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• Power and energy consumption continue to increase worldwide, especially with surge in AI
• Data center energy consumption has grown 20-40% annually
• Electricity consumption from data centres, artificial intelligence (AI) and the cryptocurrency sector could double 

by 2026*

• Power/energy saving opportunities exist for CPUs and GPUs
• Using Dynamic Voltage and Frequency Scaling (DVFS) at run-time
• Requires workload characterization to quantify impact on performance
• Huge opportunity in GPUs
• Lack of tools to manage CPU/GPUs considering performance/power/energy tradeoffs

INTRODUCTION

*Executive summary – Electricity 2024 – Analysis – IEA: https://www.iea.org/reports/electricity-2024/executive-summary
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• Optimize (reduce) power and/or energy consumption with minimal performance impact 
• Provide a method to allow the specification of a maximum allowed performance loss

• User and application agnostic
• Users should not need to provide any information about their code
• Applications should need to be changed

• Hybrid architecture support and vendor agnostic
• Should work not only on CPUs but also on hybrid (CPU+GPU) architectures
• Should work on devices from different silicon vendors (Intel, AMD, NVIDIA)

•  Should not interfere with applications
• Method should generate low overhead

REQUIREMENTS
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BACKGROUND (CPUS VS. GPUS)

Feature CPUs GPUs
Memory BW Use DDR memory, does not feature high BW Use HBM now with massive BW

Latest high-end CPUs provision ~5 GB/s/core Latest GPUs feature HBM3, >6x BW vs. CPUs

Applications often memory BW bound Applications rarely memory BW bound

Implication: While a significant number of routines are memory bound on CPUs and can benefit from 
reduced clocks, GPUs need a different line of action.

Frequency-
Power Profile

Power varies linearly with frequency for 
operatable frequencies in servers

Given dominant dynamic power, power increases 
super-linearly with frequency

Implication: GPUs unlike CPUs are highly energy-efficient at the top-end of their frequency spectrum 
– something that could be exploited for considerable energy savings.

Other 
Opportunities

Compute bound applications rarely access data 
beyond the L2 cache

GPUs could spend considerable time ‘waiting’ for 
work from CPUs

Implication: Additional benefit possible from lowering uncore freq for compute bound phases on 
CPUs and lowering core freq in applications with low utilization on GPUs.
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CPU frequency-power profile: memory bound (lbm, left) vs. compute bound (imagick, right) application

GPU frequency-power profile: HPC (GROMACS, left) vs. ML (BERT, right) application



CUG'24 - © 2024 HPE 8

BACKGROUND (CPUS VS. GPUS)

Feature CPUs GPUs
Memory BW Use DDR memory, does not feature high BW Use HBM now with massive BW

Latest high-end CPUs provision ~5 GB/s/core Latest GPUs feature HBM3, >6x BW vs. CPUs

Applications often memory BW bound High memory BW reduces application bottleneck

Implication: While a significant number of routines are memory bound on CPUs and can benefit from 
reduced clocks, GPUs need a different line of action.

Frequency-
Power Profile

Power varies linearly for memory bound apps, 
and super-linearly for compute bound apps with 
frequency

GPUs designed for maximum throughput; power 
increases super-linearly at higher frequencies

Implication: unlike CPUs, GPUs are highly energy-inefficient at the top-end of their frequency range – 
something that could be exploited for considerable energy savings

Other 
Opportunities

Compute bound applications rarely access data 
beyond the L2 cache

GPUs might spend considerable time ‘waiting’ for 
work from CPUs

Implication: Additional benefit possible from lowering uncore freq for compute bound phases on 
CPUs and lowering core freq in applications with low utilization on GPUs.th low utilization on GPUs.
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A PROOF OF CONCEPT (POC) PROTOTYPE FOR DYNAMIC 
ENERGY OPTIMIZATION OF WORKLOADS
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• Relies on only 2 metrics that are standard across all architectures
• CPUs: Instructions Per Second (IPS)
• GPUs: GPU Utilization

