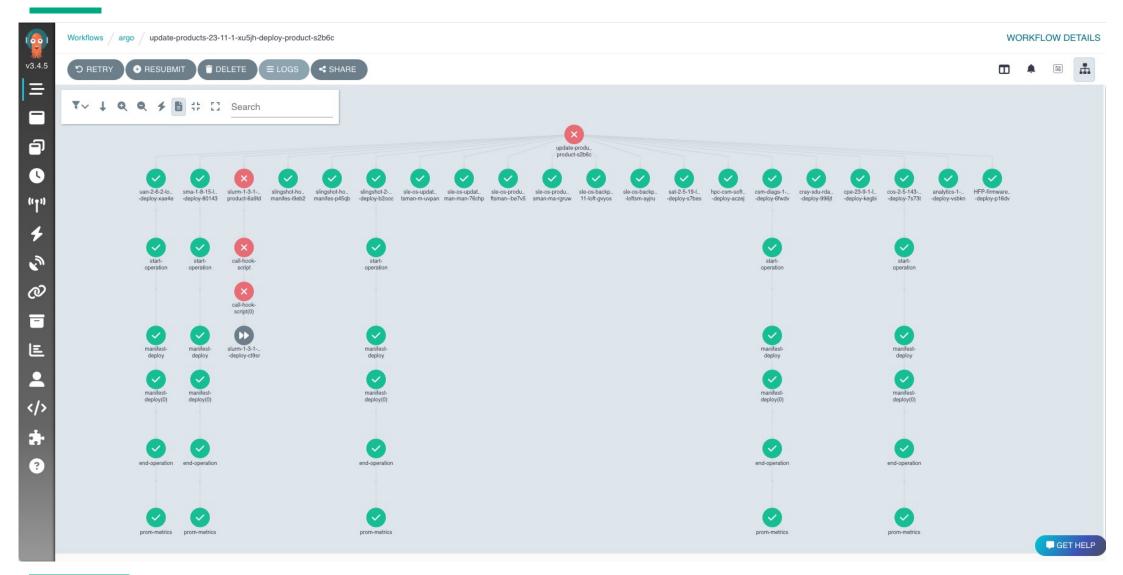
IUF Documentation and stages

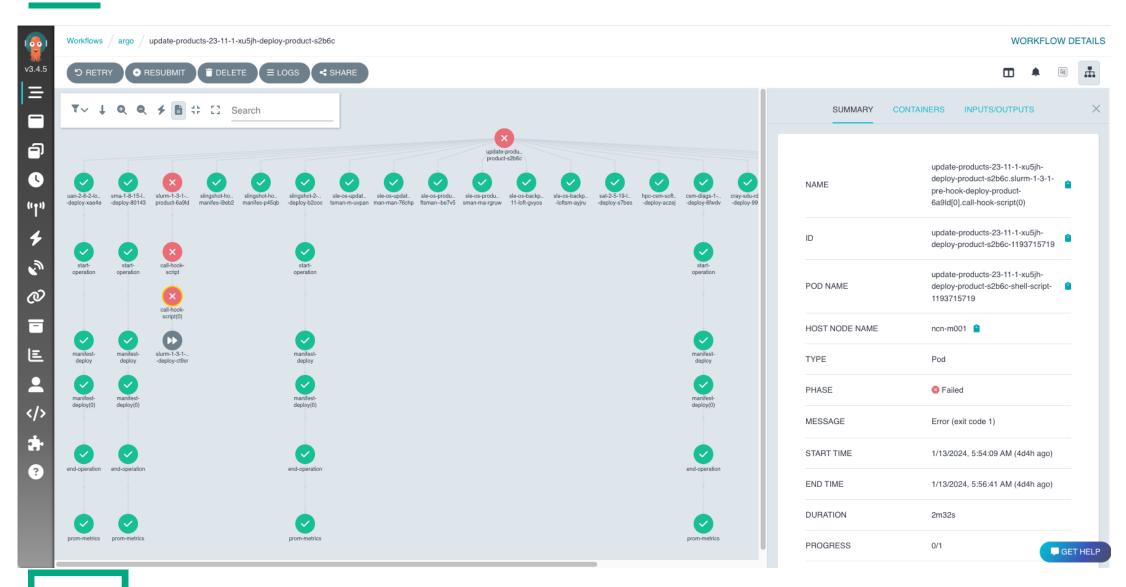
- Majority of install/upgrade procedures are in one IUF location in the CSM documentation
- Each non-CSM product guide has a similar IUF section
- The CSM guide's IUF instructions point the user to each product's IUF section if any manual operations are required

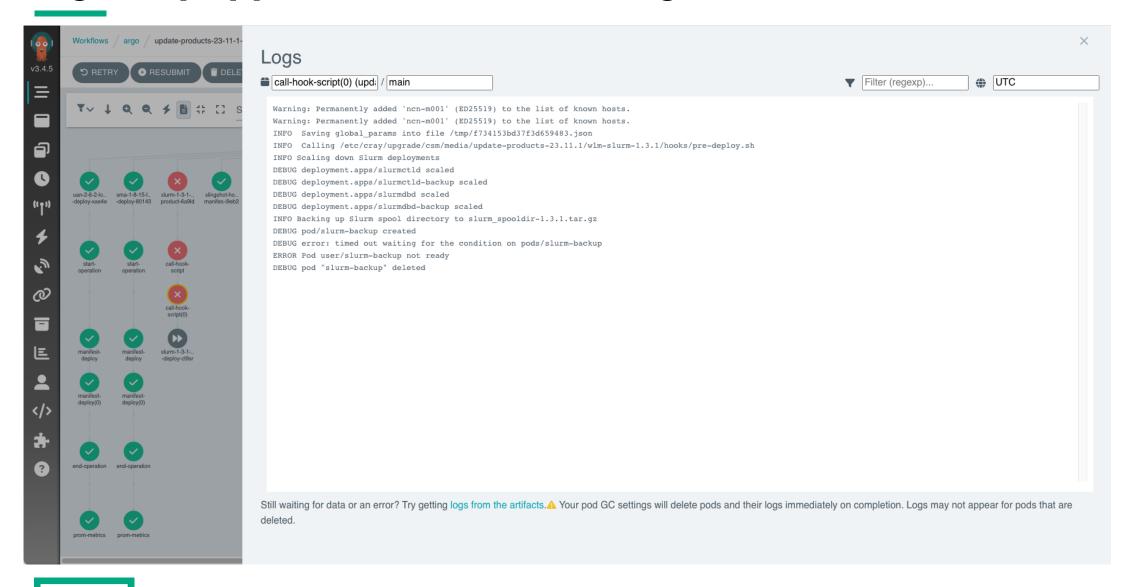

r	ncn-m# iuf list-stages	
	Stage	Description
1	process-media pre-install-check deliver-product update-vcs-config update-cfs-config prepare-images management-nodes-rollout deploy-product post-install-service-check managed-nodes-rollout post-install-check	Inventory and extract products in the media directory for use in subsequent stages Perform pre-install readiness checks Upload product content onto the system Merge working branches and perform automated VCS configuration Update CFS configuration utilizing sat bootprep Build and configure management node and/or managed node images utilizing sat bootprep Rolling rebuild of management nodes Deploy services to system Perform post-install checks of deployed product services Rolling reboot of managed nodes Perform post-install checks

