
CUG2024 tutorial

May 6, 2024

Revision May 6th, 2024

Automated Inspection of
C/C++/Fortran Code Using Codee for

Performance Optimization on HPE/Cray

Fortran: A Long History, Still Alive!

● Created in the 1950s by IBM
● 1st compiler created with Fortran
● Widely used in

○ Climate & Weather

○ Automotive

○ Oil and Gas

○ Aerospace

○ Defense

○ Energy & Utilities

○ Manufacturing

○ High Performance Computing

○ Scientific Research

● Number 14th in the TIOBE Index
https://www.tiobe.com/tiobe-index/

2
Source: https://cpufun.substack.com/p/is-fortran-a-dead-language

https://www.tiobe.com/tiobe-index/
https://cpufun.substack.com/p/is-fortran-a-dead-language

Your Main Drivers for Fortran Modernization?

3

● Enforcing the modernization of Fortran code bases is valuable by itself.

● Using modern Fortran increases the quality of the code and facilitates maintenance.

● The modernization process helps find bugs and avoid introducing hidden bugs in code.

● As a result, the modernization process helps ensure correctness of the Fortran code.

● Overall, enforce Fortran modernization before addressing performance optimization.

What Fortran community is saying about this…

4

“Always use IMPLICIT NONE everywhere. It is amazing how many bugs this can find and avoid compared to the
default typing rules.”

“All subprograms should be CONTAINed. Generally in modules, but also in the main program unit. If the subprograms
are in individual files, use INCLUDEs in a module to compile them together. Again, amazing how many interface
bugs show up when this is enforced.”

“Many many more could be suggested. Here are a few in no specific order that help compilers find more bugs at
compile time, and help programs scale better:

● Always specify intent attributes for dummy arguments.
● Always use assumed shape for array dummy arguments. Perhaps with the CONTIGUOUS attribute.

…”

“Always use Standard conforming code. Turn on all warnings (e.g., -std=f2018 -Wall with gfortran) and fix any issues
by using Standard conforming code. There are really very few compiler extensions from the Olden Days that do not
have modern, Standard conforming, replacements.”

Source: https://fortran-lang.discourse.group/t/our-initiative-to-publish-the-fortran-lang-top-10-recommendation-for-fortran-modernization-is-it-really-new-or-even-feasible/7774/18

https://fortran-lang.discourse.group/t/our-initiative-to-publish-the-fortran-lang-top-10-recommendation-for-fortran-modernization-is-it-really-new-or-even-feasible/7774/18

5

Top 10 Recommendations for
Fortran Modernization

fortran-lang.discourse.group

1. Strict compliance
with modern Fortran
standards

Remove deleted legacy features
not be supported by recent
compilers, and avoid
compiler-specific extensions,
ensuring that Fortran code
remains compatible
across various compilers and
development environments.

2. Declare procedures
in modules

Declare related procedures within
a module to enhance code
modularity and readability, while
also helping avoid runtime errors
linked to implicit interfaces.
Separate the definition of
procedures into modules and their
implementation into submodules,
leveraging incremental
compilation to reduce times.

3. Restrict data
visibility with
modules

Move globally accessible data,
such as common blocks, into
modules to encapsulate data
and provide controlled access
interfaces through specific
procedures, improving code
readability and minimizing side
from global data
storage.

4. Improve dummy
arguments
semantics

Enhance the definitions of
dummy arguments to improve
the predictability of
procedures, helping avoid issues
that arise from incorrect
assumptions about
data type, flow, or structure.

5. Improve data type
consistency and
management

Ensure consistency in data types
by avoiding implicit typing and
using a fixed real type, improving
code readability and portability
across different development
environments. Use derived data
types to represent complex
multi-field structures. Leverage
allocatable for safe memory
handling.

6. Avoid legacy
control-flow
constructs

Replace outdated and
error-prone control-flow
constructs with more robust and
maintainable language features
from recent standards (e.g.,
Fortran 2008, 2018, 2023Յ,
improving code maintainability
and reducing the likelihood of
bugs.