EVEREST, AN EFFECTIVE AND VERSATILE RUNTIME ENERGY SAVING TOOL

EVeREST dynamically characterizes workloads with a lightweight and portable algorithm and uses 
DVFS to achieve power/energy savings while meeting a specified performance guarantee. 
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• Goal: Predict application phase performance at different frequencies
• CPU Observations
• When fully compute-bound, performance will vary proportionally with frequency
• When fully memory-bound, performance does not change with frequency
• Express this relationship as a formula:

• Thus, when measuring IPS at a high frequency and at a low frequency, one can determine the compute- 
and memory-boundedness of an individual function (sensitivity analysis)

CPU APPROACH

%𝐶𝐶𝐶𝐶 = 100% ∗

𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑖𝑖𝑖𝑖ℎ
𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙

− 1

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙

− 1

%𝑀𝑀𝐶𝐶 = 100% −%𝐶𝐶𝐶𝐶
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• Profiling on GPUs associated with significant overhead (1.5x to >3x)
• Stack walking, kernel serialization
• Need alternative to directly measure performance used for CPUs

• GPU Observations
• GPU utilization is a metric directly available without profiling
• In simple terms, Utilization can be expressed as: (kernel runtime K, application wall clock time WCT)

• Many applications overlap GPU kernel execution with CPU code or memory transfers between device and host.
– Application performance may become limited by either the CPU or the memory transfer time and not the GPU.
– When clock reduces, K increases. If Utilization also increases proportionally to K, it implies WCT is independent of GPU clock.
 

• Thus, like CPUs, if we measure Utilization at a high frequency and at a low frequency, then we can predict 
application performance.

GPU APPROACH

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
𝐾𝐾

𝑊𝑊𝐶𝐶𝑊𝑊
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Phase 
Identification

Phase 
Classification

Perform 
DVFS

HIGH-LEVEL CONTROL FLOW
Using instruction pointer 

for CPUs, or utilization 
for GPUs

Characterize how 
performance 

affected by change 
in frequency

Using performance 
target and 

classification



EVEREST RESULTS
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• Evaluation on latest generation CPUs and GPUs – Intel Sapphire Rapids, AMD Genoa, NVIDIA A100
• 27 CPU apps: 22 from SPEC 2017, 5 from CORAL-2/ECP
• 6 (9) GPU apps: 3 (6) from HPC, 3 from AI/ML

• Evaluated at different levels of acceptable performance loss (5%, 10%, and 20%)

• Usage:
• User submits job with additional parameter for acceptable performance loss
• srun ….  --use-everest:pd …

– Users can specify the maximal performance reduction they are willing to incur
– Does not require modifying the application source
– Does not depend on a specific compiler and MPI

RESULTS



CUG'24 - © 2024 HPE 16

CPU RESULTS
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Memory-bound applications provide opportunities for 20-30% energy savings at minimal performance loss, while compute-
bound applications can still achieve power savings proportional to the acceptable performance loss.
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CPU HIGHLIGHTS – MPI WORKLOADS
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Everest can exploit any opportunities to save power and energy during intensive communication phases.
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GPU RESULTS
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Everest can provide significant power and energy savings for GPUs.
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19CUG'24 - © 2024 HPE

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Baseline Everest
(5%)

Everest
(10%)

Everest
(20%)

Megatron-LM

Rel. Time Rel. GPU Power Rel. GPU Energy

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Baseline Everest
(5%)

Everest
(10%)

Everest
(20%)

ResNet50

Rel. Time Rel. GPU Power Rel. GPU Energy



CUG'24 - © 2024 HPE 20

• Lightweight solution for dynamic optimization of application according to 
power/performance/energy tradeoffs
• Huge opportunity with GPUs

• Compute vendor agnostic
• Works for CPUs and GPUs of different vendors

• Portable
• runtime-only, integration with user code not required

• Phase awareness 
• Can extract maximum power/energy savings without requiring user input

• Opportunity for collaboration and influencing product roadmap

CONCLUSION
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