Node lifecycle service (cray-NLS)


- Argo Workflows is an open source container-native workflow engine for orchestrating parallel jobs on Kubernetes
 - https://argoproj.github.io/workflows/
 - Implemented as a Kubernetes CRD (Custom Resource Definition)
 - Easily orchestrate highly parallel jobs on Kubernetes
 - Define workflows where each step in the workflow is a container
- Model multi-step workflows as a sequence of tasks or capture the dependencies between tasks using a graph (Directed Acyclic Graph)
- Argo UI with CSM
 - Requires authentication with Keycloak
 - Useful for watching the progress of an install or upgrade and debugging
- NLS workflows
 - Once a workflow is started, it will proceed through multiple steps in a set order
 - Most steps depend on previous steps and will wait for its dependencies to finish before starting
 - If any step fails, by default, that step will be continuously retried until it succeeds
 - There are two ways to make Argo not continuously retry a failed step
 - Logs in the Argo UI show output from individual stages of a workflow and are useful for debugging


Argo UI – first screen

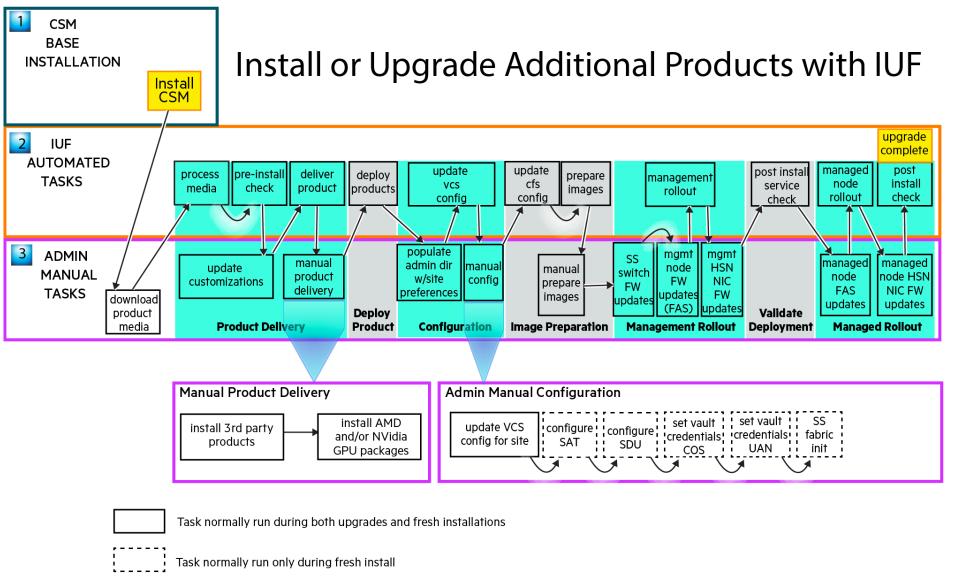

Argo – process media


Argo – deploy products (with error)

Argo – deploy products look at red X for Slurm

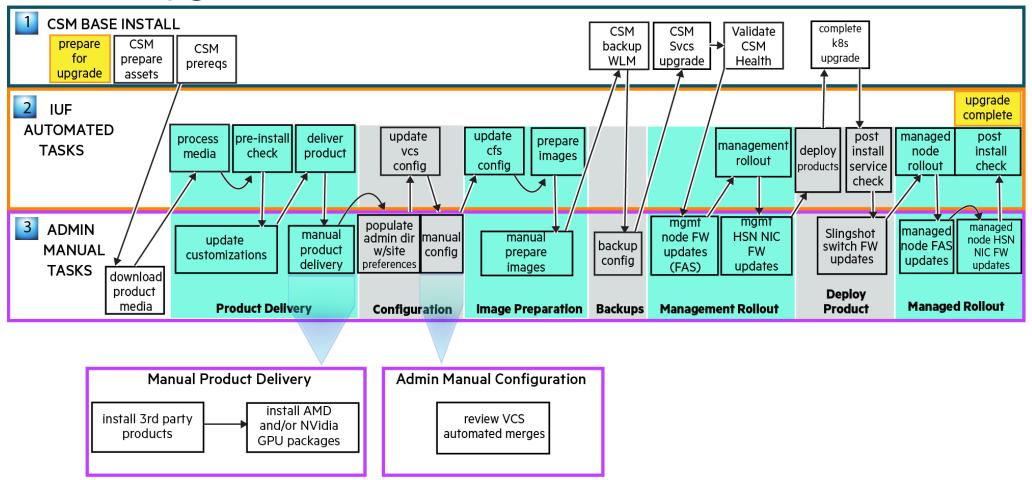
Argo – deploy products red X for Slurm log

HPE Cray system management software recipe 24.03


Software Product streams

- Software in recipe 24.03.0
 - HPE HPC CSM Software Recipe 24.03
 - HPE COS Base 3.0.0
 - HPE CPE 23.12.3
 - HPE CSM 1.5.0
 - HPE CSM Diags 1.5.25
 - HPE HFP 23.12.0
 - HPE SAT 2.6.14
 - HPE SDU RDA 2.3.1
 - HPE Slingshot 2.1.1
 - HPE SHS 2.1.2
 - HPE SMA 1.9.11
 - HPE UAN 2.7.1
 - HPE USS 1.0.0 cos-base 3.0
 - HPE USS 1.0.0 CSM 1.5
 - HPE WLM PBS 2.0.3
 - HPE WLM Slurm 2.0.3-23.02.6
 - SLE 15 SP5 23.10.30 (for x86_64 and aarch64)

- Software product streams
 - CPE Cray Programming Environment
 - COS Base Cray Operating System Base
 - CSM Cray System Management
 - CSM Diags CSM Diagnostics
 - HFP HPC Firmware Pack
 - HPC CSM Software Recipe
 - SAT System Admin Toolkit
 - SDU System Diagnostic Utility
 - SHS Slingshot Host Software
 - SLE OS SUSE Linux Enterprise Operating System
 - Slingshot High speed network fabric management
 - SMA System Monitoring Application
 - UAN User Access Nodes
 - USS User Services Software
 - WLM Workload Manager (Slurm or PBS Pro)



