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NERSC: Mission HPC for the Dept. of Energy Office of Science

Large compute and data systems
● Perlmutter: ~7k A100 GPUs
● 128PB Community Filesystem ....

Broad science user base
● ~10,000 users, 
● 1000 projects, 
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100 GB/s

5 GB/s

                  edge services  2 x 400 Gb/s
2 x 100 Gb/s

50 GB/s
HPSS Tape Archive ~300 PB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s

Community File System 130 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Off Platform Storage

DTNs, Gateways

1,792 GPU-accelerated nodes
 4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
 448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
     2 AMD “Milan” CPUs
     1,536 TB CPU memory

Ethernet 
Science Friendly 

Security
Production Monitoring

Power Efficiency

LAN

HPE Slingshot 11 
interconnect
4 NICs/GPU node, 
1 NIC/CPU node

#7, 93.8PF 
Peak

Quality of Service 
Storage System (QSS)

Platform 
Storage System (PSS)

Workflow Environment 
Management Environment

NERSC-10NERSC-10

Coming 
2026/27NERSC Facility
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NERSC roadmap

NERSC-8: Cori 
Manycore CPU
architectures

2016

2026

 
NERSC-9: Perlmutter 
CPU and GPU nodes 
Expanded Simulation, 
Learning & Data

2020

NERSC-10:
Accelerating 
end-to-end 
workflows 2030+

NERSC-11:
Beyond Moore

AI

Simulation 
& Modeling

Expt
Data

Simulation 
& Modeling

Expt

AI
Training &
Inference

Simulation & 
Modeling

Experiment
Data Analysis

HPC
Workflows Running 

Seamlessly in IRI

Quantum
Computing

Pervasive AI
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NERSC AI Strategy 

• Deploy optimized hardware and software systems
o Work with vendors for optimized AI software (e.g. NCCL on Slingshot!) 

• Apply AI for science using cutting-edge techniques 
o “NESAP” and strategic projects - leverage lessons learned to optimize ecosystem

• Empower and develop workforce through seminars, training and 
schools as well as staff, student intern and postdoctoral programs 
o Over 20 DL@Scale tutorials (e.g. SC18-23), 1000s of total participants 

Systems w/     
Accelerators

EmpowermentDeploymentMethods and Applications 

Software Frameworks and Libraries

Automation Interactivity
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NESAP and Perlmutter are Enabling Adoption of Large-scale 
and Groundbreaking AI 

Brandon Wood 
former NERSC 

Postdoc now Meta AI 

FourCastNet
Pathak et al. 2022  arXiv:2202.11214
Collab with Nvidia, Caltech, …

● Forecasts global weather at 
high-resolution. 

● Prediction skill of numerical 
model; 10000s times faster

CatalysisDL
Chanussot et al. 2021  
Collab with CMU, MetaAI, … 
arXiv:2010.09990

● NeurIPS 2021-23 
Competitions

● Pre-trained models 
now used with DFT - 
e.g. FineTuna; 
AdsorbML 

Jaideep Pathak
former NERSC 

Postdoc now NVIDIA

Shashank 
Subramanian
Former NERSC 
Postdoc now Staff

Jared Willard  
NERSC Postdoc

Wenbin Xu
NERSC postdoc

Vinicius Mikuni 
NERSC Postdoc

● AI “Unfolding” extracts new 
physics insights from data
○ Requires Perlmutter for 

1000s of UQ runs

HEP-ML
Collab with LBL Physics division (and H1 Collaboration)

● All use Perlmutter at-scale
● Have complex workflows 
● So need for network 

(NCCL+SS) performance

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2010.09990
https://neurips.cc/Conferences/2021/CompetitionTrack
https://neurips.cc/Conferences/2021/CompetitionTrack
https://github.com/ulissigroup/finetuna
https://arxiv.org/abs/2211.1648
https://newscenter.lbl.gov/2022/10/25/solving-the-proton-puzzle/
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Broad AI userbase needs distributed DL too… 

• NERSC ML Biyearly Survey 
2024 currently in progress
o Results not final 

• Continues to show need for 
complex distributed DL 
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NCCL underlies distributed AI frameworks 

See Jesse Tager and Caio Davi’s talk for details

•NCCL: NVIDIA Collective Communication 
Library

•Critical for high-performance distributed training 
in major deep-learning (DL) frameworks

•Need high-bandwdith, low-latency P2P 
allreduce between GPUs

o NCCL able to use NVLink within a node, 
then interconnect across nodes

NERSC AI
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Perlmutter deployment

