
1

Enabling NCCL on
Slingshot 11 at NERSC

Jim Dinan, Josh Romero (NVIDIA)
Igor Gorodetsky, Ian Ziemba (HPE)

 Peter Harrington, Steve Farrell, Wahid Bhimji, Shashank Subramanian
(Data & AI Services, NERSC)

Cray User Group (CUG)
May 2024

2

NERSC: Mission HPC for the Dept. of Energy Office of Science

Large compute and data systems
● Perlmutter: ~7k A100 GPUs
● 128PB Community Filesystem

Broad science user base
● ~10,000 users,
● 1000 projects,

3

100 GB/s

5 GB/s

 edge services 2 x 400 Gb/s
2 x 100 Gb/s

50 GB/s
HPSS Tape Archive ~300 PB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s

Community File System 130 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Off Platform Storage

DTNs, Gateways

1,792 GPU-accelerated nodes
 4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
 448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
 2 AMD “Milan” CPUs
 1,536 TB CPU memory

Ethernet
Science Friendly

Security
Production Monitoring

Power Efficiency

LAN

HPE Slingshot 11
interconnect
4 NICs/GPU node,
1 NIC/CPU node

#7, 93.8PF
Peak

Quality of Service
Storage System (QSS)

Platform
Storage System (PSS)

Workflow Environment
Management Environment

NERSC-10NERSC-10

Coming
2026/27NERSC Facility

4

NERSC roadmap

NERSC-8: Cori
Manycore CPU
architectures

2016

2026

NERSC-9: Perlmutter
CPU and GPU nodes
Expanded Simulation,
Learning & Data

2020

NERSC-10:
Accelerating
end-to-end
workflows 2030+

NERSC-11:
Beyond Moore

AI

Simulation
& Modeling

Expt
Data

Simulation
& Modeling

Expt

AI
Training &
Inference

Simulation &
Modeling

Experiment
Data Analysis

HPC
Workflows Running

Seamlessly in IRI

Quantum
Computing

Pervasive AI

5

NERSC AI Strategy

• Deploy optimized hardware and software systems
o Work with vendors for optimized AI software (e.g. NCCL on Slingshot!)

• Apply AI for science using cutting-edge techniques
o “NESAP” and strategic projects - leverage lessons learned to optimize ecosystem

• Empower and develop workforce through seminars, training and
schools as well as staff, student intern and postdoctoral programs
o Over 20 DL@Scale tutorials (e.g. SC18-23), 1000s of total participants

Systems w/
Accelerators

EmpowermentDeploymentMethods and Applications

Software Frameworks and Libraries

Automation Interactivity

6

NESAP and Perlmutter are Enabling Adoption of Large-scale
and Groundbreaking AI

Brandon Wood
former NERSC

Postdoc now Meta AI

FourCastNet
Pathak et al. 2022 arXiv:2202.11214
Collab with Nvidia, Caltech, …

● Forecasts global weather at
high-resolution.

● Prediction skill of numerical
model; 10000s times faster

CatalysisDL
Chanussot et al. 2021
Collab with CMU, MetaAI, …
arXiv:2010.09990

● NeurIPS 2021-23
Competitions

● Pre-trained models
now used with DFT -
e.g. FineTuna;
AdsorbML

Jaideep Pathak
former NERSC

Postdoc now NVIDIA

Shashank
Subramanian
Former NERSC
Postdoc now Staff

Jared Willard
NERSC Postdoc

Wenbin Xu
NERSC postdoc

Vinicius Mikuni
NERSC Postdoc

● AI “Unfolding” extracts new
physics insights from data
○ Requires Perlmutter for

1000s of UQ runs

HEP-ML
Collab with LBL Physics division (and H1 Collaboration)

● All use Perlmutter at-scale
● Have complex workflows
● So need for network

(NCCL+SS) performance

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2010.09990
https://neurips.cc/Conferences/2021/CompetitionTrack
https://neurips.cc/Conferences/2021/CompetitionTrack
https://github.com/ulissigroup/finetuna
https://arxiv.org/abs/2211.1648
https://newscenter.lbl.gov/2022/10/25/solving-the-proton-puzzle/

7

Broad AI userbase needs distributed DL too…

• NERSC ML Biyearly Survey
2024 currently in progress
o Results not final

• Continues to show need for
complex distributed DL

8

NCCL underlies distributed AI frameworks

See Jesse Tager and Caio Davi’s talk for details

•NCCL: NVIDIA Collective Communication
Library

•Critical for high-performance distributed training
in major deep-learning (DL) frameworks