IUF Installation Workflow

IUF Upgrade Workflow

Upgrade CSM and Additional Products with IUF

CSM 1.5 New functionality

- New CFS configuration name for management nodes includes version
 - Replaces generic "ncn-personalization" configuration name
- Networking
 - Created DNAME records in PowerDNS
 - cray-dns-unbound no longer forwards ".hsn" queries to site DNS
 - Created DNS records for all aliases on the NMN
 - IPv6 DNS PTR records for UAIs and UANs
 - Enabled bonded NMN connections for the UANs
 - Bonded HSN Interfaces to apply correct configurations to SHS
- Spire
 - Support for old and new Spire versions running simultaneously to reduce downtime during upgrades
 - Updated to work with TPM
- Support for large system ARP configuration for first boot and DHCP
 - CSM Ansible role csm.ncn.sysctl
- SLS: Added caching to improve performance and robustness
- Transitioned from COS-provided cray-heartbeat to CSM-provided csm-node-heartbeat

NID allocation defragmentation

• Problem:

- NIDs are not correctly allocated when Cray Site Init (CSI) generates System Layout Service SLS input file for liquid-cooled Antero nodes
 - CSI assumes all blades in the cabinet are Windom compute blades
- Both Antero and Windom blades both have 4 nodes but they have different physical layouts
 - Windom blades have 2 node BMCs with 2 nodes per node BMC with the following nodes: b0n0, b0n1, b1n0, b1n1
 - Antero blades have 1 Node BMC with 4 nodes per node BMC with the following nodes: b0n0, b0n1, b0n2, b0n3
- SLS has NIDS only allocated for nodes b0n0, b0n1, b1n0, b1n1 on a compute node blade
 - On an Antero blade the nodes b0n2, b0n3 will have automatically assigned NIDs that are not contiguous with the NIDs on nodes b0n0 and b0n1
 - Nodes b0n2 and b0n3 on an Antero blade are functional, but do not have NIDs in contiguous range with its peers
- Added documentation for NID allocation defragmentation
 - Different blade types (which have different 'density' (number of BMCs or number of nodes) cause spurious or missing NIDS to manifest in the system
 - Do procedure only if absolutely required must be performed while system is down
 - Compute nodes were added to SLS with incorrect NID numbering, missing node entries, and/or extra node entries
 - Compute nodes were permanently moved, removed, or re-provisioned and there is a desire to remove NID numbering gaps

Technology previews

- In CSM 1.5:
 - Support for Spire TPM-based remote node attestation
 - Disaster recovery support
 - Backup important configuration and use it during reinstall of the same software versions
- In CSM 1.4:
 - Support for parallel Kubernetes worker node upgrades

New Hardware support

- aarch64 architecture
 - Hardware discovery process (hms-discovery) populates a node's architecture in Hardware State Manager (HSM)
 - Image management (IMS) support for cross-architecture building of images through emulation
 - aarch64 version of the barebones IMS recipe
 - CFS added support for Ansible tasks to target specific architecture (x86 64 or aarch64)
 - -IMS ARCH is defined when IMS is building images
 - -Booted nodes have ansible architecture defined as an Ansible fact

```
- name: set target_arch variable
   set_fact:
        target_arch: "{{ ansible_env.IMS_ARCH | default(ansible_architecture) }}"
```

- Compute nodes
 - Olympus Hardware
 - HPE Cray EX254n NVIDIA Grace Hopper
- Added management network switches to HSM so PCS can perform power reset actions
- Hardware validation of the EX2500 cabinet

CSM monitoring

CSM 1.5

- HA Prometheus setup with Thanos for long term storage
 - Thanos dashboards
- CANU tests red light/green light dashboard
- IUF timing dashboard
 - Report timing data for each stage in the install/upgrade of software products
- Networking statistics from incoming and outgoing TCP/IP traffic
 - SNMP Stats
 - SNMP Interface Detail
- SMARTMON (local storage) dashboard
 - Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.)

CSM 1.4

- Implemented pod monitors to scrape SMA Kafka server and zookeeper Prometheus metrics
- Kyverno dashboards
- Monitor Kyverno policy metrics with Prometheus
- SMA Kafka and zookeeper dashboards to monitor their internals
- OpenSearch cluster monitoring dashboard using Prometheus metrics
- Created Prometheus Alerts for CPU and Memory usage for NCNs

CSM security

CSM 1.5

- Ongoing CVE remediation for NCN management OS and several container images
- Addition of kyverno and network policies to ensure some secure controls over MQTT namespace (used by DVS)
- Developed OPA policy to force Keycloak admin operations through CMN
- Moved istio-ingresgateway-cmn service to use the customer-admin-gateway
- Added default RBAC Role for Telemetry API
- TPM-based attestation in Spire

CSM 1.4

- IPXE binary name randomization for added security
- Created read-only tapms API for getting tenant status
- Added OPA Rules for TPM workloads
- Protected S3 NCN images
- Moved from OPA-gatekeeper to Kyverno for enforcement of security policies
- Kubernetes security policy is running in audit mode via Kyverno

CSM multi-tenancy

CSM 1.5

- Vault transit (KMS) support for encrypted secrets in VCS
- Enabled tenant ID and tenant admin AuthZ awareness for API ingress (OPA policy)
- Enabled tenant ID and tenant admin AuthZ awareness for API ingress
- Automated power-off-on-entry and power-off-on-exit for managed node resource groups
- Support for user access nodes in tenant resource groups
- Tenant administrator support for managed node resources
 - BOS support for boot, reboot, node power on and off in tenant
 - BOS implemented OPA policies for Multi-Tenancy

CSM 1.4

- Soft multi-tenancy cooperative tenant
- Tenant and Partition Management Service (TAPMS) dual API (tenant status)
- Slurm operator tenant integration

CSM Deprecated features

Deprecated in CSM 1.6

- BOSv1 removed
- CAPMCv3 features removed

Deprecated in CSM 1.5

- CRUS (Compute Rolling Upgrade Service) removed
- BOS v1 v1 session template and boot set fields are no longer stored in BOS
 - When upgrading to CSM 1.5, these fields will automatically be removed from all BOS session templates that contain them
 - When creating BOS v1 session templates, these fields are automatically removed

Deprecated in CSM 1.4

- Cray CLI default to BOSv2 when no version explicitly specified in BOS commands
- CAPMC announcement of deprecation and being replaced by PCS
- Removed SLS support for downloading and uploading credentials in the dumpstate and loadstate REST APIs