7. Enhance source
code semantics

Leverage keywords from recent
Fortran standards to improve the
clarity and
intent of applicable code
statements.

8. Adherence to
code conventions

Establish and adhere to a
consistent coding standard, such
as variable naming
of free-form format, to promote
readability and ease
collaboration among
developers

9. Adopt modern
development
practices

Integrate modern development
practices, such as automated
testing, version control, or
dependency managers, to
enhance quality, maintainability,
collaboration, and distribution of
Fortran software.

10. Proper C/C֡֡
interoperability

Ensure seamless interoperability
between Fortran and C/C֡֡ to
allow Fortran programs to
effectively interact with a wide
range of systems and libraries
written in other languages (e.g.,
high-performance
environments).

https://fortran-lang.discourse.group/

6

Top 20 Checkers for Fortran
Modernization

[M01] Tune compiler flags to mark non-standard and removed features in modern Fortran standards.

[M01] Consider using more standard-compliant compilers like gfortran to flag non-standard and removed features.

[M02] Encapsulate an external procedure into an importable module to avoid calls to an implicit interface that can lead to undefined behavior.

[M03] Transform common block into a module for better data encapsulation.

[M03] Use the keyword only to explicitly state what to import from a module.

[M04] PWR008: Declare the intent for each procedure argument.

[M04] Declare array dummy arguments as assumed-shape arrays.

[M05] PWR007: Always use implicit none to disable implicit declarations.

[M05] Prefer real(kind=kind_value) for declaring consistent floating types.

[M06] PWR063: Avoid using legacy and old-style Fortran constructs.

[M07] PWR003: Explicitly declare pure functions.

[M07] Add an explicit parameter attribute to constant variables.

[M07] Add an explicit save attribute when initializing variables in their declaration.

GitHub Catalog Link
github.com/codee-com/open-catalog

PUBLISHED IMMINENT PLANNED

http://github.com/codee-com/open-catalog

MAIN FEATURES

Codee for Fortran Modernization (and Optimization)
● Static Analysis: Analyze every code line to find and fix code modernization opportunities and run sanitizers on your code.

● Code Coverage: Measure code coverage metrics and discover lines with missing tests on every pull request.

● Autofix: Automatically generate fixes for code modernization issues, always under the control of the programmer and preserving
100% code correctness.

● Reports: Get a deeper understanding of your organization's code health with powerful insights, modernization reports, and
optimization reports.

● Self-hosting: Deploy on-prem on your private system within minutes, and retain full control of your source code and privacy.

● CI/CD automation: Enable automated testing on all CI systems, test every code change and pull-request to find code issues
before merges and public releases.

● Technical Debt: Quantify the extent of code refactoring required to modernize your Fortran code.

● ROI: Quantify savings in development effort to modernize your code, and tailor the ROI estimation to your organization.

Codee provides a systematic, predictable workflow
that is a complement to the HPE/Cray software development tools

WRF | Technical Debt

8

$ codee technical-debt --config /WRF/src/WRFV4.5.1/compile_commands.json @/WRF/scripts/response_files/hangs
506 total entries detected
|- 505 files to be analyzed
`- 1 entry to be ignored because of repetitions

Configuration file '/WRF/src/WRFV4.5.1/compile_commands.json' successfully parsed.
Date: 2024-04-08 Codee version: 2024.2
[Fortran] target compiler: <none> (Compiler Agnostic Mode)
[C] target compiler: <none> (Compiler Agnostic Mode)

TECHNICAL DEBT REPORT

This report quantifies the technical debt associated with the modernization of legacy code by assessing the extent of refactoring required for language constructs. The
score is determined based on the number of language constructs necessitating refactoring to bring the source code up to modern standards. Additionally, the metric
identifies the impacted source code segments, detailing affected files, functions, and loops.