•Need high-bandwdith, low-latency P2P
allreduce between GPUs

o NCCL able to use NVLink within a node,
then interconnect across nodes

NERSC AI

9

Perlmutter deployment

System was delivered in multiple phases

● Phase I used HPE/Cray Slingshot 10 interconnect between GPU
nodes
○ 2 ConnectX-5 NICs (100 Gbps each) per GPU node
○ RoCE for RDMA, supported by NCCL “out-of-the-box”

● In Q2 2022 we began Phase II integration of Slingshot 11 interconnect
○ 4 Cassini NICs (200 Gbps each) per GPU node
○ Overall 4x increase in ‘speed-of-light’ bandwidth
○ Required libfabric implementation for NCCL

10

Putting together a testing workload

• NCCL tests: Standard suite of tests
o Primary performance metric: bus bandwidth
o Sweep over message sizes - see backup slides for more details

Also need to test real deep learning workflows - we saw issues arise even if
nccl-tests succeed with e.g. forking, dataloaders, processes using mpi etc.
• Standard DL workloads - e.g. ResNet/ImageNet and Megatron LLMs
• MLPerf HPC - Science HPC part of MLPerf benchmark suite

o CosmoFlow - 3D CNN predicting cosmological parameters
o DeepCAM - segmentation of phenomena in climate sims
o OpenCatalyst - GNN modeling atomic catalyst systems

• FourCastNet - Large scale weather/climate training - model/data parallel

https://github.com/NVIDIA/nccl-tests
https://mlcommons.org/benchmarks/training-hpc/
https://arxiv.org/abs/2208.05419

11

Initial Slingshot 11 performance without libfabric
• Initially, NCCL performance on SS11 at Perlmutter did not use libfabric
• Forced to fall back to TCP for inter-node communications
• 2-3x reduction in bandwidth: impact on even small-scale DL workloads
• Began measuring and tracking performance

Benchmarks Phase I, SS10 Phase II, SS11

NCCL-Tests AllReduce (32 MB) 2 Node (GB/s)
(higher is better)

26 9.5

Tensorflow 2 + Horovod (ResNet/ImageNet)
2 Nodes (samples/second) (higher is better)

4700 3900

DeepCam-4k 8 Node Runtime (min) (lower is better) 5.2 7.0

12

•AWS already provide an open-sourced libfabric plugin for NCCL for
their EFA network

•Provider needs network-specific implementation for SS11
•Strategy: leverage/adapt this plugin for SS11 libfabric on Perlmutter

o Initial efforts led by Josh Romero, Jim Dinan (NVIDIA)

libfabric plugin

https://github.com/aws/aws-ofi-nccl

https://github.com/aws/aws-ofi-nccl

13

•Early days (2022 Q3-4): focus on mid-scale functionality and performance
 Multiple rounds of iterating on the custom NCCL plugin, HPE’s libfabric

implementation, Slingshot software versions, etc.
 Debugging challenges: hangs (sometimes intermittent), segfaults, variable

performance; rapidly moving software as SS11 was hardened in general
• Initial deployment Q4 2022

> module load nccl/2.15.5-ofi
Warning: This is an experimental release of NCCL with an OFI plugin for use with

libfabric on Perlmutter.
In case of issues, please refer to our known issues: https://docs.nersc.gov/current/

and open a help ticket if your issue is not listed: https://help.nersc.gov/

• Also integrated as a plugin for Shifter, our HPC container runtime
• Small-scale runs perform well, for both NCCL benchmarks and DL

workloads (adopted by some non-DL workloads using NCCL, e.g. VASP)

Early integration of libfabric plugin

14

• Already saw performance and scaling improvements

• However larger-scale runs saw hangs
o More frequent as scale increased

Initial deployment: performance results

15

•When things did run at scale, saw intermittent substantial drops in
NCCL bandwidth (>10-100x reduction); worst at large scale

Initial deployment issues

64 nodes
512 nodes

Time
2000 ms -

50 –
GB/s

16

See Jesse Tager and Caio Davi’s talk for more details
•Performance drops: fairly quickly root-caused to the protocol used in
Slingshot for queueing messages

o NVIDIA devs worked with Igor Gorodetsky (HPE) to resolve
o Fix integrated into Slingshot Host Software (SHS) 2.1.0 Q2 2023

•Hangs: Multiple causes across hardware/software stack
o Some intermittent/only emergent at very large scale
o E.g. Pytorch multiprocessing data loader and need for

“FI_MR_CACHE_MONITOR=userfaultfd”
o “Final” issue traced to undetected GPU nvlink hardware error

• “Solved” by adding new nvbandwidth test to node health checker

Improvements to the initial deployment required
NVIDIA/HPC (and NERSC) collaboration

17

•Before-and-after of allreduce bandwidth over 4,096 GPUs:

Performance measurements: NCCL Tests

Stable
>=50 GB/s,
without hanging!