Compute node New Features

COS 23.11

- First release with COS Base 3.0 and User Services Software (USS) 1.0
 - /opt/cray/etc/release/cos renamed to /opt/cray/etc/release/uss
- SLE 15 SP5 on compute nodes
- COS Base 3.0
 - COS kernel default configuration (defconfig) more similar to SLE 15 SP5 defconfig
 - COS kernel size has increased noticeably
 - cray-crash can analyze crash dumps from the COS Base kernel which supports larger huge page sizes
 - Kernel memory compaction support interfaces documented
 - Precompaction /proc filesystem
 - -/proc/sys/vm/precompaction/purge vmap area
 - -/proc/sys/vm/precompaction/kmem cache shrink
 - -/proc/sys/vm/precompaction/radix tree cleaning
 - -/proc/sys/vm/precompaction/force pagedrain
 - Premap vmalloc allocations with kernel cmdline options
 - Problem: vmalloc() created pagetables are never freed causing fragmentation with CONFIG_VMAP_STACKS enabled
 - -vmap premap enable: set to false to disable the whole thing
 - -vmap premap tasks per cpu: account for this many tasks per cpu
 - -vmap premap adj pages: adjust calculated pages by this much
 - vmap_premap_num_pages: use this instead of calculated pages if non-zero

User Services Software (USS) New Features

- USS 1.0
 - AMD ROCm 5.7
 - NVIDIA SDK 23.9 and driver 535.129.03
 - Cray ClusterStor Lustre client 2.15.1.x
 - Lustre community 2.15.1 LTS release
 - Dynamic Kernel Module Support (DKMS) for GPU support during image creation
 - Low Noise Mode (LNM) default configuration excludes migrating the Lustre and Spectrum Scale related processes to the system CPUs
 - /usr/sbin/lnmctl -validate checks LNM config files for syntax errors
 - Containers on compute nodes (COCN)
 - Documentation to build and run containerized applications using Cray MPI
 - Podman, SingularityCE, or Kubernetes
 - Message Queuing Telemetry Transport (MQTT) for DVS node health monitoring uses Artemis MQTT broker
 - Alternate choice for DVS node health messaging
 - Lightweight and needs less amount of data transfer or storage

- CPS broker uses cos-agent running on workers
 - Takes requests from CPS to maintain CPS contents data, DVS server list, and DVS exports
 - CPS will not deploy cray-cps-cm-pm and cray-cps-etcd pods
- qpu-nexus-tool
 - Allows additional GPU content versions
 - Supporting multiple architectures for Nvidia content

COS 2.5 (previous release)

- DVS has experimental support for monitoring the networks that DVS is using and automatically doing fail-over when those networks have problems
- SLES 15 SP4 based kernels introduce support for idmapped mounts
 - DVS does not support idmapped mounts
- CPS now runs cray-cps-cm-pm pods on all worker nodes by default
 - CPS provides a static DVS server list for mounting DVS and runs CPS PM on all worker nodes to ensure DVS contents are exported consistently

UAN Changes

UAN 2.7.1

- K3s may be optionally deployed to UANs using the playbook k3s.yaml
 - UAIs on UANs
- A new Nexus raw repo provides 3rd party packages to deploy k3s and related services
- UAN rpms have been removed and replaced with Ansible roles

UAN 2.6.0

- UAN CFS configurations now require a CSM and two COS layers
 - Roles that were duplicated from COS CFS in the UAN CFS repo have been removed
 - Values for COS CFS roles that were previously set in the UAN CFS group_vars directory should now be set in COS CFS group_vars
- UAN CFS has been restructured to work for COS and Standard SLES images
- uan_packages variables are now vars/uan_packages.yml and vars/uan_repos.yml and have been renamed
 - Admins will need to migrate to the new settings
- The NMN connection now supports bonding (optional)
 - The default is a non-bonded single interface

SMA New features

SMA 1.9

- SMA service API endpoints support Customer High Speed Network (CHN)
- Enhanced Power monitoring in SMF using Power and Cooling Infrastructure Management (PCIM)
 - CDU Monitoring Web UI provides CDU alert history
- Slingshot fabric health reporting
- View alerts with "cm health alert" CLI command

SMA 1.8

- Application nodes, such as UAN and Gateway nodes, can now be configured to report LDMS metric data to SMA
- Alerts based on Cray EX hardware event Telemetry
- Alerts based on Slingshot fabric and hardware event Telemetry
- Telemetry-filter service
- Slingshot 2.0 support
- Moved from Elasticsearch to Opensearch (due to licensing change)

cm health alert

ncn# cm health aler	t -s	3
Alert Status	Coi	ınt
Critical	2	
Warnings	0	
Information	0	
Open	2	
Acknowledged	0	
Closed	0	
Expired	0	
Group		Seve
compute		crit
fabric		ok
slingshothsn		ok
slingshotswitch		ok

- Manage alerts from many sources: Prometheus Alertmanager, Monasca, Slingshot
 - Looks for events in the data
 - Constantly analyzes each event
 - Alerts the user regarding the event
 - Stores the event in the alert dashboard
- Manage the life cycle of alerts
 - Retrieve alerts
 - Process alerts
 - Close alerts
 - Disable during maintenance periods and re-enable after maintenance ends

Group	Severity	Alerts
compute	critical	<pre>critical : 2, warning : 0, info : 0</pre>
fabric	ok	<pre>critical : 0, warning : 0, info : 0</pre>
slingshothsn	ok	critical : 0, warning : 0, info : 0
slingshotswitch	ok	<pre>critical : 0, warning : 0, info : 0</pre>
prometheus	ok	<pre>critical : 0, warning : 0, info : 0</pre>
aiops	ok	<pre>critical : 0, warning : 0, info : 0</pre>

ncn#	cm	health	alert	query	

ID	STATUS	SEVERITY	GROUP	ENV	SERVICE	RESOURCE	EVENT	VALUE	DESCRIPTION	DUPL	LAST RECEIVED
2809d804	open	critical	compute	x3700c0r41b0	SensorEvent	dmtf.redfish_event	PSU1-Voltage	0	Sensor _PSU1 Voltage_ reading of 0 _V_ is	0	2024/03/05 19:13:21
									below the 11.16 lower critical threshold.		
85082bef	open	critical	compute	x3700c0r39b0	SensorEvent	dmtf.redfish_event	PSU1-Voltage	0	Sensor _PSU1 Voltage_ reading of 0 _V_ is	0.	2024/03/05 19:17:35
									below the 11.16 lower critical threshold.		