Score Affected files Affected functions Affected loops
----- -------------- ------------------ --------------
26094 355 7798 28

TECHNICAL DEBT BREAKDOWN

Target Lines of code Analysis time Checkers Technical debt score
-- ------------- -------------- -------- --------------------
/WRF/src/WRFV4.5.1/compile_commands.json 946759 13 h 32 m 17 s 19883 26094
-- ------------- -------------- -------- --------------------
Total 946759 13 h 32 m 17 s 19883 26094

The listing of language constructs associated with legacy code found in the source code is as follows:
 - Double precision
 - Assumed size array
 - COMMON blocks
 - BACKSPACE
 - DATA
 - Arithmetic IF
 - PAUSE
 - Equivalence

488 files, 6423 functions, 15040 loops successfully analyzed and 17 non-analyzed files in 13 h 32 m 19 s

WRF | Screening with Ranking

9

$ codee screening --config /WRF/src/WRFV4.5.1/compile_commands.json @/WRF/scripts/response_files/hangs
506 total entries detected
|- 505 files to be analyzed
`- 1 entry to be ignored because of repetitions

Configuration file '/WRF/src/WRFV4.5.1/compile_commands.json' successfully parsed.
Date: 2024-04-08 Codee version: 2024.2
[Fortran] target compiler: <none> (Compiler Agnostic Mode)
[C] target compiler: <none> (Compiler Agnostic Mode)

SCREENING REPORT

----Number of files----
Total | C C++ Fortran
----- | --- --- -------
505 | 122 0 383

Target Lines of code Analysis time # checks Profiling
-- ------------- ------------- -------- ---------
/WRF/src/WRFV4.5.1/compile_commands.json 946759 13 h 15 m 1 s 19883 n/a
-- ------------- ------------- -------- ---------
Total 946759 13 h 15 m 1 s 19883 n/a

CHECKS PER CATEGORY AND PRIORITY LEVELS

 | ---------------Checks per category---------------- | ---Priority--- |
Target | Scalar Control Memory Vector Multi Offload Quality | L1 L2 L3 |
-- | ------ ------- ------ ------ ----- ------- ------- | ---- ---- ---- |
/WRF/src/WRFV4.5.1/compile_commands.json | n/a n/a n/a n/a n/a n/a 19883 | 8983 4858 6042 |
-- | ------ ------- ------ ------ ----- ------- ------- | ---- ---- ---- |
Total | n/a n/a n/a n/a n/a n/a 19883 | 8983 4858 6042 |

Target : analyzed directory or source code file
Lines of code : total lines of code found in the target (computed the same way as the sloccount tool)
Analysis time : time required to analyze the target
checks : total actionable items (opportunities, recommendations, defects and remarks) detected
Profiling : estimation of overall execution time required by this target

RANKING OF CHECKERS

Checker Level Priority # Title
------- ----- -------- ---- ---
PWR008 L1 P18 6236 Declare the intent for each procedure parameter
PWR003 L1 P18 2623 Explicitly declare pure functions
PWR063 L1 P12 124 Avoid using legacy Fortran constructs
PWR007 L2 P6 4858 Disable implicit declaration of variables
PWR001 L3 P3 5906 Declare global variables as function parameters
PWR002 L3 P3 27 Declare scalar variables in the smallest possible scope
PWR012 L3 P2 109 Pass only required fields from derived type as parameters

SUGGESTIONS

 Focus the analysis on a specific file before proceeding with the Codee auto mode or the guided mode:
 codee screening specific/file.c --config /WRF/src/WRFV4.5.1/compile_commands.json

 Use --target-arch to focus on the checks most relevant to your hardware type [cpu | gpu | mcu], e.g.:
 codee screening --target-arch cpu --config /WRF/src/WRFV4.5.1/compile_commands.json

 17 files could not be analyzed, get more information by enabling error reporting:
 codee screening --show-failures=all --config /WRF/src/WRFV4.5.1/compile_commands.json --exclude
/WRF/src/WRFV4.5.1/phys/module_sf_noahmplsm.f90 --exclude /WRF/src/WRFV4.5.1/phys/module_shcu_deng.f90
--exclude /WRF/src/WRFV4.5.1/phys/module_cu_kf.f90