18

Performance measurements: real workloads

● Impact on real workload:
FourCastNet++ (PASC 2023)
○ Hybrid data-model parallel DL

weather model training
● Scaling runs for PASC paper were

done on Phase I, so they provide a
strong SS10 baseline

● Taking largest-scale config from
the paper (~4k GPUs) and
re-running, now see 60%
end-to-end speedup from SS10

https://arxiv.org/abs/2208.05419

19

Performance measurements: MLPerf HPC v3.0
● NERSC partnered with HPE and NVIDIA to submit results using

Perlmutter
○ Previously submitted with Phase 1 system (and slingshot 10)

Achieved highly competitive results:
● Includes other performance improvements:

○ NGC containers; JIT complilation; Optimized data movement and DALI
● Excellent improvements over NERSC’s previous results

○ CosmoFlow 2x on 0.5*GPUs
○ DeepCam 1.5x
○ OpenCatalyst 5x

Full results: https://mlcommons.org/benchmarks/training-hpc/
Code and log files: https://github.com/mlcommons/hpc_results_v3.0/

Nodes GPUs CosmoFlow DeepCAM OpenCatalyst OpenFold
128 512 4.73 21.04
224 896 16.11
512 2048 1.81

https://mlcommons.org/benchmarks/training-hpc/
https://github.com/mlcommons/hpc_results_v3.0/

20

More detailed NCCL measurements

Can now reliably characterize NCCL
collective performance over a wide
range of settings:
• Node counts/topology/message size
• NCCL algorithm & settings
• Slingshot protocols & other settings
• See backup slides for more plots

and validated software versions Ring (left) vs. tree (right) allreduce
bus bandwidth as a function of
message size

● See largely expected & consistent behavior across these settings
● Enables empirically-based performance modeling for NCCL workloads

21

• Transformative AI for Science at NERSC requires HPC-scale Deep
Learning and so NCCL on Slingshot 11

• Great collaboration with NVIDIA and HPE to develop libfabric plugin
• Required extensive testing at scale,

o Broad sweeps of low-level tests and real (scientific) DL workloads
• Now achieve significant improvements over SS10

Future work:
• Continuing to harden and add regular performance testing and tracking

o E.g. adding NCCL all-reduce into “Reframe” testing suite
• Extend NCCL plugin integration into Perlmutter user software env:

o Beyond ‘core’ features: non-DL applications; podman-hpc and
‘containerizability’ of the plugin

• Helping and encouraging HPE and Nvidia production support
•

•

Conclusions and next steps

http://reframe-hpc.readthedocs.io
https://github.com/NERSC/podman-hpc

22

This was a major effort, thanks to all collaborators across NERSC,
NVIDIA, HPE, and AWS! A non-exhaustive list below…

• Thorsten Kurth (NVIDIA)
• Brian Barrett (AWS)
• Lisa Gerhardt (NERSC)
• Brian Friesen (NERSC)
• Christopher Samuel (NERSC)
• Daniel Margala (NERSC)

Thank You!

23

Backup

23

24

Extended benchmark measurements

25

NCCL Testing configuration
● Tests run w/ 4 GPUs per node, sweeping over message sizes from

1MB to ~1GB
● Primary performance metric: bus bandwidth

○ Better number to compare against hardware peak bandwidth
“speed of light”

○ (message size / time) * correction factor
■ factor depends on communicator size & which collective

algorithm is being performed (allreduce, allgather, etc)
● In-place and out-of-place measurements averaged to get final

number; multiple trials run per job for error bars
○ In-place: same buffer is used for comms and result
○ Out-of-place: additional buffer used for comms, result updated

after comms complete
○ The two should be about the same in performance

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md#bus-bandwidth

26

NCCL Testing configuration

Validated configurations, Slingshot Host Software (SHS) v2.1.x:
● CUDA 11.7, NCCL 2.15.5, aws-ofi-nccl v1.6.0-hcopy
● CUDA 11.7, NCCL 2.17.1, aws-ofi-nccl v1.6.0-hcopy

○ Used for most results presented here
● CUDA 12.0, NCCL 2.18.3, aws-ofi-nccl v1.6.0
● CUDA 12.2, NCC 2.19.4, aws-ofi-nccl v1.6.0

Newer CUDA/NCCL pairs have also been working w/ our container setup:
● CUDA, NCCL from NVIDIA NGC image
● Inject plugin and slingshot dependencies via $LD_LIBRARY_PATH