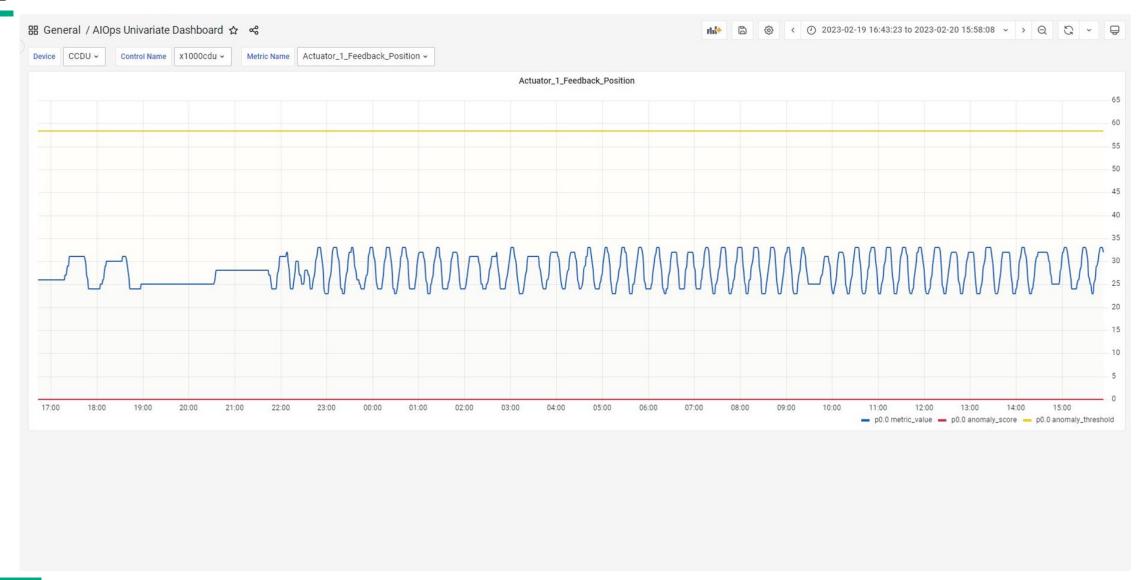
SMA New Grafana dashboards

SMA 1.9

- See Monitoring Cooling Devices with Artificial Intelligence for IT operations
 - AlOps Anomaly Forecast
 - AlOps Slingshot Physical Context Congestion
 - AlOps Slingshot Physical Context Congestion Details
 - AlOps Slingshot Physical Context Temperature Details
 - AlOps Univariate Dashboard

SMA 1.8

- CDU Monitoring
- CPU Power Monitoring
- CPU Temperature Monitoring
- GPU Temperature Monitoring
- Prometheus Alerts
- Slingshot Port Flap
- Slingshot Port State
- Slingshot Bit Error Rate (BER)
- Slingshot rxCongestion
- Slingshot rxBW/txBW (Receive/Transmit Bandwidth)
- Slingshot Routing Error
- Slingshot Hard Error



AIOps

- Typical monitoring systems are based on thresholds
 - IT operations require administrators to monitor dashboards
 - The dashboards consolidate data from multiple monitoring systems based on established thresholds
- AlOps offers the following features:
 - Anomaly detection and processing
 - AlOps issues notifications for critical anomalies detected in the metrics derived from the cooling distribution units (CDUs)
 - AIOps simplifies data center management by reducing the number of false alarms, surfacing only anomalous results, limiting the number of dashboards needed, and providing other features
 - Default cooling device monitoring
 - Rather than rely on established thresholds, the default AIOps cooling device monitor uses dynamic thresholds for monitoring cooling devices
 - These dynamic thresholds are calculated automatically and are based on the latest data used to train the AI models
 - The data from the cooling systems can change over time for a number of reasons, and this approach makes alerting relevant to the latest data
 - Alert processing
 - You can display AlOps data in Grafana
 - Within Grafana, AIOps provides several dashboards in JSON format

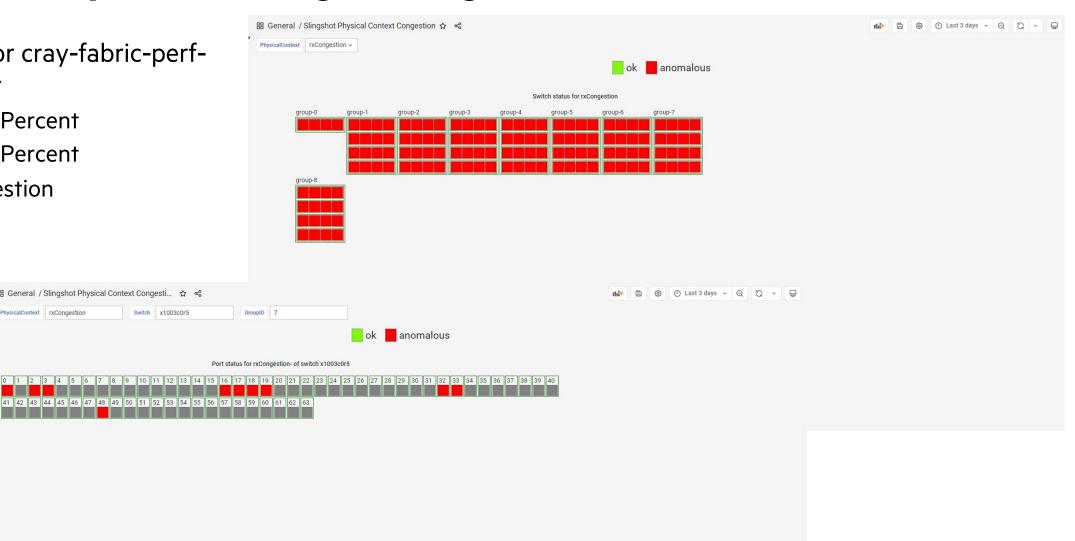
AIOps univariate dashboard

AIOps anomaly forecast dashboard

AlOps anomaly detection slingshot temperature

- Metrics used for cray-telemetry-temperature
 - ASIC
 - NetworkingDevice
 - SystemBoard
 - VoltageRegulator
 - Chassis
 - PowerSupply

AIOps anomaly detection slingshot congestion


• Metrics for cray-fabric-perftelemetry

PhysicalContext rxCongestion

器 General / Slingshot Physical Context Congesti... ☆ ペ

Switch x1003c0r5

- rxPausePercent
- txPausePercent
- rxCongestion

Slingshot New features 2.1.1/SHS 2.1.2

- Auto Lane Degrade w/o recovery
 - Keep the link up in degraded state instead of taking the link down
 - Useful with long-running customer jobs which cannot tolerate a link going down
- Dynamic Kernel Module Support (DKMS)
 - Enables kernel module recompilation through DKMS on install or kernel update
- Ability to run CSM Fabric Manager as non privileged slingshot user
- Slingshot Orchestrated Maintenance Phase 1
 - Added Switch Policy Enforcement and Link Policy Enforcement
- LACP Completion
 - Supports industry standard link-resiliency and traffic switchover as per LACP short timeout
 - Detects abrupt member port speed changes and acts within seconds
 - Supports interoperability with third-party switches
- Many Slingshot 1.0.0 and 2.0.0 commands are now decommissioned in Slingshot 2.1.0
 - If customer has automation scripts or documents based on Slingshot 1.0.0 or 2.0.0 command syntax
 - See Appendix B in HPE Slingshot Release Notes
- Troubleshooting documentation changed to disapprove previous Slingshot switch fabric-agent-host restart method
 - Place switch into maintenance mode to avoid serious fabric issues