488 files, 6423 functions, 15040 loops successfully analyzed and 17 non-analyzed files in 13 h 15 m 3 s

WRF | ROI

10

$ codee roi --config /WRF/src/WRFV4.5.1/compile_commands.json @/WRF/scripts/response_files/hangs
506 total entries detected
|- 505 files to be analyzed
`- 1 entry to be ignored because of repetitions

Configuration file '/WRF/src/WRFV4.5.1/compile_commands.json' successfully parsed.
Date: 2024-04-08 Codee version: 2024.2

ROI ANALYSIS SUMMARY

This analysis underscores the tangible benefits Codee brings to the development process, not only in terms of savings in development effort, but also in realizing
significant cost efficiencies for the organization.

Impact on Development Effort:
This report identifies critical areas within the source code that necessitate attention from the development team, and forecasts a significant reduction in workload by
an estimated 51154 hours.

Without Codee	With Codee	Hours saved
71037 hours | 19883 hours | 51154 hours

Impact on Cost Savings:
Considering a standard developer's workload of approximately 1800 hours/year, Codee's intervention translates to saving an equivalent to 28.42 (51154h / 1800h)
developers working full-time. Assuming an average cost of a developer for the company (salary + associated costs) of €100,000, this amounts to cost savings of €2,841,888
(€100,000 x 28.42).

Developer hours/year	Number of devs. saved/year	Developer salary/year	Total costs saved/year
1800 hours | 28.42 | €100,000 | €2,841,888

ROI CALCULATION BREAKDOWN

Assumptions (default parameters of Codee):
 - Average yearly total company cost per developer: €100,000
 - Working hours per year per developer: 1800 hours
 - Working hours to apply a Codee checker (without AutoFix): 1 hour
…

488 files, 6423 functions, 15040 loops successfully analyzed and 17 non-analyzed files in 11 h 46 m 39 s

Usage of Codee: Command-Line Interface Tool

List of Codee reports to get started:

○ Technical debt report: codee technical-debt <input>
○ Screening report: codee screening <input>
○ ROI report: codee roi <input>

Codee reports linking with the Github Open Catalog:

○ Checks report: codee checks [--verbose] <input>

Additional Codee features for performance optimization:

○ Annotate OpenMP: codee rewrite <input>

List of checkers related to Fortran modernization and optimization:

11

GitHub Catalog Link
github.com/codee-com/open-catalog

Modernization Performance

Checks PWR001, PWR002, PWR003, PWR007, PWR008,
PWR012, PWR063.

PWR051, PWR054, PWR039, PWR055
and many more…

https://github.com/codee-com/open-catalog
http://github.com/codee-com/open-catalog
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR001
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR002
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR003
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR007
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR008
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR012
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR063
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR051
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR054
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR039
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR055

Codee Help: Usage of Codee command-line
Usage:
 codee <command> --config <compile_commands> [OPTIONS] <filter>...
 codee <command> [OPTIONS] <input>... [-- <compiler flags>]

Arguments:
 <filter>
 Determine which parts of the inputs will be analyzed. It is composed
 of a filepath, followed by an optional list of function names or
 specific positions in the file. For specifying positions, use the
 format "line number:column number". Use commas to separate items in
 the list. For instance:
 path/to/file.ext:foo,bar
 test.c:3:2,2

 <input>
 Determine the files to analyze. Follows the same syntax as <filter>

 <compiler flags>
 A gcc-compatible list of compiler options to apply to the <input>
 files

12

Codee Help: Main commands and basic options

13

Commands:
 checks
 Report opportunities, recommendations and other actionable items found
 in the input(s)

 rewrite
 Apply an AutoFix

 roi
 Estimate the financial impact that Codee will eventually have on the
 codebase

 screening
 Print a screening report of the given input(s)

 technical-debt
 Generate a technical debt report on the modernization of legacy code