System was delivered in multiple phases

● Phase I used HPE/Cray Slingshot 10 interconnect between GPU 
nodes
○ 2 ConnectX-5 NICs (100 Gbps each) per GPU node
○ RoCE for RDMA, supported by NCCL “out-of-the-box”

● In Q2 2022 we began Phase II integration of Slingshot 11 interconnect
○ 4 Cassini NICs (200 Gbps each) per GPU node
○ Overall 4x increase in ‘speed-of-light’ bandwidth 
○ Required libfabric implementation for NCCL
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Putting together a testing workload 

• NCCL tests: Standard suite of tests
o Primary performance metric: bus bandwidth
o Sweep over message sizes - see backup slides for more details

Also need to test real deep learning workflows - we saw issues arise even if 
nccl-tests succeed with e.g. forking, dataloaders, processes using mpi etc. 
• Standard DL workloads - e.g. ResNet/ImageNet and Megatron LLMs
• MLPerf HPC - Science HPC part of MLPerf benchmark suite

o CosmoFlow - 3D CNN predicting cosmological parameters
o DeepCAM - segmentation of phenomena in climate sims
o OpenCatalyst - GNN modeling atomic catalyst systems

• FourCastNet - Large scale weather/climate training - model/data parallel

https://github.com/NVIDIA/nccl-tests
https://mlcommons.org/benchmarks/training-hpc/
https://arxiv.org/abs/2208.05419
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Initial Slingshot 11 performance without libfabric
• Initially, NCCL performance on SS11 at Perlmutter did not use libfabric
• Forced to fall back to TCP for inter-node communications
• 2-3x reduction in bandwidth: impact on even small-scale DL workloads
• Began measuring and tracking performance 

Benchmarks Phase I, SS10 Phase II, SS11

NCCL-Tests AllReduce (32 MB) 2 Node (GB/s)
(higher is better)

26 9.5

Tensorflow 2 + Horovod (ResNet/ImageNet) 
2 Nodes (samples/second) (higher is better)

4700 3900

DeepCam-4k 8 Node Runtime (min) (lower is better) 5.2 7.0
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•AWS already provide an open-sourced libfabric plugin for NCCL for 
their EFA network

•Provider needs network-specific implementation for SS11
•Strategy: leverage/adapt this plugin for SS11 libfabric on Perlmutter

o Initial efforts led by Josh Romero, Jim Dinan (NVIDIA)

libfabric plugin

https://github.com/aws/aws-ofi-nccl

https://github.com/aws/aws-ofi-nccl
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•Early days (2022 Q3-4): focus on mid-scale functionality and performance
 Multiple rounds of iterating on the custom NCCL plugin, HPE’s libfabric 

implementation, Slingshot software versions, etc.
 Debugging challenges: hangs (sometimes intermittent), segfaults, variable 

performance; rapidly moving software as SS11 was hardened in general
• Initial deployment Q4 2022

> module load nccl/2.15.5-ofi
Warning: This is an experimental release of NCCL with an OFI plugin for use with 

libfabric on Perlmutter.
In case of issues, please refer to our known issues: https://docs.nersc.gov/current/

and open a help ticket if your issue is not listed: https://help.nersc.gov/

• Also integrated as a plugin for Shifter, our HPC container runtime
• Small-scale runs perform well, for both NCCL benchmarks and DL 

workloads (adopted by some non-DL workloads using NCCL, e.g. VASP)

Early integration of libfabric plugin
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• Already saw performance and scaling improvements 

• However larger-scale runs saw hangs 
o More frequent as scale increased

Initial deployment: performance results
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•When things did run at scale, saw intermittent substantial drops in 
NCCL bandwidth (>10-100x reduction); worst at large scale

Initial deployment issues

64 nodes
512 nodes

Time
2000 ms -

50 – 
GB/s
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See Jesse Tager and Caio Davi’s talk for more details
•Performance drops: fairly quickly root-caused to the protocol used in 
Slingshot for queueing messages

o NVIDIA devs worked with Igor Gorodetsky (HPE) to resolve
o Fix integrated into Slingshot Host Software (SHS) 2.1.0 Q2 2023

•Hangs: Multiple causes across hardware/software stack
o Some intermittent/only emergent at very large scale
o E.g. Pytorch multiprocessing data loader and need for 

“FI_MR_CACHE_MONITOR=userfaultfd”
o “Final” issue traced to undetected GPU nvlink hardware error 

• “Solved” by adding new nvbandwidth test to node health checker

Improvements to the initial deployment required 
NVIDIA/HPC (and NERSC) collaboration  
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•Before-and-after of allreduce bandwidth over 4,096 GPUs:

Performance measurements: NCCL Tests

Stable 
>=50 GB/s, 
without hanging!
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Performance measurements: real workloads

● Impact on real workload: 
FourCastNet++ (PASC 2023) 
○ Hybrid data-model parallel DL 

weather model training
● Scaling runs for PASC paper were 

done on Phase I, so they provide a 
strong SS10 baseline

● Taking largest-scale config from 
the paper (~4k GPUs) and 
re-running, now see 60% 
end-to-end speedup from SS10

https://arxiv.org/abs/2208.05419
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Performance measurements: MLPerf HPC v3.0
● NERSC partnered with HPE and NVIDIA to submit results using 

Perlmutter
○ Previously submitted with Phase 1 system (and slingshot 10)

Achieved highly competitive results:
● Includes other performance improvements: 

○ NGC containers; JIT complilation; Optimized data movement and DALI
● Excellent improvements over NERSC’s previous results

○ CosmoFlow 2x on 0.5*GPUs
○ DeepCam 1.5x
○ OpenCatalyst 5x

Full results: https://mlcommons.org/benchmarks/training-hpc/
Code and log files: https://github.com/mlcommons/hpc_results_v3.0/ 

Nodes GPUs CosmoFlow DeepCAM OpenCatalyst OpenFold
128 512 4.73 21.04
224 896 16.11
512 2048 1.81

https://mlcommons.org/benchmarks/training-hpc/
https://github.com/mlcommons/hpc_results_v3.0/
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More detailed NCCL measurements

Can now reliably characterize NCCL 
collective performance over a wide 
range of settings:
• Node counts/topology/message size
• NCCL algorithm & settings
• Slingshot protocols & other settings
• See backup slides for more plots 

and validated software versions Ring (left) vs. tree (right) allreduce 
bus bandwidth as a function of 
message size

●  See largely expected & consistent behavior across these settings
●  Enables empirically-based performance modeling for NCCL workloads
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• Transformative AI for Science at NERSC requires HPC-scale Deep 
Learning and so NCCL on Slingshot 11

• Great collaboration with NVIDIA and HPE to develop libfabric plugin
• Required extensive testing at scale, 

o Broad sweeps of low-level tests and real (scientific) DL workloads
• Now achieve significant improvements over SS10 

Future work: 
• Continuing to harden and add regular performance testing and tracking

o E.g. adding NCCL all-reduce into “Reframe” testing suite
• Extend NCCL plugin integration into Perlmutter user software env:

o Beyond ‘core’ features: non-DL applications; podman-hpc and 
‘containerizability’ of the plugin

• Helping and encouraging HPE and Nvidia production support
•

•

Conclusions and next steps

http://reframe-hpc.readthedocs.io
https://github.com/NERSC/podman-hpc
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This was a major effort, thanks to all collaborators across NERSC, 
NVIDIA, HPE, and AWS! A non-exhaustive list below…

• Thorsten Kurth (NVIDIA)
• Brian Barrett (AWS)
• Lisa Gerhardt (NERSC)
• Brian Friesen (NERSC)
• Christopher Samuel (NERSC)
• Daniel Margala (NERSC)

Thank You!
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Backup

23
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Extended benchmark measurements
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NCCL Testing configuration
● Tests run w/ 4 GPUs per node, sweeping over message sizes from 

1MB to ~1GB
● Primary performance metric: bus bandwidth

○ Better number to compare against hardware peak bandwidth 
“speed of light”

○ (message size / time) * correction factor 
■ factor depends on communicator size & which collective 

algorithm is being performed (allreduce, allgather, etc)
● In-place and out-of-place measurements averaged to get final 

number; multiple trials run per job for error bars
○ In-place: same buffer is used for comms and result
○ Out-of-place: additional buffer used for comms, result updated 

after comms complete
○ The two should be about the same in performance

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md#bus-bandwidth
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NCCL Testing configuration

Validated configurations, Slingshot Host Software (SHS) v2.1.x:
● CUDA 11.7, NCCL 2.15.5, aws-ofi-nccl v1.6.0-hcopy
● CUDA 11.7, NCCL 2.17.1, aws-ofi-nccl v1.6.0-hcopy

○ Used for most results presented here
● CUDA 12.0, NCCL 2.18.3, aws-ofi-nccl v1.6.0
● CUDA 12.2, NCC 2.19.4, aws-ofi-nccl v1.6.0

Newer CUDA/NCCL pairs have also been working w/ our container setup:
● CUDA, NCCL from NVIDIA NGC image
● Inject plugin and slingshot dependencies via $LD_LIBRARY_PATH