Boot Orchestration Service Version 2 (BOS v2) in CSM-1.4

BOS V2 is a new version with a new endpoint, `v2`

- URLs are versioned
- V1
- https://api-gw-service-nmn.local/apis/bos/v1/session/f91e2774-a47c-4d4f-9ba0-2ca04343a8eb
- V2
- https://api-gw-service-nmn.local/apis/bos/v2/sessions/a7a5786c-6361-4659-84a3-72398537b893
- Access different versions of BOS with different versions of the URLs
- The Cray CLI is also versioned.
 - cray bos v1 < command>
 - cray bos v2 <command>
 - CLI will default to v2

BOS V1 and BOS v2 Coexist

- BOS V1 will continue to operate until CSM-1.6
- Customers should choose to use either BOS V1 or BOS V2
 - They should NOT use both concurrently
 - BOS V1 session templates are not interoperable under BOS V2
 - However, V1 templates will be migrated to V2 templates (once)

Main Theme: Nodes Proceed at their own Pace

- In both BOS V1 and V2, BOS acts on nodes in a BOS session concurrently
 - In BOS V1, every node in a session proceeded in lock step
 - Slowest node slows the entire session down
 - Nodes that experience an error are dropped and not retried
 - In BOS V2, every node proceeds *independently*, at its own pace
 - More nodes reach an operable state faster
 - If a node encounters a problem, BOS V2 retries the operation for just that node

New Endpoints

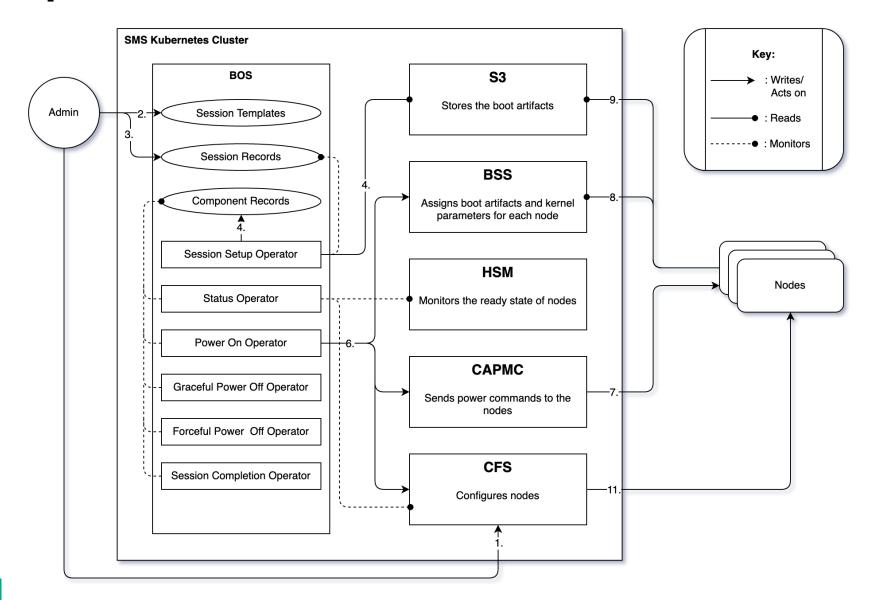
- Components
- Options

BOS Sessions

- BOS V2 monitors the nodes in a session
- A session completes when all nodes in it are 'done'
 - The nodes' actual states reached their desired states
 - The nodes hit the allowed number of retries (due to errors/failures)

Status

- Session Status
 - Values
 - Pending
 - Running
 - -Complete All of the nodes have finished and/or failed
- Component Status


Session Status

```
ncn# cray bos sessions describe 50459b1e-06d8-4708-8d55-608aea33810e --
format json
  "components": "x1000c1s1b0n2",
  "include disabled": false,
  "limit": "x1000c1s1b0n2",
  "name": "50459b1e-06d8-4708-8d55-608aea33810e",
  "operation": "reboot",
  "stage": false,
  "status": {
    "end time": "2024-02-16T00:09:41",
    "error": null,
    "start time": "2024-02-15T23:32:07",
    "status": "complete"
  "template name": "ktest-23.11.0-iscsi",
  "tenant": null
```

Component Status: 1 Stable and 1 Failure

```
ncn# cray bos v2 components describe x1000c1s1b0n2 --format json |
jq .status
  "phase": "",
  "status": "stable",
  "status override": ""
ncn-m001:~/jasons # cray bos v2 components describe x1000c1s1b0n3 -
-format json| jq .status
  "phase": "powering off",
  "status": "failed",
  "status override": "failed"
```

BOS V2 Operators

BOS V2 Improvements

- New, higher levels of
 - Boot efficiency
 - Boot resiliency
 - Transparency

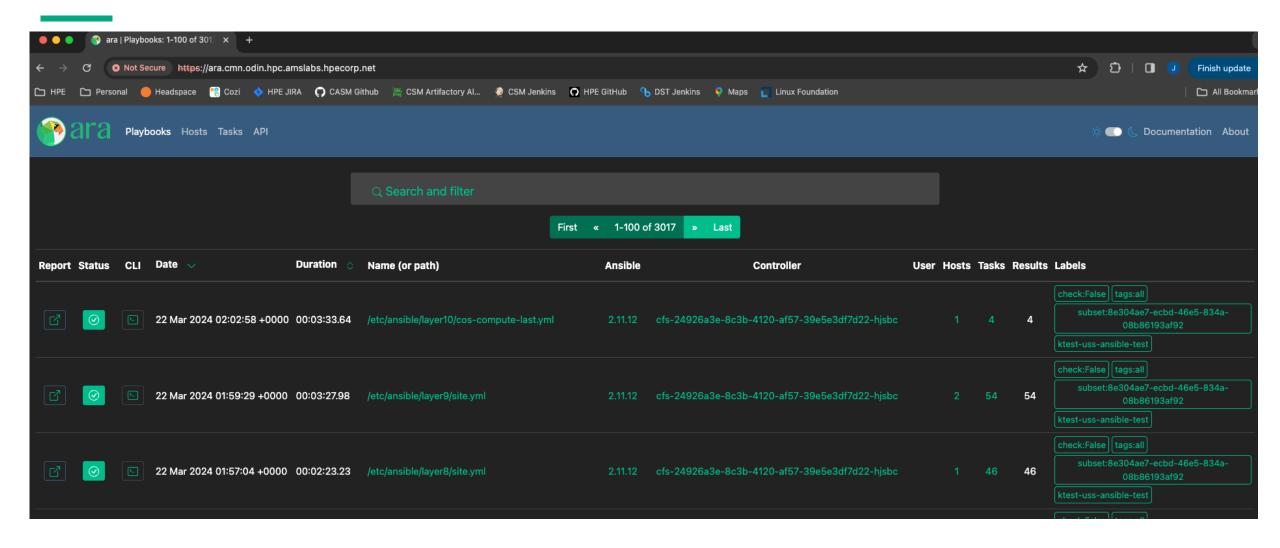
Configuration Framework Service Improvements in CSM-1.4