Common options:

 --config <config file>
 Load the analysis options from the specified configuration file

 --show-progress, --show-progress=<none|files|functions>
 Show how the analysis progresses by printing a message for each input
 file or function (defaults to `files`)

Codee Help: Options to select subsets of checkers

14

Common options:

 --check-id <id>[,<id>]*
 Enable the checks that match the specified ID(s) only

 --target-arch <arch>
 Filter the checks by target architecture

 --include-categories <category>[,<category>]*
 Enable the checks that match the specified categories, in addition to
 those enabled by default

 --only-categories <category>[,<category>]*
 Enable the checks that match the specified categories only

 --level <L1|1|high|L2|2|medium|L3|3|low>
 Filter the checks by priority level

 --list-available-checkers
 List all available defects, recommendations and remarks

Codee Help: Options to filter input files/directories

15

 --lang <language>
 Filter the input files by language (C, C++, Fortran)

 --exclude <file|directory>
 Skip the specified file or directory. `--exclude` may be set several
 times

 --no-warnings
 Disable warning messages

 --brief
 Minimize the verbosity of the output by omitting table legends,
 suggestions and others

Codee Technical Debt Report
$ codee technical-debt himeno.f90
. . .
TECHNICAL DEBT REPORT

This report quantifies the technical debt associated with the modernization of legacy code by assessing the
extent of refactoring required for language constructs. The score is determined based on the number of
language constructs necessitating refactoring to bring the source code up to modern standards. Additionally,
the metric identifies the impacted source code segments, detailing affected files, functions, and loops.

Score Affected files Affected functions Affected loops
----- -------------- ------------------ --------------
10 1 6 3

TECHNICAL DEBT BREAKDOWN

Lines of code Analysis time Checkers Technical debt score
------------- ------------- -------- --------------------
214 224 ms 10 10

The listing of language constructs associated with legacy code found in the source code is as follows:
 - PAUSE

1 file, 7 functions, 5 loops successfully analyzed and 0 non-analyzed files in 225 ms

16

Score and affected source code

Codee Screening with Ranking Report
$ codee screening himeno.f90
. . .
SCREENING REPORT

Lines of code Analysis time # checks Profiling
------------- ------------- -------- ---------
214 194 ms 10 n/a

CHECKS PER CATEGORY AND PRIORITY LEVELS

---------------Checks per category----------------	Priority
Scalar Control Memory Vector Multi Offload Quality	L1 L2 L3
------ ------- ------ ------ ----- ------- -------	-- -- --
0 0 2 2 n/a n/a 6	3 0 7

RANKING OF CHECKERS

Checker Level Priority # Title
------- ----- -------- - --
RMK015 L1 P27 1 Tune compiler optimization flags to increase the speed of the code
PWR054 L1 P12 1 Consider applying vectorization to scalar reduction loop
PWR063 L1 P12 1 Avoid using legacy Fortran constructs
PWR001 L3 P3 5 Declare global variables as function parameters
PWR035 L3 P2 2 Avoid non-consecutive array access to improve performance

1 file, 7 functions, 5 loops successfully analyzed and 0 non-analyzed files in 195 ms

17

Total number of checkers triggered

Checkers per category/priority

List of checkers reported,
ordered by priority

Codee ROI Report
$ codee roi himeno.f90
. . .
ROI ANALYSIS SUMMARY

This analysis underscores the tangible benefits Codee brings to the development process, not only in terms of savings
in development effort, but also in realizing significant cost efficiencies for the organization.

Impact on Development Effort:
This report identifies critical areas within the source code that necessitate attention from the development team, and
forecasts a significant reduction in workload by an estimated 292 hours.

Without Codee	With Codee	Hours saved
302 hours | 10 hours | 292 hours

Impact on Cost Savings:
Considering a standard developer's workload of approximately 1800 hours/year, Codee's intervention translates to saving
an equivalent to 0.16 (292h / 1800h) developers working full-time. Assuming an average cost of a developer for the
company (salary + associated costs) of €100,000, this amounts to cost savings of €16,222 (€100,000 x 0.16).