Two debugging improvements

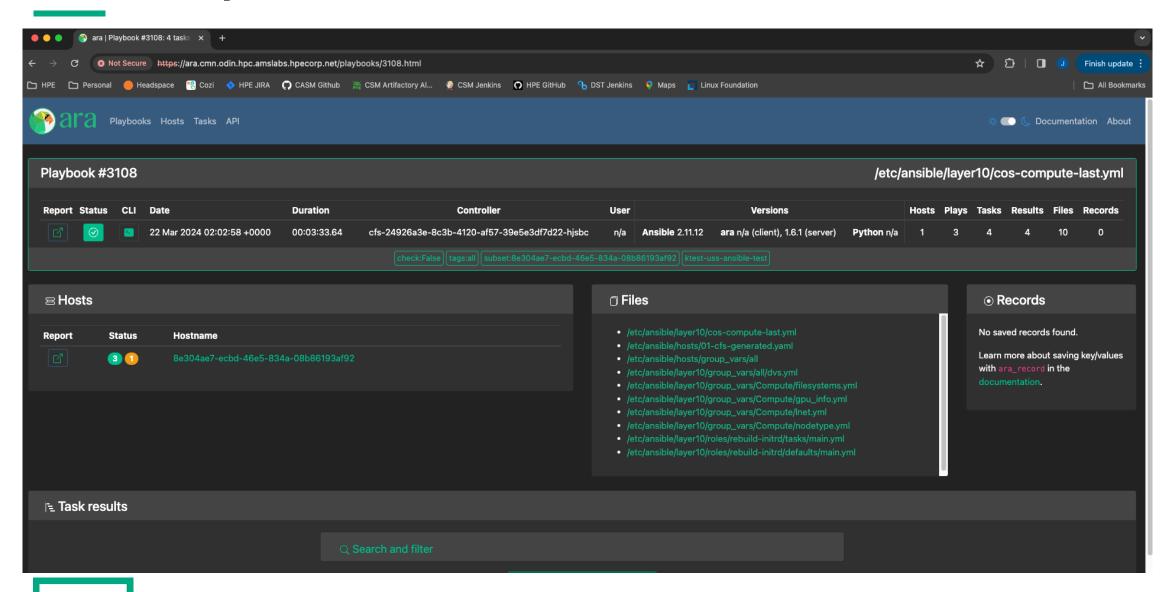
- ARA ARA Records Ansible
- CFS Debugging tool

ARA Records Ansible (ARA)

- Yes, it's another recursive acronym
- ARA is an open-source log collector, API, and UI, specifically for collecting and parsing Ansible logs
- ARA records the Ansible logs from all Configuration Framework Service (CFS) sessions
- ARA provides an Ansible friendly way to view them
- Reference: https://ara.recordsansible.org/
- ARA is installed with CSM-1.4
- ARA's GUI is accessible at: https://ara.cmn.<SYSTEM DOMAIN NAME>


ARA Recording Workflow

- Ansible play \rightarrow Ansible \rightarrow ARA Callback \rightarrow ARA API Server \rightarrow Database
- Graphic from: https://ara.recordsansible.org/static/recording-workflow.png


ARA User Interface

- API
- CLI
- GUI

ARA GUI Screenshot

ARA GUI Playbooks Overview

CFS Debugging Tool

- Tool to aid debugging failed CFS sessions and other CFS problems
- Invocation:
 - ncn# cfs-debug
- Example Display:
 - Select debugger mode. Type help for details.
 - -1) Auto-debug (default)
 - -2) Directed-debug
 - -3) Auto-debug report
 - -4) Collect logs
 - -5) Additional actions
 - -0) Exit

CFS-debug Auto-debug Output (Screen capture)

```
Running full check list...
[CFS health] The health of the CFS service
- [ OK ] cray-cfs-api health:
                                  healthy
- [ OK ] cray-cfs-batcher health:
                                  healthy
- [ OK ] cray-cfs-operator health:
                                 healthy
- [ OK ] cfs-hwsync-agent health:
                                  healthy
                                 errors in the logs
- [WARN] cfs-trust health:
cfs-trust health =======
cfs-trust ..... errors in logs
Would you like to see details for this service (Y/n) # Y
- Errors found in logs for pod: cfs-trust-9f97c6c56-jkt7g container: cfs-trust
403 Client Error: Forbidden for url: http://cray-vault.vault:8200/v1/transit/export/signing-key/cfstrust
_____
[CFS related health] The health of services related to CFS
 - [IMS health] The health of the IMS service
   - Γ OK ] cray-ims health:
 - [Kafka health] The health of the Kafka service
   - Γ OK ] kafka health:
   - [ OK ] zookeeper health:
                                    healthy
[CFS sessions health] The health of recent CFS sessions
- [WARN] CFS recent session health: Found 5 unhealthy recent sessions
CFS recent session health =================
batcher-3d48e43f-3a58-4326-8031-aff3f1ce1f68 ..... pending ...... 3d
batcher-1c636c6c-1840-41d6-ab6d-6a563bd53ecd ..... pending ...... 3d
batcher-bf807057-a394-4ea7-9fd7-a2c6007d8fb3 ..... pending ...... 3d
batcher-2d9ae6c9-62f9-49e3-a713-57b6c31bd49f ..... pending ...... 3d
batcher-5826010c-184b-4146-808b-8710a2a777b8 ..... pending ...... 3d
[CFS components health] The health of components from CFS' perspective
- [WARN] CFS state-reporter health:
                                51/59 succeeded
CFS state-reporter health ===========
8 components could not be reached : x1000c3s2b0n3,x1000c3s2b0n2,x1000c1s1b0n3,x1000c1s2b1n0,...
```

CFS-debug Mode: Auto-debug Output (part 1)

```
Running full check list...
[CFS health] The health of the CFS service
- [ OK ] cray-cfs-api health:
                            healthy
- [ OK ] cray-cfs-batcher health: healthy
- [ OK ] cray-cfs-operator health: healthy
- [ OK ] cfs-hwsync-agent health: healthy
- [WARN] cfs-trust health: errors in the logs
cfs-trust health
cfs-trust ..... errors in logs
Would you like to see details for this service (Y/n) # Y
- Errors found in logs for pod: cfs-trust-9f97c6c56-jkt7g container: cfs-trust
2024-02-20 19:16:12.906501+00:00 403 Client Error: Forbidden for url:
http://cray-vault.vault:8200/v1/transit/export/signing-key/cfstrust
```

CFS-debug Mode: Auto-debug Output (part 2)

```
[CFS related health] The health of services related to CFS
- [IMS health] The health of the IMS service
- [ OK ] cray-ims health: healthy
- [Kafka health] The health of the Kafka service
- [ OK ] kafka health: healthy
- [ OK ] zookeeper health: healthy
```

CFS-debug Mode: Auto-debug Output (part 3)

```
[CFS sessions health] The health of recent CFS sessions
- [WARN] CFS recent session health: Found 5 unhealthy recent sessions
CFS recent session health
batcher-3d48e43f-3a58-4326-8031-aff3f1ce1f68 ..... pending
                                                            ...... 3d
batcher-1c636c6c-1840-41d6-ab6d-6a563bd53ecd ..... pending ...... 3d
batcher-bf807057-a394-4ea7-9fd7-a2c6007d8fb3 ..... pending ...... 3d
batcher-2d9ae6c9-62f9-49e3-a713-57b6c31bd49f ..... pending
                                                           ..... 3d
batcher-5826010c-184b-4146-808b-8710a2a777b8 ..... pending ...... 3d
[CFS components health] The health of components from CFS' perspective
- [WARN] CFS state-reporter health: 51/59 succeeded
CFS state-reporter health
 components could not be reached
x1000c3s2b0n3,x1000c3s2b0n2,x1000c1s1b0n3,x1000c1s2b1n0,...
```

CFS-debug Mode: auto-debug failure diagnosis

```
CFS recent session health
sat-30d0e5f0-a61b-4c07-9b0c-ac60eb0bbccc ..... failed ..... 1h
Would you like to see details for this session (Y/n) \# Y
 - Session sat-30d0e5f0-a61b-4c07-9b0c-ac60eb0bbccc failed on playbook sma-ldms-
application.yml (container ansible)
 - Ansible failure contained task output.
 - Parsing line starting with: "fatal: [13b55ce2-14f4-4494-ab04-8437c8f8919c]: FAILED!"
warning: Found NDB Packages.db database while attempting bdb backend: using ndb
backend.
<?xml version='1.0'?>
<stream>
<message type="error">No provider of &apos; +sma-system-test&apos; found.
</stream>
- This is not a recognized failure. Please see the owner of this role.
```

Other CFS Improvements in CSM-1.4

- Can now name the customized image from the command line
 - Allows overwriting existing images instead of always creating a new one
- CLI now allows bulk component updates
- Can now stop CFS/batcher and cancel configurations

Configuration Framework Service Improvements in CSM-1.5

Overview

- Debug_on_failure flag
- Debug playbooks
- External Repository Support
- Pagination support

Debug_on_failure Flag

- CFS sessions can be created with the debug_on_failure flag
- If set to true, this will cause sessions that fail during Ansible execution to remain running so that users can exec into the pod
- (ncn-mw#) kubectl -n services exec -it <pod> -c ansible -- /bin/sh
- Once debugging is complete users should touch the /tmp/complete file to complete and cleanup the session
 - If this is not done, the session will remain up until the debug_wait_time expires
- NOTE: This is only available in the v3 CFS API which was released with CSM-1.5

Debug Playbooks

- CFS supports special debug playbooks, which are part of the Ansible Execution Environment (AEE) image and always available
- These playbooks can be used without requiring a special configuration to be created
- The following playbooks are available and can be specified as the configuration name for a session if no other configuration has already been created with these names
 - debug_fail -
 - immediately fails
 - can be used with the **debug_on_failure** flag (previous slide) to quickl create an Ansible environment for debugging
 - debug_facts -
 - gathers and prints the facts for all available targets
 - debug_noop -
 - Way to test the CFS framework without running any Ansible tasks
 - Does not gather facts
 - Useful for skipping past the Ansible container for debugging
 - Easy way to test setting up the inventory and cloning content down
- NOTE: This is only available in the v3 CFS API which was released with CSM-1.5

External Repository Support

- CFS allows users to define optionally sources
- Sources enable cloning from external repositories
- Sources contain all the information needed to clone information from a repo
 - The username and password can be specified in source
 - -CFS will store them in a Vault secret

Paging CFS Records (Pagination)

- For configurations, sessions, and templates, CFS only lists a limited number of records at a time
 - Reduces memory requirements especially on large systems
- By default, returns a number of records up to the **default_page_size**, 1000
- Can be overridden at query time
- Pages beyond the first can be requested using the **after_id** parameter, which should be set to the id of the last record in the previous page
 - CFS uses a Keyset pagination strategy

Power Control Service (PCS) in CSM-1.4

PCS Replaces CAPMC

• Cray Advanced Power Management and Control (CAPMC)

Why re-implement, re-design CAPMC?

- Architectural alignment (micro-service)
- Focus on Core functionality (resolving power states)
- Code Maintainability

CAPMC versus PCS

САРМС	PCS	Explanation
system power monitoring		Split out from PCS, All environmental telemetery is part of the Shasta Monitoring Framework (SMF/SMA). SMF has the right tools and capabilities to expose the data (SQL, grafana, etc) for customer use cases.
node power/energy monitoring		Split out from PCS, All environmental telemetery is part of the Shasta Monitoring Framework (SMF/SMA). SMF has the right tools and capabilities to expose the data (SQL, grafana, etc) for customer use cases.
node power on/off control	component power on/off control	PCS expands power controls beyond 'compute nodes' to components more generally. This is core functionality of PCS.
power capping control	power capping control	No functional difference; API differences, but same capabilities.

PCS REST API

- Turns xnames on or off
- Performs hard and soft reset actions
- Sets and retrieves power capping parameters and capabilities

Non-blocking API

- CAPMC is mostly a blocking API; meaning that a call to CAPMC may result in a long wait time while the system resolves the operation
- PCS is a non-blocking API; returns quickly
- PCS tokenizes the request and allows the caller to get status later

Thank you

Harold Longley, <u>harold.longley@hpe.com</u> Jason Sollom, <u>jason.sollom@hpe.com</u>