Developer hours/year	Number of devs. saved/year	Developer salary/year	Total costs saved/year
1800 hours | 0.16 | €100,000 | €16,222
. . .

18

Saved hours

Saved costs

Codee Checks Report
$ codee checks himeno.f90
. . .
CHECKS REPORT

himeno.f90 [PWR063] (level: L1): Avoid using legacy Fortran constructs
himeno.f90:136:1 [PWR001] (level: L3): Declare global variables as function parameters
himeno.f90:164:1 [PWR001] (level: L3): Declare global variables as function parameters
himeno.f90:223:1 [PWR001] (level: L3): Declare global variables as function parameters
himeno.f90:255:1 [PWR001] (level: L3): Declare global variables as function parameters
himeno.f90:275:1 [PWR001] (level: L3): Declare global variables as function parameters

1 file, 7 functions, 5 loops successfully analyzed and 0 non-analyzed files in 188 ms

$ codee checks --verbose --check-id pwr063 himeno.f90
. . .
himeno.f90 [PWR063] (level: L1): Avoid using legacy Fortran constructs
 PAUSE:
 131: pause
 Suggestion: Remove the legacy fortran constructs and refactor the code to comply with modern Fortran standards.
 Documentation: https://github.com/codee-com/open-catalog/tree/main/Checks/PWR063
. . .
1 file, 7 functions, 5 loops successfully analyzed and 0 non-analyzed files in 145 ms

19

Codee Rewrite (I)

$ codee checks --verbose --check-id pwr051 himeno.f90
. . .
himeno.f90:293:6 [PWR051] (level: L2): Consider applying multithreading parallelism to scalar reduction loop
 Suggestion: Use 'rewrite' to automatically optimize the code
 Documentation: https://github.com/codee-com/open-catalog/tree/main/Checks/PWR051
 AutoFix (choose one option):
 * Using OpenMP 'for' with built-in reduction (recommended):
 codee rewrite --multi omp-for --in-place himeno.f90:293:6
 * Using OpenMP 'for' with explicit privatization:
 codee rewrite --multi omp-for --in-place --explicit-privatization gosa himeno.f90:293:6
 * Using OpenMP 'taskwait':
 codee rewrite --multi omp-taskwait --in-place himeno.f90:293:6
 * Using OpenMP 'taskloop':
 codee rewrite --multi omp-taskloop --in-place himeno.f90:293:6

. . .

1 file, 7 functions, 5 loops successfully analyzed and 0 non-analyzed files in 145 ms

20

First, run Codee to produce the Checks Report in verbose mode. For those checks that have
AutoFix capabilities, the tool will suggest invocations of the codee rewrite command.

Codee Rewrite (II)

$ codee rewrite --multi omp-for --in-place himeno.f90:293:6
. . .
Results for file 'himeno.f90':
 Successfully applied AutoFix to the loop at 'himeno.f90:jacobi:293:6' [using multi-threading]:
 [INFO] himeno.f90:293:6 Parallel scalar reduction pattern identified for variable 'gosa' with associative,
commutative operator '+'
 [INFO] himeno.f90:293:6 Parallel forall: variable 'wrk2'
 [INFO] himeno.f90:293:6 Available parallelization strategies for variable 'gosa'
 [INFO] himeno.f90:293:6 #1 OpenMP scalar reduction (* implemented)
 [INFO] himeno.f90:293:6 #2 OpenMP atomic access
 [INFO] himeno.f90:293:6 #3 OpenMP explicit privatization
 [INFO] himeno.f90:293:6 Loop parallelized with multithreading using OpenMP directive 'for'
 [INFO] himeno.f90:293:6 Parallel region defined by OpenMP directive 'parallel'

Successfully updated himeno.f90

Minimum software stack requirements: OpenMP version 3.0 with multithreading capabilities

21

Second, run Codee to annotate the source code with OpenMP multithreading directives. The tool
will provide details about the actual changes implemented in the source code.

Codee Rewrite (and III)

22

! Codee: Loop modified by Codee (2024-04-29 11:40:52)
! Codee: Technique applied: multithreading with 'omp-for' pragmas
!$omp parallel default(none) shared(a, b, bnd, c, gosa, imax, jmax, kmax, p, wrk1, wrk2) private(i, j, k, s0, ss)
!$omp do private(i, j, s0, ss) reduction(+: gosa) schedule(auto)
do k=2,kmax-1
 do j=2,jmax-1
 do i=2,imax-1
 s0=a(I,J,K,1)*p(I+1,J,K) &
 +a(I,J,K,2)*p(I,J+1,K) &
 +a(I,J,K,3)*p(I,J,K+1) &
 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &
 -p(I-1,J+1,K)+p(I-1,J-1,K)) &
 +b(I,J,K,2)*(p(I,J+1,K+1)-p(I,J-1,K+1) &
 -p(I,J+1,K-1)+p(I,J-1,K-1)) &
 +b(I,J,K,3)*(p(I+1,J,K+1)-p(I-1,J,K+1) &
 -p(I+1,J,K-1)+p(I-1,J,K-1)) &
 +c(I,J,K,1)*p(I-1,J,K) &
 +c(I,J,K,2)*p(I,J-1,K) &
 +c(I,J,K,3)*p(I,J,K-1)+wrk1(I,J,K)
 ss=(s0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)
 GOSA=GOSA+SS*SS
 wrk2(I,J,K)=p(I,J,K)+OMEGA *SS
 enddo
 enddo
enddo
!$omp end parallel

Finally, review the source code comparing the original code and the optimized code. The tool just adds annotations of
OpenMP directives. As a coding assistant tool does not replace proper testing and benchmarking of the optimized code on
your target hardware.

Codee Help: Options for CI/CD pipelines

23

 --json
 Output results in JSON format

 --csv
 Output results in CSV format

 --accept-eula
 Confirm the acceptance of the EULA

Codee Invocation in CI/CD Pipelines

24

Codee Invocation in CI/CD Pipelines

25

Codee Invocation in CI/CD Pipelines

26

Codee Invocation in CI/CD Pipelines

27

Codee Invocation in CI/CD Pipelines

28

Codee Invocation in CI/CD Pipelines

29

Labs
Main quickstart guides for the course:

● Quickstart - Fortran modernization - Himeno
● Quickstart - Fortran modernization - Himeno (with compile_commands.json)
● Quickstart - Fortran modernization - HYCOM
● Quickstart - Fortran performance - Himeno

Optional quickstart guides:

● Quickstart - Fortran performance - MATMUL
● Quickstart - C performance - MATMUL

Extra resources:

● Quickstart - VSCode SARIF
● performance-demos Github repository
● performance-demos-fortran Github repository

30

http://www.codee.com/wp-content/uploads/2024/04/Codee-modern-Quickstart-M1-Himeno.pdf
https://www.codee.com/wp-content/uploads/2024/04/Codee-modern-Quickstart-M2-Himeno-CMake.pdf
https://www.codee.com/wp-content/uploads/2024/04/Codee-modern-Quickstart-M3-HYCOM-CMake.pdf
https://www.codee.com/wp-content/uploads/2024/04/Codee-perfor-Quickstart-P1-Himeno.pdf
https://www.codee.com/wp-content/uploads/2024/02/Codee-Quickstart-1-Fortran-MATMUL.pdf
https://www.codee.com/wp-content/uploads/2024/02/Codee-Quickstart-1-C-MATMUL.pdf
http://codee.com/wp-content/uploads/2024/02/Codee-Quickstart-3-MATMUL-SARIF.pdf
https://github.com/codee-com/performance-demos
https://github.com/codee-com/performance-demos-fortran

codee_com

/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

Spain

Automated Code Inspection for Performance
We look forward to partnering with you!

http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

